I. A. Sammut, Targeting an antioxidant to mitochondria decreases cardiac ischemiareperfusion injury, Faseb J, vol.19, pp.1088-1095, 2005.

P. Cirillo, M. Condorelli, M. Chiariello, and J. T. Flaherty, Evidence that mitochondrial respiration is a source of potentially toxic oxygen free radicals in intact rabbit hearts subjected to ischemia and reflow, J. Biol. Chem, vol.268, pp.18532-18541, 1993.

L. B. Becker, New concepts in reactive oxygen species and cardiovascular reperfusion physiology, Cardiovascular Research, vol.61, issue.3, pp.461-470, 2004.
DOI : 10.1016/j.cardiores.2003.10.025

R. Bolli, B. S. Patel, M. O. Jeroudi, E. K. Lai, and P. B. Mccay, Demonstration of free radical generation in "stunned" myocardium of intact dogs with the use of the spin trap alpha-phenyl N-tert-butyl nitrone., Journal of Clinical Investigation, vol.82, issue.2, pp.476-485, 1998.
DOI : 10.1172/JCI113621

C. Ceconi, P. Bernocchi, A. Boraso, A. Cargnoni, P. Pepi et al., New insights on myocardial pyridine nucleotides and thiol redox state in ischemia and reperfusion damage, Cardiovascular Research, vol.47, issue.3, pp.586-594, 2000.
DOI : 10.1016/S0008-6363(00)00104-8

S. Dikalov, V. Khramtsov, and G. Zimmer, Determination of Rate Constants of the Reactions of Thiols with Superoxide Radical by Electron Paramagnetic Resonance: Critical Remarks on Spectrophotometric Approaches, Archives of Biochemistry and Biophysics, vol.326, issue.2, pp.207-218, 1996.
DOI : 10.1006/abbi.1996.0067

S. Dikalov, K. K. Griendling, and D. G. Harrison, Measurement of Reactive Oxygen Species in Cardiovascular Studies, Hypertension, vol.49, issue.4, pp.717-727, 2007.
DOI : 10.1161/01.HYP.0000258594.87211.6b

D. Lisa, F. Canton, M. Menabo, R. Kaludercic, N. Bernardi et al., Mitochondria and cardioprotection, Heart Failure Reviews, vol.272, issue.Pt 1, pp.249-260, 2007.
DOI : 10.1007/s10741-007-9028-z

D. Lisa, F. Bernardi, and P. A. , A CaPful of mechanisms regulating the mitochondrial permeability transition, Journal of Molecular and Cellular Cardiology, vol.46, issue.6, pp.775-780, 2009.
DOI : 10.1016/j.yjmcc.2009.03.006

J. Duranteau, N. S. Chandel, A. Kulisz, Z. Shao, and P. T. Schumacker, Intracellular Signaling by Reactive Oxygen Species during Hypoxia in Cardiomyocytes, Journal of Biological Chemistry, vol.273, issue.19, pp.11619-11624, 1998.
DOI : 10.1074/jbc.273.19.11619

D. Farbstein, A. Kozak-blickstein, and A. P. Levy, Antioxidant Vitamins and Their Use in Preventing Cardiovascular Disease, Molecules, vol.15, issue.11, pp.8098-8110, 2010.
DOI : 10.3390/molecules15118098

J. T. Flaherty and M. L. Weisfeldt, Reperfusion injury. Free Radic, Biol. Med, vol.5, pp.409-419, 1998.

C. Guarnieri, F. Flamigni, and C. M. Caldarera, Role of oxygen in the cellular damage induced by re-oxygenation of hypoxic heart, Journal of Molecular and Cellular Cardiology, vol.12, issue.8, pp.797-808, 1980.
DOI : 10.1016/0022-2828(80)90081-4

T. P. Geisbuhler and M. J. Rovetto, Lactate does not enhance anoxia/reoxygenation damage in adult rat cardiac myocytes, Journal of Molecular and Cellular Cardiology, vol.22, issue.11, pp.1325-1235, 1990.
DOI : 10.1016/0022-2828(90)90068-D

E. J. Griffiths, C. J. Ocampo, J. S. Savage, M. D. Stern, and H. S. Silverman, Protective effects of low and high doses of cyclosporin A against reoxygenation injury in isolated rat cardiomyocytes are associated with differential effects on mitochondrial calcium levels, Cell Calcium, vol.27, issue.2, 2000.
DOI : 10.1054/ceca.1999.0094

A. P. Halestrap, S. J. Clarke, and S. A. Javadov, Mitochondrial permeability transition pore opening during myocardial reperfusion???a target for cardioprotection, Cardiovascular Research, vol.61, issue.3, 2004.
DOI : 10.1016/S0008-6363(03)00533-9

A. P. Halestrap, What is the mitochondrial permeability transition pore?, Journal of Molecular and Cellular Cardiology, vol.46, issue.6, 2009.
DOI : 10.1016/j.yjmcc.2009.02.021

D. J. Hausenloy, D. M. Yellon, S. Mani-babu, and M. R. Duchen, Preconditioning protects by inhibiting the mitochondrial permeability transition, AJP: Heart and Circulatory Physiology, vol.287, issue.2, 2004.
DOI : 10.1152/ajpheart.00678.2003

R. A. Haworth, D. R. Hunter, H. A. Berkoff, and R. L. Moss, Metabolic cost of the stimulated beating of isolated adult rat heart cells in suspension, Circulation Research, vol.52, issue.3, pp.342-351, 1983.
DOI : 10.1161/01.RES.52.3.342

J. S. Kim, Y. Jin, and J. J. Lemasters, Reactive oxygen species, but not Ca2+ overloading, trigger pH- and mitochondrial permeability transition-dependent death of adult rat myocytes after ischemia-reperfusion, AJP: Heart and Circulatory Physiology, vol.290, issue.5, pp.2024-2034, 2006.
DOI : 10.1152/ajpheart.00683.2005

A. J. Kowaltowski, R. F. Castilho, and A. E. Vercesi, Mitochondrial permeability transition and oxidative stress, FEBS Letters, vol.20, issue.1-2, pp.12-15, 2001.
DOI : 10.1016/S0014-5793(01)02316-X

F. Laurindo, D. C. Fernandes, and C. X. Santos, Assessment of Superoxide Production and NADPH Oxidase Activity by HPLC Analysis of Dihydroethidium Oxidation Products, 2008.
DOI : 10.1016/S0076-6879(08)01213-5

J. J. Lemasters, J. Diguiseppi, A. L. Nieminen, and B. Herman, Blebbing, free Ca2+ and mitochondrial membrane potential preceding cell death in hepatocytes, Nature, vol.325, issue.6099, pp.78-81, 1987.
DOI : 10.1038/325078a0

J. C. Cottin, Y. Rochette, L. Vergely, and C. , The free oxygen radicals test (FORT) to 27 assess circulating oxidative stress in patients with acute myocardial infarction, 2010.

D. Morin, R. Assaly, S. Paradis, and A. Berdeaux, Inhibition of Mitochondrial Membrane Permeability as a Putative Pharmacological Target for Cardioprotection, Current Medicinal Chemistry, vol.16, issue.33, 2009.
DOI : 10.2174/092986709789712871

URL : https://hal.archives-ouvertes.fr/inserm-00433929

E. Murphy and C. Steenbergen, Mechanisms Underlying Acute Protection From Cardiac Ischemia-Reperfusion Injury, Physiological Reviews, vol.88, issue.2, pp.581-609, 2008.
DOI : 10.1152/physrev.00024.2007

D. Morin, Cardioprotective effect of morphine and a blocker of glycogen synthase kinase 3 beta, SB216763 [3-(2,4-dichlorophenyl)-4(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5- dione], via inhibition of the mitochondrial permeability transition pore, J. Pharmacol. Exp, 2008.

L. H. Opie, Reperfusion injury and its pharmacologic modification, Circulation, vol.80, issue.4, pp.1049-62, 1989.
DOI : 10.1161/01.CIR.80.4.1049

M. Ovize, G. F. Baxter, D. Lisa, F. Ferdinandy, P. Garcia-dorado et al., Postconditioning and protection from reperfusion injury: where do we stand? * Position Paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology, Cardiovascular Research, vol.87, issue.3, 2010.
DOI : 10.1093/cvr/cvq129

S. S. Park, H. Zhao, R. A. Mueller, and Z. Xu, Bradykinin prevents reperfusion injury by??targeting mitochondrial permeability transition pore through glycogen synthase kinase 3??, Journal of Molecular and Cellular Cardiology, vol.40, issue.5, pp.708-716, 2006.
DOI : 10.1016/j.yjmcc.2006.01.024

K. M. Peterson, A. Aly, A. Lerman, L. O. Lerman, and M. Rodriguez-porcel, Improved survival of mesenchymal stromal cell after hypoxia preconditioning: Role of oxidative stress, Life Sciences, vol.88, issue.1-2, pp.65-73, 2011.
DOI : 10.1016/j.lfs.2010.10.023

V. Petronilli, G. Miotto, M. Canton, M. Brini, R. Colonna et al., Transient and Long-Lasting Openings of the Mitochondrial Permeability Transition Pore Can Be Monitored Directly in Intact Cells by Changes in Mitochondrial Calcein Fluorescence, Biophysical Journal, vol.76, issue.2, 1999.
DOI : 10.1016/S0006-3495(99)77239-5

H. M. Piper, Y. Abdallah, and C. Schafer, The first minutes of reperfusion: a window of opportunity for cardioprotection, Cardiovascular Research, vol.61, issue.3, pp.365-371, 2004.
DOI : 10.1016/j.cardiores.2003.12.012

C. Poizat, C. Keriel, and P. Cuchet, Is oxygen supply sufficient to induce normoxic conditions in isolated rat heart?, Basic Research in Cardiology, vol.38, issue.supp I, pp.535-844, 1994.
DOI : 10.1007/BF00794953

M. L. Riess, A. K. Camara, L. G. Kevin, J. An, and D. F. Stowe, Reduced reactive O2 species formation and preserved mitochondrial NADH and [Ca2+] levels during short-term 17 ??C ischemia in intact hearts, Cardiovascular Research, vol.61, issue.3, pp.580-590, 2004.
DOI : 10.1016/j.cardiores.2003.09.016

E. Robin, R. D. Guzy, G. Loor, H. Iwase, G. B. Waypa et al., Oxidant Stress during Simulated Ischemia Primes Cardiomyocytes for Cell Death during Reperfusion, Journal of Biological Chemistry, vol.282, issue.26, pp.19133-19143, 2007.
DOI : 10.1074/jbc.M701917200

M. Ruiz-meana, A. Abellan, E. Miro-casas, and D. Garcia-dorado, Opening of mitochondrial permeability transition pore induces hypercontracture in Ca2+ overloaded cardiac myocytes, Basic Research in Cardiology, vol.100, issue.6, pp.542-552, 2007.
DOI : 10.1007/s00395-007-0675-y

J. J. Lacapere, F. Bassissi, T. Bordet, A. Berdeaux, S. P. Jones et al., TRO40303, a new cardioprotective compound, inhibits mitochondrial permeability transition, J. Pharmacol. Exp. Ther, vol.333, pp.696-706, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00497589

H. Seguchi, M. Ritter, M. Shizukuishi, H. Ishida, G. Chokoh et al., Propagation of Ca2+ release in cardiac myocytes: Role of mitochondria, Cell Calcium, vol.38, issue.1, pp.1-9, 2005.
DOI : 10.1016/j.ceca.2005.03.004

V. G. Sharov, A. Todor, S. Khanal, M. Imai, and H. N. Sabbah, Cyclosporine A attenuates mitochondrial permeability transition and improves mitochondrial respiratory function in cardiomyocytes isolated from dogs with heart failure, Journal of Molecular and Cellular Cardiology, vol.42, issue.1, pp.150-158, 2007.
DOI : 10.1016/j.yjmcc.2006.09.013

S. S. Sheu, W. Wang, H. Cheng, and R. T. Dirksen, Superoxide flashes: illuminating new insights into cardiac ischemia and reperfusion injury, Future Cardiology, vol.4, issue.6, pp.551-554, 2008.
DOI : 10.2217/14796678.4.6.551

C. Thomas, M. M. Mackey, A. A. Diaz, and D. P. Cox, Hydroxyl radical is produced via the Fenton reaction in submitochondrial particles under oxidative stress: implications for diseases associated with iron accumulation, Redox Report, vol.14, issue.3, pp.102-108, 2009.
DOI : 10.1007/978-1-4615-6761-5

P. A. Townsend, S. M. Davidson, S. J. Clarke, I. Khaliulin, C. J. Carroll et al., Urocortin prevents mitochondrial permeability transition in response to reperfusion injury indirectly by reducing oxidative stress, AJP: Heart and Circulatory Physiology, vol.293, issue.2, pp.928-238, 2007.
DOI : 10.1152/ajpheart.01135.2006

V. Hoek, T. L. Li, C. Shao, Z. Schumacker, P. T. Becker et al., Significant Levels of Oxidants are Generated by Isolated Cardiomyocytes During Ischemia Prior to Reperfusion, Journal of Molecular and Cellular Cardiology, vol.29, issue.9, pp.2571-2583, 1997.
DOI : 10.1006/jmcc.1997.0497

D. M. Yellon and D. J. Hausenloy, Myocardial Reperfusion Injury, New England Journal of Medicine, vol.357, issue.11, pp.1121-1135, 2007.
DOI : 10.1056/NEJMra071667

W. Wang, H. Fang, L. Groom, A. Cheng, W. Zhang et al., Superoxide Flashes in Single Mitochondria, Cell, vol.134, issue.2, pp.279-290, 2008.
DOI : 10.1016/j.cell.2008.06.017

Q. S. Wang, Y. M. Zheng, L. Dong, Y. S. Ho, Z. Guo et al., Role of mitochondrial reactive oxygen species in hypoxia-dependent increase in intracellular calcium in pulmonary artery myocytes. Free Radic, Biol. Med, vol.42, pp.642-653, 2007.