\(\beta\)-arrestin-1 participates in thrombosis and regulates integrin \(\alpha IIb\beta 3\) signalling without affecting P2Y receptors desensitisation and function.

Mathieu Schaff, Nicolas Receveur, Catherine Bourdon, Philippe Ohlmann, François Lanza, Christian Gachet, Pierre Henri Mangin

To cite this version:

Mathieu Schaff, Nicolas Receveur, Catherine Bourdon, Philippe Ohlmann, François Lanza, et al.. \(\beta\)-arrestin-1 participates in thrombosis and regulates integrin \(\alpha IIb\beta 3\) signalling without affecting P2Y receptors desensitisation and function.: Role of \(\beta\)-arrestins in platelet function. Thrombosis and Haemostasis, Schattauer, 2012, 107 (4), pp.735-48. <10.1160/TH11-06-0430>. <inserm-00678288>
β-arrestin-1 participates in thrombosis and regulates integrin αIIbβ3 signalling without affecting P2Y receptors desensitisation and function

Mathieu Schaff1-3; Nicolas Receveur1-3; Catherine Bourdon1-3; Philippe Ohlmann1-3; François Lanza1-3; Christian Gachet1-3; Pierre Henri Mangin1-3

1 © Schattauer 2012

Introduction

β-arrestin-1 (β-arr1) and β-arrestin-2 (β-arr2), also called arrestin-2 and arrestin-3, respectively, are ubiquitously-expressed cytosolic proteins found in mammals, and form the non-visual arrestin family (1). They bind to activated G protein-coupled receptors (GPCRs) and were originally described as serving to desensitise activation of G proteins and to target the receptors to clathrin-coated pits for endocytosis, thereby terminating the agonist-induced signalling. More recently, it has been established that both β-arr1 and β-arr2 also transduce signals of agonist-occupied GPCRs by acting as adaptors, recruiting a variety of proteins including GTPases and diverse kinases such as phosphoinositide 3-kinase (PI3K), Akt, Src kinases and mitogen-activated protein kinases (1). The resulting multiprotein scaffolding promotes G protein-independent alternative signalings which regulate many cellular responses such as adhesion, proliferation, differentiation, migration, and apoptosis.

P2Y1 and P2Y12 are G protein-coupled adenosine 5’-diphosphate (ADP) receptors playing a key role in platelet activation and thrombosis (2). Platelets activated by ADP become refractory to restimulation, a phenomenon which has been attributed to P2Y1 desensitisation and internalisation (3–5). Although a substantial fraction of P2Y12 is rapidly internalised upon stimulation (4), whether this process is accompanied by a functional desensitisation remains unclear. We previously published that ADP-pre-treated platelets retained P2Y12 activity (3, 4). For unidentified reasons, this was not the case in another study by Hardy et al. (5), suggesting that P2Y12 underwent desensitisation. Both β-arr1 and β-arr2 were shown to associate with stimulated P2Y1 and P2Y12 in transfected cell systems (6–8). However, whether β-arrestins mediate P2Y receptor desensitisation in platelets remains to be established.

Integrin αIIbβ3 plays a pivotal role in haemostasis and arterial thrombosis by supporting platelet adhesion and aggregation at sites of vascular injury (9). A key attribute of αIIbβ3 is its capacity to shift from a resting low to an activated high affinity conformation for its main ligand, fibrinogen. This transformation is mediated by platelet-activating inside-out signals derived from tyrosine kinase-linked and G protein-coupled receptors. Upon fibrinogen binding, αIIbβ3 initiates its own signalling cascade involving several proteins notably Src kinases, phospholipase Cγ2, PI3K and Akt (9–11). The so-called outside-in αIIbβ3 signalling promotes intracellular Ca2+ mobilisation and cytoskeletal reorganisation leading to filopodia emission, and is important to platelet function in haemostasis and arterial thrombosis (12–15). While β-arrestins also regulate a variety of non GPCRs, their importance in αIIbβ3 signalling is unknown (1).

Recently, it has been described that β-arr1 deficiency resulted in a thrombosis defect in a FeCl3 carotid injury model (16). In vitro studies showed reduced soluble fibrinogen binding after stimu-
lation of the platelet protease-activated receptor (PAR) 4. Whether the decreased thrombosis observed in β-arrestin-/- mice is due to the defective response through PAR4 or arises from additional signalling pathways remains to be established.

The objectives of this study were to evaluate the role of β-arrestin 1 and β-arrestin 2 in (i) agonist-induced platelet activation, (ii) P2Y1 and P2Y_{12} desensitisation, and (iii) haemostasis and experimental thrombosis. Mouse platelets with deficiency in β-arrestin 1 or β-arrestin 2 responded normally to a series of agonists, and displayed similar desensitisation to ADP as wild-type (WT) platelets, suggesting that these proteins do not play a key role in these processes. We observed a contribution of β-arrestin 1, but not β-arrestin 2, to arterial thrombosis after laser or FeCl₃ injury. The tail bleeding times, rebleeding occurrences and volume of blood loss were unchanged in β-arrestin 1-/- and β-arrestin 2-/- mice, suggesting no defect in haemostasis. Upon adhesion to immobilised fibrinogen, β-arrestin 1-knock-out platelets exhibited defective integrin α₃β₃-mediated shape change. The role of β-arrestin 1 in α₃β₃ outside-in signals appeared to be dependent on Src family kinases and linked to the upregulation of Akt phosphorylation.

Materials and methods

Materials

Alexa Fluor 488-labelled fibrinogen, DIOCs₆ (3,3′-dihexyloxacarbocyanine iodide) and the indicators Oregon Green 488 BAPTA/AM-1 and Calcein red-orange/AM were from Molecular Probes (Paisley, UK). FITC-coupled anti-P-selectin antibody (RB40.34) was purchased from BD Pharmingen (Le Pont-De-Claix, France) and FeCl₃ solution from VWR Prolabo (Fontenay-sous-Bois, France). Fatty acid-free human serum albumin (HSA), fura-2/AM, TRITC (tetramethylrhodamine isothiocyanate)-phalloidin, bovine thombin, U46619, ADP, ADP, S, indomethacin, PP1 and PP2 were provided by Sigma-Aldrich (Lyon, France). The extents of integrin α₃β₃ activation and P-selectin exposure were represented by the levels of Alexa Fluor 488-fibrinogen and FITC-anti-P-selectin antibody (25 μg/ml), mixed and at predefined time points fixed with PBS-20 mg/ml PFA for 20 minutes (min). Platelets were pelleted by centrifugation at 1,000 x g for 2 min and resuspended in 500 μl phosphate-buffered saline (PBS). The fluorescence intensity of each platelet sample was measured in the range 525–50 nm after excitation with a 488-nm argon-ion laser using a Gallios flow cytometer (Beckman Coulter, Villepinte, France). The extent of integrin α₃β₃ activation and P-selectin exposure were represented by the levels of Alexa Fluor 488-fibrinogen and FITC-anti-P-selectin binding, respectively, expressed as the geometric mean of the relative fluorescence intensity of 10,000 platelets (in arbitrary units) (Kaluza software, Beckman Coulter). Basal fluorescence, as measured in resting platelets, was subtracted from all data points.

Mice

β-arrestin 1- and β-arrestin 2-deficient mice (18, 19) were provided by Pr. R.J. Lefkowitz (Duke University, Durham, NC, USA) and backcrossed for six generations on C57BL/6 background. WT mice were purchased from Charles River (L’Arbresle, France). Mice were maintained in the animal facilities of the Etablissement Français du Sang-Alsace. We used 8– to 10-week-old mice, anesthetised intraperitoneally with a mixture of xylazine (20 mg per kg body weight, Rompun®, Bayer, Leverkusen, Germany) and ketamine (100 mg per kg body weight, Imalgene 1,000®, Merial, Lyon, France). All experiments conformed to the French legislation for animal experimentation and followed the recommendations of the Guide for the Care and Use of Laboratory Animals.

Washed platelet preparation

Blood was drawn from the abdominal aorta into ACD anticoagulant, pooled (4–6 animals), and platelets were washed by sequential centrifugations and adjusted to 3 x 10⁸ platelets/ml in Tyrode’s albumin buffer containing 0.02 U/ml apyrase (17, 20).

Aggregation studies

Washed platelets aggregation was measured turbidimetrically using a four-channel CARAT TX4 aggregometer (Entec, Ilmenau, Germany) as previously described (17).

Measurement of fibrinogen binding and P-selectin exposure

Washed platelets (5 x 10⁸/ml) were stimulated with the indicated agonists in the presence of Alexa Fluor 488-fibrinogen (20 μg/ml) or FITC-anti-P-selectin antibody (25 μg/ml), mixed and at predetermined time points fixed with PBS-20 mg/ml PFA for 20 minutes (min). Platelets were pelleted by centrifugation at 1,000 x g for 2 min and resuspended in 500 μl phosphate-buffered saline (PBS). The fluorescence intensity of each platelet sample was measured in the range 525–50 nm after excitation with a 488-nm argon-ion laser using a Gallios flow cytometer (Beckman Coulter, Villepinte, France). The extents of integrin α₃β₃ activation and P-selectin exposure were represented by the levels of Alexa Fluor 488-fibrinogen and FITC-anti-P-selectin binding, respectively, expressed as the geometric mean of the relative fluorescence intensity of 10,000 platelets (in arbitrary units) (Kaluza software, Beckman Coulter). Basal fluorescence, as measured in resting platelets, was subtracted from all data points.
ELISA-based VASP whole blood assay

Vasodilator-stimulated phosphoprotein (VASP) phosphorylation state was determined using a standardised ELISA (CY-QUANT VASP/P2Y12®; Biocytex, Marseille, France) (21, 22). Briefly, hirudinized (100 U/ml) whole blood drawn from the abdominal aorta was pretreated for 20 min with Tyrode’s albumin buffer or ADP (10 μM). Each sample was then incubated for 10 min at room temperature (RT) with either prostaglandin E1 (PGE1) or PGE1 plus ADP in two separate wells of a 96-well plate. After cell lysis, VASP was captured by a selective anti-VASP antibody coated on the wells. A peroxidase-conjugated anti-phosphorylated VASP antibody was then added, and the plates were incubated with a chromogenic substrate solution and read at 450 nm. The platelet reactivity index (PRI), which reflects the ability of P2Y12 to inhibit PGE1-induced VASP phosphorylation, was calculated from blank-corrected optical densities (OD) as follows: PRI (%) = [(ODPGE1 – OD PGE1 + ADP) / ODPGE1] x 100.

Static adhesion assay

Glass coverslips were coated with 100 μg/ml fibrinogen for 2 hours (h) at RT and blocked with PBS-10 mg/ml HSA for 1 h. Washed platelets (3 x 107/ml) were pretreated for 15 min with AR-C69931MX (10 μM), MRS2179 (100 μM) and indomethacin (100 μM) alone or in the presence of either vehicle (1:1,000 DMSO), PP1 or PP2 (10 μM), and allowed to adhere to the coated surfaces at 37°C. Adherent plates were fixed with 0.1 M cacodylate buffer (pH 7.3) containing 20 mg/ml sucrose. Adherent cells were fixed with PBS-40 mg/ml PFA, stained with TRITC-phalloidin (2 μg/ml) and imaged using a Leica DMI 4000 B epifluorescence microscope with a 63x, 1.4 numerical aperture oil objective (Leica Microsystems, Wetzlar, Germany) (23).

Scanning electron microscopy (SEM)

Adherent platelets were fixed with 25 mg/ml glutaraldehyde in 0.1 M cacodylate buffer (pH 7.3) containing 20 mg/ml sucrose. SEM was performed as described elsewhere (23).

Analysis of cytosolic Ca2+ fluxes

ADP-induced Ca2+ elevations were measured as previously reported (24). Briefly, washed platelets resuspended in Ca2+-free Tyrode’s buffer (7.5 x 106 cells/ml) were loaded with fura-2/AM (15 μM) for 45 min at 37°C. The dyed platelets were pelleted at 1,900 x g for 3 min, resuspended to 2 x 105/ml in Tyrode’s buffer containing apyrase and 1 mg/ml HSA, and challenged with P2Y receptor agonists using a PTI Deltascan spectrofluorimeter (Photon Technology International, Ford, UK). Fluorescence measurements were performed at 510 nm after exciting alternatively at 340 and 380 nm, and converted to intracellular Ca2+ levels. Cytosolic Ca2+ changes upon platelet adhesion to fibrinogen were measured using a previously published method (20). Briefly, washed platelets (5 x 109/ml) were simultaneously loaded with Oregon Green 488 BAPTA/AM-1 (5 μM), Calcein red/orange/AM (10 μM) and the membrane transporter inhibitor probenecid (2.5 μM) for 45 min at 37°C. The dyed platelets were pelleted at 1,900 x g for 3 min, resuspended at 1 x 107/ml in Tyrode’s albumin buffer, and allowed to adhere to fibrinogen-coated (100 μg/ml) coverslips for 20 min. The increases in platelet and Ca2+-dependent fluorescence intensity upon adhesion were measured in the ranges 572–700 nm and 495–535 nm, respectively, by confocal laser scanning microscopy, and converted to intracellular Ca2+ levels (Leica TCS SP5).

Clot retraction

Blood drawn into sodium citrate (3.15 mg/ml) from the abdominal aorta of 2–3 mice was pooled, centrifuged at 250 x g for 1 min and platelet-rich plasma (PRP) was adjusted to 8 x 109 platelets/ml with autologous platelet-poor plasma. PRP (500 μl) was added to quartz cuvettes maintained at 37°C in the presence of 20 mM CaCl2. The clots were allowed to retract for up to 80 min and photographed every 5 min. The extent of retraction was then quantified using ImageJ (National Institutes of Health, Bethesda, MD, USA).

Measurement of Akt phosphorylation

Platelets adhering to fibrinogen were incubated in lysis buffer (1:50 Triton X-100, 40 mM Tris (tris(hydroxymethyl)aminomethane), 10 mM Na2VO3, 100 mM NaF, 2 mM EDTA, 2 mM EGTA, 300 mM NaCl, pH 7.4) for 10 min at 4°C and centrifuged at 7,000 x g for 7 min. The supernatants were resolved by SDS-PAGE and transferred to PVDF membranes. The levels of total and phosphorylated Akt were determined by Western blotting using monoclonal antibodies as previously described (25).

Laser-induced mesenteric artery thrombosis model

Thrombosis was performed as previously described (26). Briefly, platelets were labelled by injection of DIO-C6 (5 μl of a 100 μM solution per g body weight), a membrane fluorescent dye, and a localised deep injury of a mesenteric arteriole was induced with a high intensity 440-nm-pulsed nitrogen dye laser applied for 30–40 seconds (s) (300–400 hits) with a Micropoint system (Photonic Instruments, Andor Technology, Belfast, UK). Thrombus formation was monitored (1 image/s) by fluorescence microscopy using a Sensicam charge-coupled device (CCD) camera (The Cooke Cor-
Table 1: Platelet count and surface expression of different glycoproteins in WT, β-arr1−/− and β-arr2−/− mice. Platelet counts are the mean ± SEM for groups of at least 12 mice. Surface expression of the indicated glycoproteins was determined in whole blood by staining with selective antibodies followed by flow cytometry analysis. Platelets were gated by FSC/SSC characteristics (10,000 platelets per sample). Results are expressed as the geometric mean ± SEM of the relative fluorescence intensity, in arbitrary units (three mice per group).

<table>
<thead>
<tr>
<th>Glycoprotein</th>
<th>WT</th>
<th>β-arr1−/−</th>
<th>β-arr2−/−</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPIIb/IIIa (αIIbβ3)</td>
<td>3.9 ± 0.1</td>
<td>4.2 ± 0.04</td>
<td>4.5 ± 0.1</td>
</tr>
<tr>
<td>GP IIa (αIIa)</td>
<td>0.43 ± 0.02</td>
<td>0.56 ± 0.09</td>
<td>0.46 ± 0.06</td>
</tr>
<tr>
<td>GP Ia (αIIb)</td>
<td>0.73 ± 0.03</td>
<td>0.68 ± 0.07</td>
<td>0.69 ± 0.01</td>
</tr>
<tr>
<td>GPV</td>
<td>0.20 ± 0.01</td>
<td>0.19 ± 0.01</td>
<td>0.21 ± 0.01</td>
</tr>
<tr>
<td>GPV</td>
<td>0.65 ± 0.01</td>
<td>0.63 ± 0.03</td>
<td>0.60 ± 0.02</td>
</tr>
<tr>
<td>GPIX</td>
<td>1.47 ± 0.06</td>
<td>1.44 ± 0.01</td>
<td>1.49 ± 0.03</td>
</tr>
<tr>
<td>GP Ibα</td>
<td>1.74 ± 0.07</td>
<td>1.65 ± 0.06</td>
<td>1.64 ± 0.01</td>
</tr>
<tr>
<td>Platelet count (x10⁶/ml)</td>
<td>1,038 ± 47</td>
<td>969 ± 53</td>
<td>1,151 ± 35</td>
</tr>
</tbody>
</table>

FeCl₃-induced carotid artery thrombosis model

DIOC₆ was injected into the jugular vein (5 µl of a 100 µM solution per g body weight) to label platelets and assist thrombus visualisation. The left common carotid artery was exposed and vascular injury was induced by topically applying over the adventitia for 2 min a Whatman #1 filter paper (1 x 0.5 mm) saturated with 0.2 µl of a 75 mg/ml FeCl₃ saline solution (27). The artery was then rinsed with saline and thrombus formation was monitored in real time under a fluorescent macroscope (Macrofluo, Leica Microsystems) using a 5x, 0.5 numerical aperture objective. Images (1 image/s) were acquired using a CCD camera (CoolSNAP HQ2, Photometrics, Roper Scientific, Evry, France) and analysed with Metamorph software version 7.6 (Molecular Devices, Roper Scientific).
Bleeding time

The bleeding time was measured by transversally severing a 3-mm segment from the distal tail of 8–10-week-old isoflurane-anaesthetised mice. The amputated tail was immediately immersed in 9 mg/ml isotonic saline at 37°C during 30 min and the time required for arrest of bleeding was recorded. The tube containing saline with blood was then homogenised and centrifuged at 550 x g during 5 min. The supernatant was removed and 2 ml of lysis buffer (NH₄Cl 150 mM, KHCO₃ 1 mM, EDTA 0.1 mM, pH 7.2) was added to the pellet. After homogenisation, the optical density was read at 540 nm and compared to a standard curve to determine the volume of blood loss.

Statistical analyses

All values are reported as mean ± standard error of the mean (SEM) unless otherwise indicated. Data were compared by two-tailed Student’s t-tests using Prism software (GraphPad, La Jolla, CA, USA) and differences were considered significant at p<0.05.

Results

Platelet aggregation, soluble fibrinogen binding and P-selectin exposure in β-arr1- and β-arr2-deficient platelets

Deletion of β-arr1 or β-arr2 did not affect the platelet count and expression of the major surface glycoproteins (Table 1). We examined the ability of β-arr1−/− and β-arr2−/− platelets to become activated after stimulation with a range of agonists. As shown in Figure 1A and Suppl. Figure 1 (available online at www.thrombosis-online.com), WT and knock-out platelets displayed equivalent aggregation profiles in response to various concentrations of...
Figure 2: Role of β-arrest1 and β-arrest2 in P2Y receptors desensitisation. A) Top: WT platelets (2 x 10^8/ml) were aggregated by 10 μM ADP in the presence of 64 μg/ml fibrinogen, followed by a second challenge with ADP (1 μM) after 20 min. Bottom: WT platelets were incubated with vehicle (Tyrode’s albumin buffer, [TA]) and stimulated with 1 μM ADP after 20 min. B) Washed platelets (2 x 10^8/ml) from WT, β-arrest1−/− and β-arrest2−/− mice were aggregated as in A. Bars represent the maximal amplitude of aggregation after addition of 10 μM ADP (1) and restimulation with 1 μM ADP (2). Data are the mean ± SEM from three separate experiments. **p<0.01. C) Aggregation: WT, β-arrest1−/− and β-arrest2−/− platelets (2 x 10^8/ml) pretreated with AR-C69931MX (10 μM) for 15 min were incubated with 10 μM ADP or TA in the presence of 64 μg/ml fibrinogen, followed by a second challenge with ADP (1 μM) after 20 min. D, E) Variations in Ca^{2+} levels were measured by spectrofluorimetry in fura-2/AM-loaded (15 μM) WT, β-arrest1−/− and β-arrest2−/− platelets (2 x 10^8/ml) stimulated with 1 μM ADP. After 2 min, apyrase (0.2 U/ml) was added for 30 s and the cells were restimulated with 1 μM ADPβS. Representative profiles are shown (D). Bars represent the maximal increase in cytosolic Ca^{2+} after addition of ADP (1) and restimulation with ADPβS (2). Data are the mean ± SEM from three separate experiments. *p<0.05, **p<0.01 (E).
Figure 2: F) Black curves: aggregation of WT, β-arr1⁻/⁻ and β-arr2⁻/⁻ platelets (2 x 10⁸/ml) in response to 0.05 U/ml thrombin, 13 min after a first addition of either 10 μM ADP or TA in the presence of 64 μg/ml fibrinogen. Grey curves: WT, β-arr1⁻/⁻ and β-arr2⁻/⁻ platelets were aggregated or not by ADP as above, followed by addition of AR-C69931MX (10 μM), 3 min before stimulation with thrombin. The profiles are representative of at least three independent experiments. G) Hirudinated (100 U/ml) whole blood from WT, β-arr1⁻/⁻ and β-arr2⁻/⁻ mice was pretreated or not with 10 μM ADP for 20 min, and the ability of P2Y₁₂ to inhibit PGE₁-induced VASP phosphorylation was determined by ELISA. Distribution of the platelet reactivity index in three different mice is shown. The mean value is indicated with horizontal bars.
ADP, thrombin, type I fibrillar collagen and CRP-XL, a glycoprotein VI-selective ligand. In addition, serotonin-induced shape change and the ability of either adrenaline or serotonin to potentiate aggregation in response to 1 μM ADP were unchanged (data not shown). By contrast, β-arr 2-/- but not β-arr1-/- platelet aggregation was delayed and exhibited a biphasic appearance restricted to the lowest concentration (1 μM) of the thromboxane A2 (TXA2) analog U46619, indicating minor participation of β-arr2 in TP receptor signalling (suppl. fig. 1A). A similar defect was observed in β-arr1-/- platelets using subthreshold concentrations (300 μM) of AYPGKF, a PAR4 agonist peptide (suppl. fig. 1A). In parallel, we observed that soluble fibrinogen binding induced by ADP (2 μM), thrombin (0.25 U/ml), AYPGKF (1 mM) and CRP-XL (1 μg/ml) was normal in β-arr1-/- and β-arr2-null compared to control platelets (suppl. fig. 1B, C). Finally, no defective P-selectin exposure, a marker of granule secretion, was found following thrombin (0.25 U/ml) and AYPGKF (1 mM) stimulation (suppl. fig. 1D, E). Altogether, these results suggested that β-arr1 and β-arr2 play no major role in the signalling machinery leading to activation of platelets by a wide range of agonists.

β-arr1 and β-arr2 are not critical for P2Y1 and P2Y12 receptors desensitisation

WT platelets activated by ADP become refractory to restimulation, a phenomenon attributed to P2Y receptor desensitisation (3–5), and illustrated by absence of shape change and reduced aggregation in response to a second ADP challenge (suppl. fig. 2A and suppl. fig. 2A and C, available online at www.thrombosis-online.com). A similar refractoriness was observed in the knock-out platelets, suggesting that neither β-arr1 nor β-arr2 play a critical role in P2Y receptor desensitisation (suppl. fig. 2B and suppl. fig. 2B and D, available online at www.thrombosis-online.com). To investigate this in more details, we studied P2Y1 desensitisation in platelets pretreated with 10 μM of the P2Y12 blocker AR-C69931MX. As expected, addition of ADP (10 μM) to WT platelets caused a shape change without aggregation (suppl. fig. 2C) (2, 28). Upon restimulation with 1 μM ADP, no response was observed, reflecting desensitisation of P2Y1 (suppl. fig. 2C). Platelets lacking either β-arr1 or β-arr2 exhibited similar responses, indicating that these proteins do not contribute to P2Y1 desensitisation (suppl. fig. 2C). These results were confirmed by looking at ADP-induced Ca2+ mobilisation, which is mediated by P2Y1 (3, 24). Similarly as in the WT, β-arr1-/- and β-arr2-/- platelets stimulated with ADP followed by its removal with apyrase, were unable to exhibit Ca2+ rises in response to a second challenge with the metabolically stable P2Y1 receptor agonist ADPßS (suppl. fig. 2D, E). Although a substantial fraction of P2Y12 is rapidly internalised upon stimulation (4), whether this phenomenon is accompanied by a functional desensitisation is still a matter of debate (3–5). Therefore, we re-examined P2Y12 desensitisation and the potential role of β-arrestins in this process. We used the capacity of P2Y12 to potentiate thrombin-induced platelet aggregation (suppl. fig. 2F, grey curves) as a marker of its sensitisation state (2, 4). As shown in suppl. fig. 2F, the rate and amplitude of aggregation in response to 0.05 U/ml thrombin were similar in WT platelets pre-stimulated or not with 10 μM ADP, suggesting no functional desensitisation of P2Y12. Equivalent aggregation profiles were obtained when these experiments were performed in β-arr1-/- and β-arr2-/- platelets (suppl. fig. 2F). To get a more direct measurement of P2Y12 signalling, we analysed intraplatelet VASP phosphorylation, a method used to monitor the efficacy of anti-P2Y12 therapy (21, 22). ELISA showed that in WT platelets pretreated with 10 μM ADP, P2Y12 was still able to profoundly inhibit PGE1-induced VASP phosphorylation, reflecting once again absence of desensitisation (suppl. fig. 2G). Similar results were found in β-arr1-/- and β-arr2-/- platelets, confirming that these proteins are unlikely to contribute to P2Y12 desensitisation (suppl. fig. 2G).

β-arr1 participates in integrin αIbβ3-mediated filopodia extension

We next evaluated the impact of a β-arrestin deficiency on platelet activation mediated by adhesion receptors. As compared to the WT, the ability of β-arr1-/- and β-arr2-/- platelets to adhere to von Willebrand factor or collagen and undergo shape change, which reflects activation of the cells, was unchanged (data not shown). In contrast, following adhesion to fibrinogen, the proportion of β-arr1-/- but not β-arr2-/- platelets extending filopodia was reduced by 37 ± 5% (n = 3, p<0.0001) (suppl. fig. 3A, B), while the number of adherent cells remained unaltered (data not shown). As these experiments were performed in the presence of ADP and TXA2 blockers, this would suggest abnormal cytoskeletal reorganisation through integrin αIbβ3, the main platelet receptor for fibrinogen.

β-arr1 functions downstream of Src family kinases and regulates Akt phosphorylation mediated by αIbβ3

Integrin αIbβ3 signalling has been reported to be initiated by Src family kinases such as c-Src and Fyn (9). To explore whether β-arr1 is a target of Src kinases, washed platelets were preincubated with PP1 and PP2, two pan-inhibitors of this family of proteins, prior to adhesion to fibrinogen. As shown in suppl. fig. 3B, PP1 reduced the proportion of WT (31 ± 6%) and β-arr1-/- (25 ± 5%) platelets extending filopodia to a similar extent (n = 3, p = 0.44). Similar results were obtained with PP2 (30 ± 4% of WT platelets with filopodia versus 33 ± 3% in mutants, n = 4, p = 0.50), suggesting that β-arr1 is located downstream of Src kinases in αIbβ3 signalling. Src kinases have been proposed to modulate various signalling events including Ca2+ mobilisation (9). Upon adhesion to fibrinogen, equivalent Ca2+ increases were observed in WT and mutant platelets, indicating that β-arr1 does not participate in this process (suppl. fig. 3C). In addition, β-arr1-/- platelets exhibited normal fibrin clot retraction, another event in which αIbβ3 and Src kinases play a

Thrombosis and Haemostasis 107.4/2012 © Schattauer 2012
Figure 3: Role of β-arrest1 in αIIbβ3 signalling. A, B) WT and β-arrest1-/- washed platelets were pretreated for 15 min with AR-C69931MX (10 μM), MRS2179 (100 μM) and indomethacin (100 μM) alone or in the presence of PP1 or PP2 (10 μM), and applied for 20 min to fibrinogen-coated (100 μg/ml) coverslips. Adherent platelets were fixed and examined by SEM. Representative images of WT and β-arrest1-/- platelets are shown. Scale bars, 10 μm (A). The adherent platelets were also stained with TRITC-phalloidin and the mean percentage of cells with filopodial extensions was determined by epifluorescence microscopy in eight random fields in at least three independent experiments (B). C) WT and β-arrest1-/- washed platelets loaded with Ca²⁺ and morphological dyes were allowed to adhere to fibrinogen-coated (100 μg/ml) coverslips as in A, B. Changes in fluorescence were monitored for 20 min by confocal microscopy, and cytosolic Ca²⁺ concentrations were determined. The dot plot distribution of the relative maximal increase in individual adherent platelets is shown. D) Citrated platelet-rich plasma from WT and β-arrest1-/- mice was added to quartz cuvettes maintained at 37°C in the presence of 20 mM CaCl₂ and clot retraction, visible as a consolidated morphology and transparent clot liquor, was photographed every 5 min for 80 min. Bars represent the mean percentage reduction of the initial clot surface area at different time points, determined by two-dimensional image analysis. E, WT and β-arrest1-/- washed platelets were allowed to adhere to fibrinogen as in A, B, lysed, centrifuged and the supernatants were resolved by SDS-PAGE followed by Western blotting. Bars represent the relative ratio of phosphorylated to total Akt, calculated by densitometry analysis. Data represent the mean ± SEM of three or four independent experiments. *p<0.05, **p<0.01, and ***p<0.0001.
β-arr1-/- but not β-arr2-/- mice exhibit a decreased thrombotic response after laser injury of the mesenteric artery. A localised deep injury of an exposed mesenteric arteriole of WT, β-arr1-/- (A, B) and β-arr2-/- (C, D) mice was generated with a high intensity 440-nm-pulsed nitrogen dye laser applied for 30 s, and thrombus formation was monitored by fluorescence microscopy (26). A, C) Time-course of the thrombus growth, represented by its mean surface area. Dotted curves represent the SEM. B, D) Bar graphs represent the area under the curves shown in A and C, respectively. Data are from 12 vessels in five mice (A, B), three vessels in three β-arr2-/- mice or five vessels in three WT mice (C, D). *p<0.05.

β-arr1-/- but not β-arr2-/- mice are protected in two models of arterial thrombosis

The role of β-arr1 and β-arr2 in arterial thrombosis was investigated using two in vivo models. When mesenteric arterioles were injured with a laser beam, a deficiency in β-arr1 led to a 28 ± 10% (n = 12 vessels in five mice, p<0.05) reduction in total thrombus surface area as compared to the WT (Fig. 4A, B). This result is in agreement with a recent study revealing that β-arr1-/- mice are less sensitive to FeCl3-induced carotid thrombosis (16). Using a similar model, we observed a delay in thrombus growth with a thrombus area which was significantly reduced at early (350 s: 32 ± 9% reduction, n = 6, p<0.05) but not later times (>480 s) (Fig. 5A-C). In contrast, thrombus formation was comparable between WT and β-arr2 knock-outs (Figs. 4C and D, 5D and E), pointing to a modest role of β-arr1 and no role of β-arr2 in this process.

β-arr1-deficient mice exhibit normal tail bleeding

To establish whether the decreased thrombosis observed in β-arr1-deficient mice is mirrored by defective haemostasis, standardised tail-bleeding experiments were performed. The bleeding time was equivalent in β-arr1-null (149 ± 33 s, n = 12) and WT (137 ± 26 s, n = 12) mice (Fig. 6A), as were the number of rebleeds (Fig. 6B) and total bleeding time (Fig. 6C) over 30 min. Despite an increased blood loss in a few mutant mice, the mean volume was not significantly different in WT (Fig. 6D). The bleeding phenotype was also unaltered in β-arr2-/- mice (Fig. 6A-D). Overall, these results suggested a minor contribution of β-arr1 and β-arr2 to primary haemostasis.
Discussion

In the present study, we addressed the question of the role of β-arrestins in platelet functions. Neither β-arrestin1 nor β-arrestin2 appeared to critically regulate inside-out signals induced by a wide range of agonists. We also provide evidence that P2Y₁ receptor desensitisation and platelet refractoriness to ADP still occur in β-arrestin1−/− and β-arrestin2−/− platelets. Two in vivo models supported a modest role of β-arrestin1 and no role of β-arrestin2 in arterial thrombosis. The lack of β-arrestin1 or β-arrestin2 expression was not critical for haemostasis since the tail bleeding phenotype was unchanged. Our results identified a novel function for β-arrestin1 through the regulation of integrin αIbβ₃ signalling. Upon fibrinogen binding to αIbβ₃, β-arrestin1 participates in cytoskeletal reorganisation leading to filopodia extension by a process involving Src kinases and probably upregulation of Akt activity.

In agreement with our previous studies (3, 4), we observed that mouse platelets activated by ADP were unable to fully re-aggregate in response to a second challenge, as a result of P2Y₁ receptor desensitisation. Most of GPCRs desensitise through phosphorylation by GPCR kinases (GRKs), which promotes β-arrestin recruitment thereby precluding G protein coupling and ultimately leading to receptor internalisation (1). Although β-arrestin1 and β-arrestin2 were reported to interact with activated P2Y₁ in transfected HEK-293 cells (6, 7), our study shows that the deficiency in either of these proteins did not prevent platelet P2Y₁ desensitisation, as judged by the absence of re-aggregation and Ca²⁺ elevation in response to a second ADP challenge. However, one cannot exclude a compensatory mechanism between the two isoforms. This hypothesis is supported by the fact that in mouse embryonic fibroblasts...
lasts ablation of both β-arr1 and β-arr2 was required to inhibit desensitisation of the angiotensin II type 1A receptor (30). Since double β-arr1/β-arr2 deficiency is embryonically lethal, tissue-specific knock-outs would be needed to definitely resolve this question. Alternatively, P2Y1 phosphorylation on its own may be sufficient to induce desensitisation without any need for a β-arrestin. Such a mechanism has been proposed in transfected 1321N1 cells in which P2Y1 phosphorylation and internalisation did not require GRKs but protein kinase C (5, 8). Concerning P2Y12, we previously demonstrated that even though it was rapidly and transiently internalised upon stimulation, no functional desensitisation was objectivated (3, 4). In agreement with these observations, the present study did not highlight a functional desensitisation of P2Y12 in mouse platelets. These results suggested that β-arrestins are not key players of P2Y12 desensitisation. However, recent identification of a patient carrying a mutation in P2Y12 gene
suggested that β-arrestins may bind a 4-amino acid motif at the extreme C-terminus of P2Y12, thereby promoting its internalisation and subsequent recycling (31).

Arrestins also act as adaptors, allowing for the assembly of multi-protein complexes which transduce the signals of a variety of receptors in many cell types (1). We provided evidence that β-arr1 and β-arr2 were not critical for the activation of platelets by a large series of agonists including ADP. This is in accordance with a recent report by Li et al. (16) showing normal ADP-induced Akt phosphorylation in β-arr1-/- platelets. These results appear surprising since β-arr1 and β-arr2 were proposed to bind and potentially regulate both P2Y1 and P2Y12 (6–8), which are indispensable for normal platelet response to ADP (2). As suggested above, a functional redundancy between β-arr1 and β-arr2 may help maintain normal P2Y receptor function in the knock-out platelets. According to Li et al. (16), β-arr1 modulates PAR4 signalling, as evidenced by a decrease in Alexa Fluor 488-labelled fibrinogen binding upon stimulation of β-arr1-/- platelets with 50 to 100 μM of the selective agonist AYPGKF. Using three different assays, we observed no defect in β-arr1-/- platelet activation in response to the lowest concentrations of AYPGKF sustaining maximal effect. However, when stimulated with a subthreshold concentration (300 μM), β-arr1-/- platelets exhibited a slight delay in aggregation relative to control. Lower doses, as those used by Li et al. (16), could not be tested since they induced no functional response in any of the assays we utilised. The reason for this is unclear, but is probably related to differences in the platelet washing procedure causing various levels of sensitivity to agonists. Overall, our results are in agreement with those of Li et al. (16), suggesting that β-arr1 participates in PAR4 signalling, but its role could be limited since the defect was restricted to stimulations with low concentrations of the agonist.

Besides GPCRs, β-arrestins bind to other classes of surface receptors specifically single-membrane-spanning receptors for transforming growth factor-β, insulin-like growth factor 1 and low density lipoprotein (1). We propose a novel function of β-arr1 as a positive regulator of integrin αIIbβ3 outside-in signalling, as indicated by decreased filopodia emission and Akt phosphorylation in β-arr1-/- platelets adhering to fibrinogen. This is in agreement with the role of Akt in regulating cytoskeletal reorganisation which has been revealed in Akt-1-deficient mice (32). Whether β-arr1 and integrin αIIbβ3 physically interact is unknown. β-arr1 directly binds to specific phosphorylated serine and threonine residues of agonist-occupied GPCRs, thereby competing with G proteins (1). Since the β3 integrin subunit has been shown to bind the G protein α13 subtype (33), a similar mechanism might occur for αIIbβ3. However, our studies on platelet lysates using various types of detergents failed to co-precipitate β-arr1 and β3 (data not shown). Alternatively, since we provided evidence that β-arr1 is located downstream of Src family kinases, which are known to constitutively bind the cytoplasmic tail of β3 and initiate signal transduction (9), one may speculate that Src kinases recruit β-arr1 to the vicinity of αIIbβ3. β-arr1 would in turn facilitate the formation of a signalling complex leading to Akt phosphorylation and its subsequent activation. This is supported by the fact that Src kinases and β-arr1 have been reported to associate downstream of PAR1 and PAR4, resulting in increased PI3K activity and Akt phosphorylation (16, 29). Although αIIbβ3-mediated activation of Akt is known to depend upon phosphatidylinositol 3,4-biphosphate generated by PI3K (11), whether β-arr1 also regulates PI3K function downstream of αIIbβ3 remains to be established. Recently, the small GTPase Cdc42 was proposed to participate in Akt phosphorylation and αIIbβ3-dependent filopodia formation in mouse platelets, suggesting that it could be involved in β-arr1-mediated responses (34).

What is known about this topic?

- β-arr1 and β-arr2 do not regulate agonist-induced platelet activation or P2Y receptors desensitisation.
- β-arr1 but not β-arr2 mice are less sensitive to FeCl3- and laser-induced thrombosis but exhibit normal tail bleeding.
- β-arr1 plays a role in integrin αIIbβ3-mediated filopodia extension by a process involving Src family kinases and probably Akt.

What does this paper add?

- β-arr1 and β-arr2 do not regulate agonist-induced platelet activation or P2Y receptors desensitisation.
- β-arr1 and β-arr2 are important regulators of G protein-coupled receptors desensitisation and signalling.
- P2Y1, a G protein-coupled ADP receptor known to desensitise, can interact with both β-arr1 and β-arr2.
- A contribution of β-arr1 in PAR4-mediated platelet activation and in arterial thrombosis was recently revealed.

What is known about this topic?

- β-arr1 and β-arr2 do not regulate agonist-induced platelet activation or P2Y receptors desensitisation.
- β-arr1 but not β-arr2 mice are less sensitive to FeCl3- and laser-induced thrombosis but exhibit normal tail bleeding.
- β-arr1 plays a role in integrin αIIbβ3-mediated filopodia extension by a process involving Src family kinases and probably Akt.

What does this paper add?

- β-arr1 and β-arr2 do not regulate agonist-induced platelet activation or P2Y receptors desensitisation.
- β-arr1 but not β-arr2 mice are less sensitive to FeCl3- and laser-induced thrombosis but exhibit normal tail bleeding.
- β-arr1 plays a role in integrin αIIbβ3-mediated filopodia extension by a process involving Src family kinases and probably Akt.

© Schattauer 2012

Thrombosis and Haemostasis 107.4/2012

Note: Uncorrected proof, pre-published online

For personal or educational use only. No other uses without permission. All rights reserved.
Acknowledgements
The authors would like to thank Anita Eckly, Jean-Yves Rinckel and Dominique Cassel for technical assistance, Monique Freund, Catherine Ziesel and Pascal Michel for animal care, and Juliette Mulvihill for reviewing the English of the manuscript. This work was supported by ARMESA (Association de Recherche et Développement en Médecine et Santé Publique). Mathieu Schaff was supported by a “Bourse Grenelle” from the French government.

Conflict of interest
None declared.

References