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Abstract

The human pregnane X receptor (PXR) is a ligand-regulated transcription factor belonging to the nuclear receptor superfamily. PXR

is activated by a large, structurally diverse, set of endogenous and xenobiotic compounds, and coordinates the expression of genes

central to metabolism and excretion of potentially harmful chemicals and therapeutic drugs in humans. Walrycin A is a novel

antibacterial compound targeting the WalK/WalR two-component signal transduction system of Gram ( ) bacteria. Here we report+
that, in hepatoma cells, walrycin A potently activates a gene set known to be regulated by the xenobiotic sensor PXR. Walrycin A was

as efficient as the reference PXR agonist rifampicin to activate PXR in a transactivation assay at non cytoxic concentrations. Using a

limited proteolysis assay, we show that walrycin A induces conformational changes at a concentration which correlates with walrycin

A ability to enhance the expression of prototypic target genes, suggesting that walrycin A interacts with PXR. The activation of the

canonical human PXR target gene by walrycin A is dose- and PXR-dependent. Finally, docking experiments suggestCYP3A4 in silico 

that the walrycin A oxidation product Russig s blue is the actual a ligand for PXR. Taken together, these results identify walrycin A’
as novel human PXR activator.

MESH Keywords Anti-Bacterial Agents ; toxicity ; Cell Line, Transformed ; Cell Survival ; drug effects ; Computational Biology ; Computer Simulation ; Cytochrome

P-450 CYP3A ; biosynthesis ; genetics ; Gene Expression ; drug effects ; Hepatocytes ; drug effects ; metabolism ; Humans ; Naphthols ; toxicity ; Oligonucleotide Array

Sequence Analysis ; Protein Binding ; Quantitative Structure-Activity Relationship ; RNA, Small Interfering ; administration & dosage ; genetics ; Real-Time Polymerase Chain

Reaction ; Receptors, Steroid ; drug effects ; genetics ; Rifampin ; pharmacology ; Transfection
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Introduction

Xenobiotics, such as drugs and environmental chemicals, exert a profound influence on human health. Xenobiotics can alter

homeostasis and induce deleterious metabolic perturbations. In order to promote the metabolic inactivation and excretion of these

compounds, multiple signalling pathways are activated to trigger hepatic biotransformation, biliary excretion and renal elimination. Part of

these clearance mechanisms are coordinately controlled by nuclear receptors such as Pregnane X Receptor (PXR/NR1I2) and Constitutive

Androstane Receptor (CAR/NR1I3). Being important transcription factors controlling xenobiotic detoxification, CAR and PXR display a

strong expression in the primarily exposed organs, the liver and the intestine ( ; ).Lamba 2004 et al. Savkur 2003 et al. 

As many nuclear receptors, CAR and PXR possess a conserved DNA Binding Domain (DBD) and a variable C terminal Ligand

Binding Domain (LBD). Within the LBD, the ligand-binding pocket of CAR and PXR accommodate a wide range of structurally unrelated

endogenous and exogenous ligands ( ). For instance, human PXR and human CAR are both activated by endogenousdi Masi A. 2009 et al. 

ligands such as bile acids and steroid hormones ( ; ; ), xenobiotics such as drugsGuo 2003 et al. Timsit and Negishi 2007 Xie 2003 et al. 

(e.g. rifampicin, dexamethasone and phenobarbital), endocrine disrupters (bisphenol A, phthalates) and natural plant compounds

(hyperforine, zearalenone) ( ; ; ; ; Ayed-Boussema 2011 et al. DeKeyser 2011 et al. Lehmann 1998 et al. Moore 2000 et al. Sueyoshi et al. 

).1999 

Through their DBD, CAR and PXR bind to various response elements (direct repeats DR3, DR4 and DR5 as well as everted repeats

ER6 and ER8), thereby controlling the expression of a large set of target genes involved in energy metabolism and hormone homeostasis,

inflammation, cell differentiation, bile acids and bilirubin detoxification ( ; ; Moreau 2008 et al. Pascussi and Vilarem 2008 Wada et al. 
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). Moreover, this versatile DNA binding property allows cross talks between CAR and PXR, and also with other nuclear receptors2009 

such as FXR, LXR, VDR, PPAR, ER, GR, COUP-TFI and II ( ; ; ; Breuker 2010 et al. di Masi A. 2009 et al. Faucette 2006 et al. Ihunnah 

; ).2011 et al. Istrate 2010 et al. 

PXR and CAR have been initially described as xenobiotic sensors modulating the expression of several hepatic target genes driven by

a so-called xenobiotics response element  and involved in detoxification pathways, including drug-metabolizing enzymes and transporters“ ”
( ; ). For instance, human cytochrome P450 2B6 ( ) and 3A4 ( ) expression isOmiecinski 2011 et al. Wada 2009 et al. CYP2B6 CYP3A4 

under the control of CAR and PXR respectively ( ; ; ; ; Kliewer 2002 et al. Lehmann 1998 et al. Maglich 2003 et al. Mo 2009 et al. 

). The CYP3A sub-family member CYP3A4 is a key player in detoxification pathways, since about 50  ofSueyoshi 1999 et al. %
therapeutically used drugs are metabolized by this enzyme ( ; ). Moreover, the PXR/CYP3A4Istrate 2010 et al. Kliewer 2002 et al. 

pathway is involved in 60  of known drug-drug interactions ( ). Rifampicin, an antibiotic used to treat tuberculosis as well as% Evans 2005 

nosocomial pneumonia caused by methicillin-resistant (MRSA) is a human PXR agonist inducing Staphylococcus aureus CYP3A4 

expression. metabolizes more than 100 drugs including oral contraceptives, anti-HIV protease inhibitors ( ; CYP3A4 Baciewicz 2008 et al. 

; ) and antibiotics, ( ). Thus, activation of the PXR signalling pathway leads to aIvanovic 2008 et al. Ma 2008 et al. Jung 2010 et al. 

diminished therapeutic efficacy of many drugs and also potentially produces toxic metabolites. There is therefore a need to determine the

effects of each novel therapeutic compound on PXR activity.

Recently, a novel antibacterial compound called walrycin A (4-methoxy-1-naphthol) has been identified through a high throughput

screening approach and shown to target the WalK/WalR two-component signal transduction system of Gram ( ) bacteria such as +
( ). Given that walrycin A belongs to a potential novel class of antibacterialStaphylococcus aureus and Bacillus subtilis Gotoh 2010 et al. 

compounds, effects on human xenobiotics metabolism and hepaotoxicity remain to be studied. Here we report that walrycin A modulates

human PXR activity and impacts on hepatic cell viability.

Materials and Methods
Materials

Rifampicin, 6-methoxy-1-naphtol (6MNol) and 4-methoxy-1-naphtol (walrycin A), purchased from Sigma-Aldrich (St-Louis, MO,

USA) were dissolved in dimethylsulfoxyde (DMSO). The housekeeping gene ribosomal protein large P0 ( , NM_001002.3)RPLP0 

forward (CATGCTCAACATCTCCCCCTTCTCC) and reverse (ATGCAGCCCCGAATGCT CCTCATCGTGGCC) primers, CYP3A4 

(NM_017460.5) forward (CATTCCTCATCCCAA TTCTTGAGGT) and reverse (CCACTCGGTGCTTTTGTGTATCT) primers and PXR

isoforms 1 (NM_003889.3) and 2 (NM_022002.2) forward (ACCTTTGACACTACCTTCT CCCAT) and reverse

(CGCAGCCACTGCTAAGCA) primers were purchased from Sigma-Aldrich (St Quentin-Fallavier, France)

Cell culture and treatment

The immortalized human hepatocyte (IHH) cell line was established by F. Kuipers (University Medical Center, Groningen,

Netherlands) from primary human hepatocytes. Cells were routinely maintained as previously described ( ).Schippers 1997 et al. 

Twenty-four hours before treatment, cells were seeded (3.10 cells per well) in 12-well plates in seeding medium (phenol-red free5 

Dulbecco s Modified Eagle Medium (DMEM) supplemented with 2 g/L glucose, 2 mM glutamine (Invitrogen Life Technologies,’
Carlsbad, CA, USA), 7 g/mL bovine insulin (Sigma-Aldrich), 100 U/mL penicillin (Invitrogen), 100 g/mL streptomycin (Invitrogen)μ μ
and 10  charcoal dextran-stripped fetal calf serum (CD-FCS). Cells were washed once before treatment with stimulating medium%
(seeding medium with CD-FCS reduced to 1 ) and treated for 24 h by compounds at indicated concentrations (0.1  DMSO final% %
concentration).

qPCR-based array

First Strand cDNA Synthesis Kit and Human Drug Metabolism RT Profiler PCR Arrays were purchased from SABiosciences2  ™

(SABiosciences, Frederick, MD, USA). Both reverse transcription and qPCR (Stratagen Mx3005P QPCR System) were performed

following manufacturer s instructions. Five endogenous control genes  -2-microglobulin ( ), hypoxanthine’ – β B2M 

phosphoribosyltransferase ( ), ribosomal protein L13a ( ), glyceraldehyde-3-phosphate dehydrogenase ( ), and HPRT1 RPL13A GAPDH β
-actin ( ) - displayed on the PCR array were used for normalization. Cycle threshold (Ct) was normalized to the average Ct of these 5ACTB 

endogenous controls. The comparative Ct method was used to calculate the relative quantification of gene expression (Livak and

). The following formula was used to calculate the relative amount of the transcripts in the walrycin A and vehicleSchmittgen 2001 

(DMSO) treated sample, both of which were normalized to the endogenous controls: Ct  Ct (walrycin A)  Ct (DMSO). Ct is theΔΔ = Δ − Δ Δ
log2 difference in Ct between the target gene and the average Ct of the five endogenous controls. The fold change for walrycin A-treated

sample is expressed relative to the control (DMSO) sample  2 .= Ct −ΔΔ

Cell transfection
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IHH cells were seeded 24 hours before transfection in 6-well plates (10 cells per well) in maintenance medium (6 Schippers 1997 et al. 

). Cells were transfected using 0.1 nmol of ON-TARGETplus SMARTpool hPXR siRNA or non-targeting siRNA using the Dharmafect1

transfection reagent according to the manufacturer s protocol (Thermo Fisher Scientific, Lafayette, CO, USA). After a 24 h incubation,’
cells were washed with seeding medium and incubated further for 24 h. Cells were then washed with stimulating medium and treated as

described above.

RNA extraction, reverse transcription and real time qPCR

At indicated times, cells were washed with 1x phosphate buffer saline (1x PBS) and total RNA was extracted using the Extract-all

reagent (Eurobio, Courtabeuf, France) according to the manufacturer s protocol. One g of total RNA was reverse-transcribed using the’ μ
High Capacity Reverse Transcription Kit (Applied Biosystem, Life Technologies, Carlsbad, CA, USA) according to the manufacturer s’
protocol. A 1:20 dilution of cDNA was then amplified by real time qPCR using Brilliant II Fast SybR Green Master Mix (Agilent

Technologies, Santa Clara, CA, USA) and specific primers in a Stratagen Mx3005P QPCR System (Agilent Technologies). Gene

expression levels were normalized using the housekeeping gene expression level as internal control. Fold induction were expressedRPLP0 

as the ratio of the gene induced expression level to that of the basal level arbitrarily set to one.

Western blotting

At indicated times, transfected cells were washed with 1x PBS followed by total protein extraction using 100 L of Cell Lysis Bufferμ
(Cell Signaling Technology, Beverly, MA, USA) according to the manufacturer s protocol. Western blotting was performed using 40 g of’ μ
total proteins. hPXR protein expression was monitored using an anti-hPXR mouse monoclonal antibody (Perseus Proteomics Inc, Tokyo,

Japan) and a HRP-conjugated goat anti-mouse secondary antibody (Sigma-Aldrich). The immune complexes were detected by

chemiluminescence using Pierce ECL-plus Western Blotting Substrate (Thermo Fisher Scientific) according to the manufacturer s protocol’
and visualized with a G:Box gel dock system (Syngene, Cambridge, UK). HSP90 protein was used as internal standard for equal loading

using a rabbit anti HSP90 antibody (Santa Cruz Biotechnology Inc, Santa Cruz, CA, USA) and a HRP-coupled goat anti rabbit as

secondary antibody (Sigma-Aldrich).

Limited proteolysis assay

translation of hPXR was performed using the TNT T7 Quick Coupled Transcription/Translation System (Promega, Madison,In vitro 

WI, USA) and the S -containing Protein Labelling Mix Easy Tag (Perkin Elmer, Waltham, MA, USA), in the presence of vehicle (0.1[35 ] %
DMSO), 50 M walrycin A, 50 M rifampicin or 50 M 6MNol following the supplier s instructions. Limited proteolysis of theμ μ μ ’
radiolabeled receptor (5 L of TnT mix) was carried out using increasing concentrations of chymotrypsin ranging from 1 to 5 g/mL. Afterμ μ
a 10 min. incubation, digestion was stopped by the addition of 6X Laemmli buffer. Samples were boiled for 5 min. and separated by 12%
SDS-PAGE. After gel drying, radiolabeled digestion products were visualized using a STORM Phosphorimager (GE Healthcare, Orsay,

France).

Gene reporter assay

The stable reporter cell line HGPXR stably expressing a GAL4DBD-hPXR LBD chimeric fusion protein was described previously (

).Lemaire 2006 et al. 

Methods for computer-simulated ligand binding (docking)

Protein input files preparation

Ligand-free PXR (1ILH.pdb and 3HVL.pdb) input files were generated using the protein preparation wizard from the Maestro

software (Maestro 8.5, Academic Campaign, ). The bond orders were assigned and hydrogen atoms werehttp://www.schrodinger.com 

added. The resulting receptor coordinates were saved as a pdb file.

Ligand input files preparation

Ligand input structures were generated and 3D-optimized with the MarvinSketch Academic Package (MarvinSketch 5.4.1.1, 2011,

ChemAxon ). Ligand structures were saved as mol2 files.http://www.chemaxon.com 

GOLD and FRED docking protocol

Docking was performed using chemscore fitness function under standard default settings in the GOLD software (Cambridge

Crystallographic Data Centre 12 Union Road, Cambridge, CB2 1EZ, UK, ): search efficiency: 200 ,http://www.ccdc.cam.ac.uk %
population size 100, number of islands 5, number of operations 100,000, niche size 2, migrate 10, mutate 95, cross over 95 and a selection

pressure of 1.1. Early termination was allowed if 4 solutions were within 1.5 angstroms of root mean square deviation (RMSD). Docking

with FRED 2.2.5, (OpenEye Scientific Software, Inc., Santa Fe, NM, USA, , 2011) was performed using Chemgauss3www.eyesopen.com 

scoring for exhaustive search and Chemgauss3 scoring for optimization.
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Viability assays

HepG2 cells were seeded in 96-well plates (10 cells per well) in maintenance medium and incubated for 24 hours. Cells were treated4 

for 24 h with indicated concentrations of compounds. Cell viability was quantified using the CellTiter 96 Non-Radioactive Cell

Proliferation Assay (Promega) according to the manufacturer s protocol. Absorbance was monitored on MRX spectrophotometer (Thermo’
Labsystems, Issy Les Moulineaux, France). Results were calculated as follows: (A -A ) /(A - A ) . Curve fitting was570 630 compound 570 630 DMSO 

performed using GraphPad Prism 4.0 software (San Diego, CA, USA). Each concentration was tested in quadruplicate and data are

displayed as means  SEM.±

Statistical Analysis

Histograms represent means  SEM (n 2 3). Statistical analyses were performed using GraphPad Prism 4.0. Statistical significance± = –
was determined using a one-way ANOVA followed by a Dunnett s multiple comparison post-hoc test (p-values<0.01 were considered as’
significant). For knock-down assays, significant differences were determined using a two-way ANOVA followed by a Bonferroni post-hoc

test.

Results
Walrycin A regulates mRNA expression of genes involved in phase I drug metabolism

Walrycin A harbors potent antibacterial activity against the methycillin-resistant (MRSA) strain N315 ( ).S. aureus Gotoh 2010 et al. 

Since rifampicin displays a similar efficacy against MRSA ( ) and induce drug metabolizing enzymes in humanPerlroth 2008 et al. 

hepatocytes at a concentration of ~30 50 M ( ), we first assessed whether walrycin A could modulate the expression of– μ Rae 2001 et al. 

enzymes involved in drug/xenobiotic metabolism pathway at a similar concentration. Since drug metabolism is initiated upon the

activation of phase I enzymes, we focused our analysis on this class of enzymes using qPCR macroarrays. Human immortalized

hepatocytes IHH cell line, ( )  were treated for 24 hours by 50 M walrycin A and 0.1  DMSO as a control. The[ Schippers 1997 et al. ] μ %
differential mRNA expression analysis of 83 phase I enzymes was monitored and analyzed using a fold change cut-off of 4. This allowed

the identification of 31 upregulated (36.9 ), and of only 2 downregulated (2.4 ) genes ( ). The expression of 50 genes were% % Figure 1B 

not affected (59.5 ) ( ). Walrycin A-modulated genes could be classified into 3 main classes of enzymes (alcool% Supplementary figure S1 

dehydrogenases, aldehyde dehydrogenases and cytochrome p450s). Genes encoding proteins with other functions, such as , areFMO1 

displayed as Others  ( ). Very interestingly, the PXR target genes and were strongly upregulated (30.9 and 5.2“ ” Figure 1C CYP1A1 CYP3A4 

fold respectively) in response to walrycin A. Given that both drug-activated CAR and PXR may equally regulate the expression of genes

in human hepatocytes such as and ( ; ), we determined the relative expressionCYP1A1 CYP3A4 Auerbach 2007 et al. Faucette 2006 et al. 

of mRNAs coding for these two nuclear receptors in IHH cells. As mRNA was strongly expressed whereas mRNA was notPXR CAR 

detectable (see ), this indicated that the observed altered gene expression pattern upon walrycin A treatmentSupplementary figure S2 

could result form PXR activation. In addition, this indicated that IHH cells provide a valid experimental model to evaluate specific PXR

response upon exposure to xenobiotics.

Dose-dependent activation of by walrycin A is PXR-dependentCYP3A4 

We further assessed the contribution of PXR to the observed alteration of the gene expression pattern. IHH cells were treated in

parallel for 24 hours with the PXR reference agonist rifampicin or walrycin A or the walrycin A structural analogue 6MNol. As expected,

rifampicin induced mRNA expression in a dose-dependent manner ( ) with an EC ~1 M reaching a plateau starting atCYP3A4 Figure 2A 50 μ

10 M (4-fold maximal induction). Interestingly, mRNA expression was also enhanced in a dose-dependent manner by walrycinμ CYP3A4 

A, with a maximal induction reached at 100 M and an EC ~30 M ( ). 6MNol was inactive in this assay. Taken together, theseμ 50 μ Figure 2B 

results indicate that walrycin A activates signalling pathway(s) controlling mRNA expression.CYP3A4 

We then hypothesized that walrycin A-induced mRNA expression was PXR-dependent. To assess this possibility, CYP3A4 PXR 

knock-down was performed in IHH cells using siRNAs ( ). Both mRNA and protein were significantlyFigure 2C and 2D PXR 

downregulated upon anti-PXR siRNA treatment ( ), whereas a non-specific siRNA did not affect expression. Figure 2C PXR CYP3A4 

mRNA was induced upon rifampicin treatment, whereas knock-down significantly blunted this response ( ). Importantly,PXR Figure 2D 

walrycin A-induced mRNA expression was decreased upon knock-down, but not affected by the non-specific siRNA (CYP3A4 PXR 

). Thus, induction of expression in response to walrycin A is a PXR-dependent process.Figure 2D CYP3A4 

Walrycin A interacts with PXR and modifies its conformation

As we demonstrated that the induction of by walrycin A is PXR-dependent, we next hypothesized that walrycin A couldCYP3A4 

directly interact with PXR. To assess this possibility, limited proteolysis experiments were performed to probe potential structural

modifications of the PXR polypeptide upon walrycin A binding. Full-length PXR was translated using S-labelled methionine inin vitro 35 

the presence of either DMSO (negative control), rifampicin (positive control), walrycin A or the related compound 6MNol. Unliganded
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and liganded PXR were then submitted to limited proteolysis using increasing concentrations of chymotrypsin ranging from 0.5 g/mL toμ
5 g/mL ( ). Full-length radiolabeled PXR protein was more amenable to degradation by chymotrypsin in the presence ofμ Figure 3 

rifampicin compared to negative control (1  DMSO), leading to several proteolysis resistant peptides ( ). The PXR proteolysis% Figure 3 

pattern in the presence of walrycin A was totally different to that induced by DMSO, suggesting that walrycin A, like rifampicin, interacts

with PXR and modifies its conformation, hence exposing chymotrypsin cleavage sequences. The digestion pattern generated in presence of

6MNol was comparable to that observed in the presence of DMSO, indicating that this compound is unlikely to bind PXR. These results

are in line with the (lack of) effect of these compounds on PXR-mediated induction of expression.CYP3A4 

Walrycin A activates PXR through its ligand binding domain

Since protease-resistant fragments observed in limited proteolysis assays can be attributed to structural alterations occurring in the

LBD of nuclear receptors ( ), our limited proteolysis assays strongly suggested that walrycin A modulates PXRBenkoussa 1997 et al. 

activity through interaction with the PXR LBD. To verify this hypothesis, a luciferase gene reporter assay was performed using a modified

HeLa cell line (HGPXR cells) in which a chimeric GAL4 DBD-hPXR LBD fusion protein is stably expressed ( ; Lemaire 2006 et al. 

). HeLa cells were treated with concentrations of walrycin A ranging from 0.5 M to 500 M, and the luciferaseLemaire 2007 et al. μ μ
activity was monitored ( ). This system was not sensitive to walrycin A concentrations below 5 M. Nonetheless, aFigure 4A μ
dose-dependent increase in the luciferase activity was observed starting at 5 M and reached a maximum at approximately 150 M, with aμ μ
calculated EC ~10 M. To evaluate PXR selectivity for walrycin A or 6MNol, an independent experiment was performed in the same50 μ

system using 150 M of walrycin A or of 6MNol. As shown in , walrycin A significantly enhanced luciferase transactivationμ Figure 4B 

when used at 150 M when compared to vehicle (DMSO), up to a level close to 80  of the maximal response obtained with the referenceμ %
PXR ligand SR12813 ( ), whereas 6MNol was again inactive. Taken together, these results show that walrycin AMoore 2000 et al. 

activates PXR through its LBD and is likely to be a novel ligand for this nuclear receptor.

The walrycin A oxidation product Russig s blue is efficiently docked into the PXR LBD’

Having shown that walrycin A can alter PXR conformation and activates PXR through its LBD in cellular assays, we nextin vitro 

analyzed the ability of walrycin A, of the closely related molecule 6MNol, and of Russig s blue, an oxidation product of walrycin A (’ Shoji 

), to fit in the ligand-binding pocket of PXR by docking experiments. Docking was first implemented using PXR LBD2010 et al. in silico 

coordinates extracted from the 3hvl.pdb file, corresponding to a human PXR LBD crystal obtained in the presence of a short SRC-1

coactivator peptide and of the bound synthetic PXR agonist SR12813 ( ). As shown in , SR12813 wasWatkins 2001 et al. Figure 5A 

efficiently docked by our procedure with solutions mostly superposable to the 3HVL coordinates ( ). Walrycin A andWatkins 2001 et al. 

6MNol docked perpendicular to the phenyl ring of SR12813, leaving most of the ligand-binding pocket empty ( ). In contrast,Figure 5A 

Russig s blue positioned similarly to SR12813 ( ). Ranking ligand fit in 3HVL showed that Russig s blue has the highest score’ Figure 5B ’
compared to walrycin A and 6MNol, using either GOLD or FRED softwares ( ). Similar conclusions were drawn when usingFigure 5B 

other PXR LBD coordinates (1ILH), corresponding to the human PXR LBD co-crystallized with SR12813 but without a coactivator

peptide (data not shown). These data suggest that walrycin A may dock into the PXR LBD in its oxidized form Russig s blue.’

Walrycin A and hepatic cells viability

Rifampicin and walrycin A share common bactericidal properties, raising the possibility of a combined antibacterial therapy. We

therefore investigated the effect of walrycin A alone or in combination with rifampicin on the viability of human hepatoma cell lines IHH

a n d  H e p G 2 .  C e l l  v i a b i l i t y  a s s a y s  w e r e  p e r f o r m e d  u s i n g  M T S

(3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) as a substrate for mitochondrial reductase.

To assess walrycin A toxicity, cells were independently exposed for 24 h to walrycin A and 6MNol concentrations increasing from 2 Mμ
up to 5 mM, whereas rifampicin concentrations were from 0.5 M to 1 mM. Walrycin A concentrations up to 156 M did not affect HepG2μ μ
viability ( ). Walrycin A IC was calculated to be 240 M, indicating that this compound impacted cell viability at aFigure 6A 50 μ

concentration lower than that of rifampicin IC ~1 mM, and ( )  and 6MNol (IC ~1.7 mM, data not[ 50 Figure 6A Nakajima 2011 et al. ] 50 

shown). Similar results were obtained using IHH cell line (IC walrycin A~350 M, IC rifampicin~4.5 mM, IC 6MNol~1.8 mM, data50 μ 50 50 

not shown).

The potential synergy between walrycin A and rifampicin was then assessed in the MTS assay. HepG2 cells were exposed to

increasing concentrations of rifampicin (from 3 M to 100 M) with or without 50 M walrycin A for 24 or 48 hours (μ μ μ Supplementary

). Highest rifampicin and walrycin A concentrations (100 M and 50 M respectively) did not impact cell viability after the 24 hfigure S4 μ μ
exposure, whereas the combined walrycin A/rifampicin treatment significantly decreased cell viability by approximately 35  ( ,% Figure 6B 

left panel). After a 48 h exposure, HepG2 cell viability was significantly decreased upon rifampicin (100 M) treatment when compared toμ
walrycin A (50 M) treatment, corroborating data from ( ). The combined walrycin A/rifampicin exposure for 48 hoursμ Singh 2011 et al. 

significantly decreased cell viability by approximately 50  when compared to rifampicin alone ( , right panel). Similar results% Figure 6B 
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were obtained by exposing HepG2 cells to increasing concentrations of walrycin A (from 3 M to 100 M) together with rifampicin 10 Mμ μ μ
( ). Taken together, these results indicated that rifampicin and walrycin A synergistically impacted humanSupplementary figure S4 

hepatoma cell viability in a dose- and time-dependent manner.

Discussion

Bacterial infections, despite intense efforts to thwart them, remain a major public health problem not only in developing but also in

occidental countries, as highlighted by the reminiscence of nosocomial infections. Methicillin-resistant Staphylococcus aureus (MRSA) is

a widespread nosocomial pathogen ( ) resistant to -lactam antibiotics, cephalosporins and to the last resort antibioticDiekema 2001 et al. β
vancomycin, to which 40  of MRSA infected patients are resistant ( ; ). Therefore, given the high% Jeffres 2006 et al. Rello 1994 et al. 

mortality rates caused by these drug-resistant bacteria and the difficulty to develop novel potent and specific antibiotics targeting these

bacterial pathogens, combined antibactericidal treatments are currently used to kill increasingly common antibiotic resistant-strains.

Rifampicin harbors valuable properties in combination with first-line antibiotics, and the combination of rifampicin and vancomycin is an

effective treatment against nosocomial MRSA-induced pneumoniae ( ). The novel antibacterial compound walrycin A isJung 2010 et al. 

effective against the MRSA N315 strain ( ; ), suggesting that it could be successfully used inS. aureus Gotoh 2010 et al. Kuroda 2001 et al. 

combination with other antibiotics such as rifampicin, since its high minimal inhibitory concentration on MRSA (734 M) precludes its useμ
as a standalone therapy.

However, drug-drug interactions induced upon antibiotics (co)treatment may lead to increased cytotoxicity as exemplified by liver

damage, and to reduced efficiency due to rapid drug inactivation resulting from the activation of the nuclear xenobiotic sensors CAR and

PXR ( ). Evaluating the activity of walrycin A on hepatic functions is therefore critical to evaluate its potential usefulnessSingh 2011 et al. 

as an anti-MRSA drug.

The structure of walrycin A is based on a naphthalen scaffold, conferring hydrophobic properties, substituted by alcool and methoxy

functions in position 1 and 4 respectively. As described by Gotoh , walrycin A targets the WalK/WalR two-component signalet al. 

transduction system of Gram ( ) bacteria, indicating that this compound gets effectively through the bacterial peptidoglycanic wall and+
cytoplasmic membrane of prokaryotes ( ). Therefore, walrycin A could pass through the eukaryote plasma membrane toGotoh 2010 et al. 

activate various signalling pathways, including those controlled by PXR. Indeed, walrycin A was found to induce the expression of several

PXR target genes such as the drug metabolism phase I enzymes (CYP1A1/1A2/2B6/2C8/2C19/3A4/11A1/11B1/11B2 di Masi A. 2009et al. 

) and ( ).Walrycin A also deregulated the expression of several enzymes not identified as PXR target genes,CYP4A11 Siest G. 2008 et al. 

suggesting that walrycin A modulates other non identified signalling pathways.

The PXR- pathway is involved in approximately 60  of reported drug-drug interactions ( ). mRNACYP3A4 % Evans 2005 CYP3A4 

expression was enhanced in a PXR-dependent manner upon walrycin A treatment. Owing to its structure, walrycin A can potentially

activate PXR through direct binding or by triggering post-translational modifications of this nuclear receptor. To sort out these

non-exclusive hypotheses, we investigated whether walrycin A is a direct activator of PXR. Using limited proteolysis and genein vitro 

reporter assays, we demonstrated that walrycin A is likely to act through the PXR LBD. However, in silico docking of walrycin A into the

PXR ligand binding pocket revealed that the walrycin A oxidation product, Russig s blue, is more likely to behave as a bona-fide PXR’
ligand. This is consistent with the fact that walrycin A spontaneously oxidizes in various aqueous solutions ( and ourShoji et al. 2010 

unpublished observations), and with the strict stereoselectivity of PXR activation, on which the structurally related 6MNol is inactive and

unable to convert into a spectrally detectable compound (our unpublished observations).

Activation of PXR is known to be species-specific, and several reports document the irrelevance of rodent models for assessing the

ability of xenobiotics to regulate human PXR activity ( ; ; ). Importantly, the expression ofJones 2000 et al. Lecluyse 2001 Ma 2007 et al. 

mouse Cyp3a family members is not altered upon administration of rifampicin ( ) in contrast to dexamethasone, a knownMa 2007 et al. 

mouse PXR activator ( ). Our in vitro transactivation assays established that walrycin A is an activator of human, but notScheer 2010 et al. 

of mouse PXR ( ). In line with these results, orally administrated walrycin A (200 mg/kg) for eightSupplementary figures S3A and S3B 

days to C57Bl6 mice neither induced the expression of , the mouse orthologue of human nor caused significantCyp3a11 CYP3A4, 

macroscopic liver damage (data not shown). This clearly suggested that walrycin A is unable to activate mouse PXR. Our data and others (

) thus underline the need for humanized-PXR mouse models to study the effects of walrycin A and other antibioticsMa 2007 et al. in vivo 

rather than wild-type mice.

CAR also plays a major role in drug biotransformation pathways by regulating the expression of, among others, , , CYP2B CYP2C 

, , and membrane transporters ( ; ). It is therefore important toCYP3A UGTs GSTs MRP2&4 di Masi A. 2009 et al. Omiecinski 2011 et al. 

investigate the effects of walrycin A on CAR activity. Our data indicates that walrycin A behaves, like many CAR modulators, as an

inverse agonist of CAR1 ( ). Up to 15 isoforms are expressed in human liver ( ) and someSupplementary figure S5 CAR Lamba 2004 et al. 
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compounds, such as clotrimazole, display opposite modulatory properties on CAR1 and CAR3 isoforms ( ; Auerbach 2005 et al. Moore et

). This highly complex signalling system, which does not occur in IHH and HepG2 hepatoma cell lines, does not allow an easy2000 al. 

prediction of biological outcomes following CAR ctivation in the liver, and certainly deserves further investigation.

In addition to its PXR and CAR modulatory effects, walrycin A exhibited weak cytotoxic properties on human hepatoma cells, but

synergistically increased rifampicin toxicity and vice-versa. This suggests that a combination of rifampicin and walrycin A could induce

deleterious hepatic effects . This drawback has also been reported for the vancomycin/ rifampicin combined treatment (in vivo Jung et al. 

), which is likely due at least in part to drug-drug interactions. Finally, we noted that some walrycin A-exposed mice exhibited a2010 

marked splenomegaly, in agreement with a study in rats ( ), and which might stem also from a portalEastman Kodak Co. 1992 et al. 

hypertension secondary to liver disease. The design of efficient antibiotics thus comes up against important problems of hepatotoxicity and

of hepatic xenobiotic sensors regulation.

Finally, to the best of our knowledge, walrycin A is not yet validated as a therapeutically usable drug and there is therefore no

information on human exposure level. Nevertheless, as this compound and/or its derivative Russig s blue activate PXR and CAR, hepatic’
effects of a simultaneous exposure to walrycin A and to other drugs should be considered in the future. As walrycin A is also a widely

used compound in chemical synthesis ( ), the effects of a fortuitous acute or chronic exposition should beTalaat and Nelson 1986 

monitored in workers exposed to this compound, especially since combined, unwanted exposure to other environmental pollutants such as

phthalates and bisphenol A, also known to activate human PXR and CAR ( ), can dangerously impact health (DeKeyser 2011 et al. 

).Howdeshell 2007 et al. 
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Figure 1
Walrycin A regulates mRNA expression of a large set of drug metabolism phase I enzymes

Structure of the tested compounds. : Scatter plot of mRNA expression upon walrycin A treatment (2 (walrycin A)) compared toA: B - Ct Δ

vehicle treatment (2 (DMSO)). Upregulated (>4 fold change), not deregulated (-4<fold change<4) and downregulated (>-4 fold change)Ct −Δ

gene expression are displayed within dark gray, central uncolored and light gray areas, respectively. : Phase I enzymes differentiallyC 

expressed in response to walrycin A treatment (fold-change>4). The gene list was clustered in 3 main families (alcool deshydrogenase,

aldehyde dehydrogenase and cytochrome p450). Enzymes not belonging to these 3 main families are labeled as others .“ ”
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Figure 2
Dose-dependence activation of by walrycin A is PXR-dependentCYP3A4 

IHH cells were treated for 24h with indicated concentrations of rifampicin (black bar). Expression of was determined by qPCR,A: CYP3A4 

normalized to expression level and compared to DMSO control (white bar). Histograms represent means  SEM of a representativeRPLP0 ±
experiment performed in triplicate. Cells were treated for 24h with indicated concentrations of walrycin A (black bar) or 6MNol (hatchedB: 

bar). Expression of was determined by qPCR and analyzed as described above. Histograms represent means  SEM of 3 independentCYP3A4 ±
experiments performed with triplicates. Statistical significances were determined with a Dunnett s Multiple Comparison Test ( p<0.001). ’ *** C: 

Cells were transfected with control siRNA (white bars) or by PXR-targeting siRNA (black bars) and knock-down expression of genePXR 

(mRNA and protein) was assessed by qPCR and western blot analysis. Control and PXR-targeting siRNA transfected cells were treatedD: 

24h by vehicle (0.1  DMSO), rifampicin or walrycin A. The expression of and was determined by qPCR, normalized to % PXR CYP3A4 

expression level and expressed relative to that detected in cells transfected by control siRNA. Histograms represent means  SEM of aRPLP0 ±
representative experiment performed in triplicate. Statistical significances were determined using a Bonferroni post-hoc test ( p<0.001 and *** *
p<0.01).*
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Figure 3
Walrycin A induces conformational changes in the human PXR receptor polypeptide

translation of hPXR was carried out in the presence of 0.1  DMSO, 50 M 6MNol, walrycin A or rifampicin. Upon completion ofIn vitro % μ
protein synthesis, limited proteolysis assay was performed as described in materials and methods using varying concentrations of

chymotrypsin (up to 5 g/mL). Radio-labeled peptides were detected using a Phosphorimager system. Arrow indicates the short fragmentsμ
corresponding to LBD of PXR partially protected from digestion in presence of rifampicin or walrycin A.

Figure 4
Walrycin A activates PXR through its ligand binding domain
HeLa cell line in which a chimeric GAL4-DBD-PXR LBD fusion protein was stably expressed was treated with DMSO (negative control),

SR12813 (positive control), walrycin A or 6MNol. Cells were treated with increasing concentrations of walrycin A ranging from 0.5 M toA: μ
200 M. Cells were treated with 150 M of walrycin A or 6MNol. All experiments were performed in duplicates and results were plottedμ B: μ
compared to maximal luciferase activity obtained using 1 M of SR12813 (100  of transactivation).μ %
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Figure 5
The walrycin A oxidation product Russig s blue fits in PXR ligand-binding pocket’

Images of docking solutions for SR12813, Russig s blue, Walrycin A and 6MNol in PXR ligand-binding domain from 3HVL. EndogenousA: ’
3HVL SR12813 ligand is shown in magenta and three solutions for each ligand are shown in gold. Oxygen atoms are shown in red except in

the reference ligand (magenta). Ligand fitting in 3HVL and 1ILH ligand-binding pockets as assessed with GOLD (Chemscore, good fittingB: 

results in high score) and FRED (FRED score, good fitting results in low score). Russig s blue and SR12813 grouped as best fitting’
compounds compared to walrycin A and 6MNol.

Figure 6
Impacts of rifampicin and Walrycin A on hepatoma cell viability

HepG2 cells were treated for 24h using compounds concentrations ranging from 2 M to 5 mM for walrycin A and from 0.5 M to 1mMA: μ μ
for rifampicin. Data were normalized using DMSO as internal control. Rifampicin: black curve, walrycin A: gray curve. Cells were treatedB: 

for 24h and 48h using 100 M rifampicin (black bars), 50 M walrycin A (gray bars) or treated in combination with rifampicin 100 M andμ μ μ
walrycin A 50 M (white bars). Data were normalized using DMSO as internal control. Histograms represent means  SEM of aμ ±
representative experiment performed in quadruplicate. Statistical significances were determined with a Dunnett s Multiple Comparison Test (’ *
p<0.01).*


