C. Mackenzie, J. Ibbotson, C. Cao, and A. Lomax, Hierarchical decomposition of laparoscopic surgery: a human factors approach to investigating the operating room environment, Minimally Invasive Therapy and Allied Technologies, vol.10, issue.3, pp.121-127, 2001.

L. Riffaud, T. Neumuth, X. Morandi, C. Trantakis, J. Meixensberger et al., Recording of surgical processes: a study comparing senior and junior neurosurgeons during lumbar disc herniation surgery, Neurosurgery, vol.67, pp.325-332, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00546422

S. Hiroaki and S. Chiba, Dynamic programming algorithm optimization for spoken word recognition, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.26, pp.43-49, 1978.

A. , Toolbox of assessment methods, 2000.

B. Joyce, Introduction to competency-based residency education, 2006.

C. Reiley, H. Lin, D. Yuh, and G. Hager, Review of methods for objective surgical skill evaluation, Surgical Endoscopy, pp.1-11, 2011.

B. Bridgewater, A. Grayson, M. Jackson, N. Brooks, G. Grotte et al., Surgeon specific mortality in adult cardiac surgery: comparison between crude and risk stratified data, British Medical Journal, vol.327, issue.7405, p.13, 2003.

R. Reznick, G. Regehr, H. Macrae, J. Martin, and W. Mcculloch, Testing technical skill via an innovative "bench station" examination, The American Journal of Surgery, vol.173, issue.3, pp.226-230, 1997.

K. Moorthy, Y. Munz, S. Sarker, and A. Darzi, Objective assessment of technical skills in surgery, British Medical Journal, vol.327, issue.7422, p.1032, 2003.

J. Doyle, E. Webber, and R. Sidhu, A universal global rating scale for the evaluation of technical skills in the operating room, The American Journal of Surgery, vol.193, issue.5, pp.551-555, 2007.

V. Datta, S. Mackay, M. Mandalia, and A. Darzi, The use of electromagnetic motion tracking analysis to objectively measure open surgical skill in the laboratory-based model, Journal of the American College of Surgeons, vol.193, issue.5, pp.479-485, 2001.

N. Francis, G. Hanna, and A. Cuschieri, The performance of master surgeons on the Advanced Dundee Endoscopic Psychomotor Tester: contrast validity study, Archives of Surgery, vol.137, issue.7, p.841, 2002.

J. Rosen, B. Hannaford, C. Richards, and M. Sinanan, Markov modeling of minimally invasive surgery based on tool/tissue interaction and force/torque signatures for evaluating surgical skills, IEEE Transactions on Biomedical Engineering, vol.48, issue.5, pp.579-591, 2001.

M. Chmarra, C. Grimbergen, and J. Dankelman, Systems for tracking minimally invasive surgical instruments, Minimally Invasive Therapy & Allied Technologies, vol.16, issue.6, pp.328-340, 2007.

G. Guthart and J. Salisbury, The IntuitiveTM telesurgery system: overview and application, IEEE International Conference on Robotics and Automation, vol.1, pp.618-621, 2000.

K. Den-boer, L. De-wit, P. Davids, J. Dankelman, and D. Gouma, Analysis of the quality and efficiency in learning laparoscopic skills, Surgical Endoscopy, vol.15, issue.5, pp.497-503, 2001.

R. Malik, P. White, and C. Macewen, Using human reliability analysis to detect surgical error in endoscopic DCR surgery, Clinical Otolaryngology & Allied Sciences, vol.28, issue.5, pp.456-460, 2003.

P. Jannin, M. Raimbault, X. Morandi, L. Riffaud, and B. Gibaud, Model of surgical procedures for multimodal image-guided neurosurgery, Computer Aided Surgery, vol.8, issue.2, pp.98-106, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00330538

O. Burgert, T. Neumuth, F. Lempp, R. Mudunuri, J. Meixensberger et al., Linking Top-level Ontologies and Surgical Workflows, International Journal of Computer Assisted Radiology and Surgery, vol.1, pp.437-438, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00341643

T. Neumuth, G. Strauß, J. Meixensberger, H. Lemke, and O. Burgert, Acquisition of process descriptions from surgical interventions. In: Database and expert systems applications, pp.602-611, 2006.

T. Neumuth, P. Jannin, J. Schlomberg, J. Meixensberger, P. Wiedemann et al., Analysis of surgical intervention populations using generic surgical process models, International Journal of Computer Assisted Radiology and Surgery, vol.6, pp.59-71, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00546456

T. Neumuth, P. Jannin, G. Strauss, J. Meixensberger, and O. Burgert, Validation of knowledge acquisition for surgical process models, J Am Med Inform Assoc, vol.16, issue.1, pp.72-80, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00344260

L. Bouarfa, P. Jonker, and J. Dankelman, Discovery of high-level tasks in the operating room, Journal of Biomedical Informatics, vol.44, issue.3, pp.455-462, 2011.

C. Combi, M. Gozzi, B. Oliboni, J. Juarez, and R. Marin,

, Temporal similarity measures for querying clinical workflows, Artificial intelligence in medicine, vol.46, issue.1, pp.37-54, 2009.

M. Vankipuram, K. Kahol, T. Cohen, and V. L. Patel, Toward automated workflow analysis and visualization in clinical environments, Journal of Biomedical Informatics, vol.44, issue.3, pp.432-440, 2011.

W. M. Van-der-aalst, M. Pesic, and M. Song, Beyond process mining: From the past to present and future, CAiSE. 2010, pp.38-52

W. Van-der-aalst, Process Mining: Discovery, Conformance and Enhancement of Business Processes, 2011.

S. White, Introduction to BPMN, IBM Corporation, p.31, 2004.

M. Zur-muehlen, Organizational management in workflow applications-issues and perspectives, Information Technology and Management, vol.5, issue.3, pp.271-291, 2004.

T. Neumuth, B. Kaschek, D. Neumuth, M. Ceschia, J. Meixensberger et al., An observation support system with an adaptive ontology-driven user interface for the modeling of complex behaviors during surgical interventions, Behavior research methods, vol.42, issue.4, p.1049, 2010.

S. Scherer, Early career patterns: A comparison of Great Britain and West Germany, European Sociological Review, vol.17, issue.2, p.119, 2001.

C. Brzinsky-fay, U. Kohler, and M. Luniak, Sequence analysis with Stata, Stata Journal, vol.6, issue.4, p.435, 2006.

N. Padoy, T. Blum, A. Ahmadi, H. Feussner, M. Berger et al., Statistical modeling and recognition of surgical workflow, Medical Image Analysis, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00526493

A. K. Jain, Data clustering: 50 years beyond k-means, Pattern Recognition Letters, vol.31, issue.8, pp.651-666, 2010.

L. Tari, C. Baral, and S. Kim, Fuzzy c-means clustering with prior biological knowledge, Journal of Biomedical Informatics, vol.42, issue.1, pp.74-81, 2009.

F. Petitjean, A. Ketterlin, and P. Gançarski, A global averaging method for dynamic time warping, with applications to clustering, Pattern Recognition, vol.44, pp.678-693, 2011.

C. Manning, H. Schutze, and . Mitcognet, Foundations of statistical natural language processing, vol.59, 1999.

T. Neumuth, N. Durstewitz, M. Fischer, G. Strauß, A. Dietz et al., Structured recording of intraoperative surgical workflows, SPIE Medical Imaging

P. Jannin and X. Morandi, Surgical models for computer-assisted neurosurgery, NeuroImage, vol.37, issue.3, pp.783-791, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00185435

J. Gentric, P. Jannin, B. Trelhu, L. Riffaud, and J. Gauvrit,

, Effects of low dose protocols in neurointerventional procedures: A workflow analysis study, European Society of Radiology, 2011.

A. James, D. Vieira, B. Lo, A. Darzi, and G. Yang, Eye-gaze driven surgical workflow segmentation, International conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp.110-117, 2007.

A. Nara, K. Izumi, H. Iseki, T. Suzuki, K. Nambu et al., Surgical workflow analysis based on staff's trajectory patterns, M2CAI workshop, International conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2009.

N. Padoy, T. Blum, H. Feussner, M. Berger, and N. Navab, On-line recognition of surgical activity for monitoring in the operating room, National Conference on Innovative Applications of Artificial Intelligence, pp.1718-1724, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00331390

B. Bhatia, T. Oates, Y. Xiao, and P. Hu, Real-time identification of operating room state from video, National Conference on Artificial Intelligence, vol.22, p.1761, 2007.

T. Blum, H. Feussner, and N. Navab, Modeling and segmentation of surgical workflow from laparoscopic video, International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp.400-407, 2010.