. Inserm, Unité de nutrition humaine, UMR INRA U1019/Université Clermont 1, Centre de recherche INRA de Clermont-Ferrand

T. Garnier, 69365 Lyon, France. 6 Service d'Urologie, Centre Hospitalier Lyon Sud, 165 chemin du grand Revoyet, p.69921

U. Inserm and . Medecine, 151 route Saint Antoine de Ginestiere, p.50

A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu et al., Cancer Statistics, 2008, Cancer statistics, pp.71-96, 2008.
DOI : 10.3322/CA.2007.0010

N. Guseva, A. Taghiyev, O. Rokhlin, and M. Cohen, Death receptor-induced cell death in prostate cancer, Journal of Cellular Biochemistry, vol.7, issue.1, pp.70-99, 2004.
DOI : 10.1002/jcb.10707

M. Zornig, A. Hueber, W. Baum, and G. Evan, Apoptosis regulators and their role in tumorigenesis, Biochem Biophys Acta, vol.1551, pp.1-37, 2001.

A. Ashkenazi, Targeting death and decoy receptors of the tumour-necrosis factor superfamily, Nature Reviews Cancer, vol.194, issue.6, pp.420-430, 2002.
DOI : 10.1038/nrc821

S. Wiley, K. Schooley, P. Smolak, W. Din, C. Huang et al., Identification and characterization of a new member of the TNF family that induces apoptosis, Immunity, vol.3, issue.6, pp.673-682, 1995.
DOI : 10.1016/1074-7613(95)90057-8

R. Pitti, S. Masters, S. Ruppert, C. Donahue, A. Moore et al., Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family, J Biol Chem, vol.271, pp.12687-12690, 1996.

A. Ashkenazi and V. Dixit, Apoptosis control by death and decoy receptors, Current Opinion in Cell Biology, vol.11, issue.2, pp.255-260, 1999.
DOI : 10.1016/S0955-0674(99)80034-9

X. Zhang, T. Jin, H. Yang, W. Dewolf, R. Khosravi-far et al., Persistent c-FLIP(L) Expression Is Necessary and Sufficient to Maintain Resistance to Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand-Mediated Apoptosis in Prostate Cancer, Cancer Research, vol.64, issue.19, pp.7086-7091, 2004.
DOI : 10.1158/0008-5472.CAN-04-1498

A. Ashkenazi, R. Pai, S. Fong, S. Leung, D. Lawrence et al., Safety and antitumor activity of recombinant soluble Apo2 ligand, Journal of Clinical Investigation, vol.104, issue.2, pp.155-62, 1999.
DOI : 10.1172/JCI6926

H. Walczak, R. Miller, K. Ariail, B. Gliniak, T. Griffith et al., Tumoricidal activity of tumor necrosis factor-related apoptosis -inducing ligand in vivo, Nat Med, vol.5, pp.157-63, 1999.

P. Schneider, M. Thome, K. Burns, J. Bodmer, K. Hofmann et al., TRAIL Receptors 1 (DR4) and 2 (DR5) Signal FADD-Dependent Apoptosis and Activate NF-??B, Immunity, vol.7, issue.6, pp.831-836, 1997.
DOI : 10.1016/S1074-7613(00)80401-X

URL : http://doi.org/10.1016/s1074-7613(00)80401-x

G. Pan, J. Ni, Y. Wei, G. Yu, R. Gentz et al., An Antagonist Decoy Receptor and a Death Domain-Containing Receptor for TRAIL, Science, vol.277, issue.5327, pp.815-818, 1997.
DOI : 10.1126/science.277.5327.815

M. Degli-esposti, P. Smolak, H. Walczak, J. Waugh, C. Huang et al., Cloning and Characterization of TRAIL-R3, a Novel Member of the Emerging TRAIL Receptor Family, The Journal of Experimental Medicine, vol.268, issue.7, pp.1165-1170, 1997.
DOI : 10.1016/0008-8749(91)90062-G

J. Sheridan, S. Masters, R. Pitti, A. Gurney, M. Skubatch et al., Control of TRAIL-Induced Apoptosis by a Family of Signaling and Decoy Receptors, Science, vol.277, issue.5327, pp.818-821, 1997.
DOI : 10.1126/science.277.5327.818

S. Masters, J. Sheridan, R. Pitti, A. Huang, M. Skubatch et al., A novel receptor for Apo2L/TRAIL contains a truncated death domain, Current Biology, vol.7, issue.12, pp.1003-1006, 1997.
DOI : 10.1016/S0960-9822(06)00422-2

G. Pan, J. Ni, G. Yu, Y. Wei, and V. Dixit, TRUNDD, a new member of the TRAIL receptor family that antagonizes TRAIL signalling, FEBS Letters, vol.94, issue.1-2, pp.41-45, 1998.
DOI : 10.1016/S0014-5793(98)00135-5

L. Clancy, K. Mruk, K. Archer, M. Woelfel, J. Mongkolsapaya et al., Preligand assembly domain-mediated ligandindependent association between TRAIL receptor 4 (TR4) and TR2 regulates TRAIL-induced apoptosis, Proc. Natl. Acad. Sci. USA 2005, pp.18099-18104
DOI : 10.1073/pnas.0507329102

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1312398

J. Emery, P. Mcdonnell, M. Burke, K. Deen, S. Lyn et al., Osteoprotegerin Is a Receptor for the Cytotoxic Ligand TRAIL, Journal of Biological Chemistry, vol.273, issue.23, pp.14363-14367, 1998.
DOI : 10.1074/jbc.273.23.14363

R. Riccioni, L. Pasquini, G. Mariani, E. Saulle, A. Rossini et al., TRAIL decoy receptors mediate resistance of acute myeloid leukemia cells to TRAIL, Haematologica, vol.90, pp.612-624, 2005.

M. Taplin and S. Ho, The Endocrinology of Prostate Cancer, The Journal of Clinical Endocrinology & Metabolism, vol.86, issue.8, pp.3467-3477, 2001.
DOI : 10.1210/jcem.86.8.7782

J. Isaacs, P. Lundmo, R. Berges, P. Martikainen, N. Kyprianou et al., Androgen regulation of programmed death of normal and malignant prostatic cells, J Androl, vol.13, pp.457-464, 1992.

P. Westin, P. Stattin, J. Damber, and A. Bergh, Castration therapy rapidly induces apoptosis in a minority and decreases cell proliferation in a majority of human prostatic tumors, Am J Pathol, vol.146, pp.1368-1375, 1995.

P. Banerjee, S. Banerjee, K. Tilly, J. Tilly, T. Brown et al., Lobe-specific apoptotic cell death in rat prostate after androgen ablation by castration, Endocrinology, vol.136, pp.4368-4376, 1995.

A. Omezzine, C. Mauduit, E. Tabone, N. Nabli, A. Bouslama et al., Caspase-3 and -6 expression and activation are targeted by hormone Vindrieux et al. Cancer Cell International http://www.cancerci.com/content/11/1/42 action in the rat ventral prostate during the apoptotic cell death process, Biol Reprod, vol.11, issue.69, pp.42752-760, 2003.

O. Rokhlin, G. Bishop, B. Hostager, T. Waldschmidt, S. Sidorenko et al., Fas-mediated apoptosis in human prostatic carcinoma cell lines, Cancer Res, vol.57, pp.1758-1768, 1997.

A. De-la-taille, M. Chen, A. Shabeigh, E. Bagiella, A. Kiss et al., Fas antigen/CD-95 upregulation and activation during castration-induced regression of the rat ventral prostate gland, The Prostate, vol.2, issue.2, pp.89-96, 1999.
DOI : 10.1002/(SICI)1097-0045(19990701)40:2<89::AID-PROS4>3.0.CO;2-E

I. Woolveridge, M. Taylor, F. Wu, and I. Morris, Apoptosis and related genes in the rat ventral prostate following androgen ablation in response to ethane dimethanesulfonate, The Prostate, vol.271, issue.1, pp.23-30, 1998.
DOI : 10.1002/(SICI)1097-0045(19980615)36:1<23::AID-PROS4>3.0.CO;2-C

D. Vindrieux, M. Réveiller, A. Florin, C. Blanchard, A. Ruffion et al., TNF-??-related apoptosis-inducing ligand decoy receptor DcR2 is targeted by androgen action in the rat ventral prostate, Journal of Cellular Physiology, vol.98, issue.3, pp.709-717, 2006.
DOI : 10.1002/jcp.20520

R. Grataroli, D. Vindrieux, A. Gougeon, and M. Benahmed, Expression of Tumor Necrosis Factor-??-Related Apoptosis-Inducing Ligand and Its Receptors in Rat Testis During Development, Biology of Reproduction, vol.66, issue.6, pp.1707-1722, 2002.
DOI : 10.1095/biolreprod66.6.1707

D. Bigler, K. Gulding, R. Dann, F. Sheabar, M. Conaway et al., Gene profiling and promoter reporter assays: Novel tools for comparing the biological effects of botanical extracts on human prostate cancer cells and understanding their mechanisms of action, Oncogene, vol.22, issue.8, pp.1261-1272, 2003.
DOI : 10.1038/sj.onc.1206242

J. Kalach, M. Joly-pharaboz, J. Chantepie, N. B. Descotes, F. Mauduit et al., Divergent biological effects of estradiol and diethylstilbestrol in the prostate cancer cell line MOP, The Journal of Steroid Biochemistry and Molecular Biology, vol.96, issue.2, pp.119-148, 2005.
DOI : 10.1016/j.jsbmb.2005.02.012

O. Rokhlin, A. Taghiyev, N. Guseva, R. Glover, S. Syrbu et al., TRAIL-DISC Formation Is Androgen-Dependent in the Human Prostatic Carcinoma Cell Line LNCaP, Cancer Biology & Therapy, vol.1, issue.6, pp.631-637, 2002.
DOI : 10.4161/cbt.311

O. Rokhlin, N. Guseva, A. Tagiyev, R. Glover, and M. Cohen, Caspase-8 activation is necessary but not sufficient for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in the prostatic carcinoma cell line LNCaP, The Prostate, vol.272, issue.1, pp.1-11, 2002.
DOI : 10.1002/pros.10074

O. Bucur, S. Ray, M. Bucur, and A. Almasan, APO2 ligand/tumor necrosis factor-related apoptosis-inducing ligand in prostate cancer therapy, Frontiers in Bioscience, vol.11, issue.1, pp.1549-1568, 2006.
DOI : 10.2741/1903

O. Rokhlin, A. Taghiyev, N. Guseva, R. Glover, P. Chumakov et al., Androgen regulates apoptosis induced by TNFR family ligands via multiple signaling pathways in LNCaP, Oncogene, vol.45, pp.6773-6784, 2005.
DOI : 10.1038/sj.onc.1208833

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1361275

L. Belyanskaya, T. Marti, S. Hopkins-donaldson, S. Kurtz, E. Felley-bosco et al., Human agonistic TRAIL receptor antibodies Mapatumumab and Lexatumumab induce apoptosis in malignant mesothelioma and act synergistically with cisplatin, Molecular Cancer, vol.6, issue.1, p.66, 2007.
DOI : 10.1186/1476-4598-6-66

M. Macfarlane, S. Kohlhaas, M. Sutcliffe, M. Dyer, and G. Cohen, TRAIL Receptor-Selective Mutants Signal to Apoptosis via TRAIL-R1 in Primary Lymphoid Malignancies, Cancer Research, vol.65, issue.24, pp.11265-11270, 2005.
DOI : 10.1158/0008-5472.CAN-05-2801

A. Amantana, C. London, P. Iversen, and G. Devi, X-linked inhibitor of apoptosis protein inhibition induces apoptosis and enhances chemotherapy sensitivity in human prostate cancer cells, Mol Cancer Ther, vol.3, pp.699-707, 2004.

M. Chawla-sarkar, S. Bae, F. Reu, B. Jacobs, D. Lindner et al., Downregulation of Bcl-2, FLIP or IAPs (XIAP and survivin) by siRNAs sensitizes resistant melanoma cells to Apo2L/TRAIL-induced apoptosis, Cell Death and Differentiation, vol.11, issue.8, pp.915-923, 2004.
DOI : 10.1038/sj.cdd.4401416

B. Sung, B. Park, V. Yadav, and B. Aggarwal, Celastrol, a Triterpene, Enhances TRAIL-induced Apoptosis through the Down-regulation of Cell Survival Proteins and Up-regulation of Death Receptors, Journal of Biological Chemistry, vol.285, issue.15, pp.11498-11507, 2010.
DOI : 10.1074/jbc.M109.090209

V. Hesry, C. Piquet-pellorce, M. Travert, L. Donaghy, B. Jégou et al., Sensitivity of prostate cells to TRAIL-induced apoptosis increase with tumor progression: DR5 and caspase 8 are key players. The Prostate, pp.987-95, 2006.

A. Munshi, T. Mcdonnell, and R. Meyn, Chemotherapeutic agents enhance TRAIL-induced apoptosis in prostate cancer cells, Cancer Chemother Pharmacol, vol.50, pp.46-52, 2002.

A. Sanlioglu, B. Karacay, I. Koksal, T. Griffith, and S. Sanlioglu, DcR2 (TRAIL-R4) siRNA and adenovirus delivery of TRAIL (Ad5hTRAIL) break down in vitro tumorigenic potential of prostate carcinoma cells, Cancer Gene Therapy, vol.16, issue.12, pp.976-984, 2007.
DOI : 10.1038/sj.cgt.7701087

Y. Niu, T. Chang, S. Yeh, W. Ma, Y. Wang et al., Differential androgen receptor signals in different cells explain why androgen-deprivation therapy of prostate cancer fails, Oncogene, vol.61, issue.25, pp.3593-3604, 2010.
DOI : 10.1002/ijc.20206

G. Devi, XIAP as target for therapeutic apoptosis in prostate cancer, Drug News & Perspectives, vol.17, issue.2, pp.127-134, 2004.
DOI : 10.1358/dnp.2004.17.2.829046

D. Vindrieux, M. Devonec, M. Benahmed, and R. Grataroli, Identification of tumor necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL) and its receptors in adult rat ventral prostate, Molecular and Cellular Endocrinology, vol.198, issue.1-2, pp.115-121, 2002.
DOI : 10.1016/S0303-7207(02)00407-0

J. Shi, D. Zheng, Y. Lui, M. Sham, P. Tam et al., Overexpression of Soluble TRAIL Induces Apoptosis in Human Lung Adenocarcinoma and Inhibits Growth of Tumor Xenografts in Nude Mice, Cancer Research, vol.65, issue.5, pp.1687-1692, 2005.
DOI : 10.1158/0008-5472.CAN-04-2749