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Abstract
Purpose

This study aims to demonstrate, using human cadavers the feasibility of energy-based adaptive focusing of ultrasonic waves using

Magnetic Resonance Acoustic Radiation Force Imaging (MR-ARFI) in the framework of non-invasive transcranial High Intensity

Focused Ultrasound (HIFU) therapy.

Methods

Energy-based adaptive focusing techniques were recently proposed in order to achieve aberration correction. We evaluate this

method on a clinical brain HIFU system composed of 512 ultrasonic elements positioned inside a full body 1.5 T clinical Magnetic

Resonance (MR) imaging system. Cadaver heads were mounted onto a clinical Leksell stereotactic frame. The ultrasonic wave

intensity at the chosen location was indirectly estimated by the MR system measuring the local tissue displacement induced by the

acoustic radiation force of the ultrasound (US) beams. For aberration correction, a set of spatially encoded ultrasonic waves was

transmitted from the ultrasonic array and the resulting local displacements were estimated with the MR-ARFI sequence for each

emitted beam. A non-iterative inversion process was then performed in order to estimate the spatial phase aberrations induced by the

cadaver skull. The procedure was first evaluated and optimized in a calf brain using a numerical aberrator mimicking human skull

aberrations. The full method was then demonstrated using a fresh human cadaver head.

Results

The corrected beam resulting from the direct inversion process was found to focus at the targeted location with an acoustic intensity

2.2 times higher than the conventional non corrected beam. In addition, this corrected beam was found to give an acoustic intensity

1.5 times higher than the focusing pattern obtained with an aberration correction using transcranial acoustic simulation based on

X-ray computed tomography (CT) scans.

Conclusion

The proposed technique achieved near optimal focusing in an intact human head for the first time. These findings confirm the strong

potential of energy-based adaptive focusing of transcranial ultrasonic beams for clinical applications.

Author Keywords MRI ; adaptive focusing ; MR-ARFI ; ultrasound transcranial therapy ; HIFU

INTRODUCTION

Transcranial adaptive focusing of therapeutic ultrasonic waves remains a challenging problem in the field of medical ultrasound: the

heterogeneities of biological tissue and skull bone in terms of speed of sound, density and ultrasonic attenuation induce a distortion of the

ultrasonic wave field . This distortion results in partial destruction of the focusing pattern. In order to restore focusing quality, adaptive[1 ]
focusing relies on the use of ultrasonic arrays to correct the distortions induced by the propagation medium. This correction is performed

by estimating and applying different time shifts (or phase shifts for monochromatic waves) on each element of the array. In some

situations, when the ultrasonic array incorporates both transmit and receive channels, it may be possible to rely on the echoes of a bright

reflector or a point-like active source located inside the biological tissues . From the signals received on the array (corresponding to the[2 ]
Green s function) one can time reverse the wave field ,  (or phase conjugate for monochromatic signals ) to focus back on the initial’ [3 4 ] [5 ]
position. However, the direct measurement of the Green s function between the target location and the ultrasonic array is not possible in’
the brain under practical clinical conditions. One way to estimate the Green s function in this situation is to simulate acoustic propagation’
through the skull by finite difference time domain method using prior determination of its density and speed of sound at each point based
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on CT scans , . However such simulations rely on a model, measured parameters and numerical approximations that can induce errors[6 7 ]
in the estimation.

To overcome this problem, we have recently introduced a novel method called energy-based adaptive focusing . The general[8 –10 ]
principle, which can be applied to any kind of waves in physics, relies on the indirect estimation of wave intensity at the target for different

coded excitations in order to determine the phase shifts which provide the best correction for aberrations. By transmitting Hadamard-coded

signals with an array of transducers and estimating the beam intensity at the target, this approach was shown to achieve direct and accurate

phase aberration correction without any phase measurement. In medical ultrasound, ultrasonic waves interact with biological tissues

through physical effects linked to wave intensity such as acoustic radiation force or tissue heating due to the absorption of ultrasound.

Thus, the quantitative measurement of tissue displacement or temperature elevation at the target can be used for the indirect estimation of

local beam intensity.

Due to momentum transfer from the acoustic wave to the medium, the radiation force induced by a short sonication (~ 100 s) μ
generates a local tissue displacement of several tens of micrometers at the focus of the US beam. The use of displacements induced by the

acoustic radiation force of the ultrasonic beams for adaptive focusing was previously demonstrated . Herbert improved the[11 ] et al. 

method by using auto-correction: the ultrasonic array was able to both transmit a coded excitation and to estimate the resulting

displacements at the targeted location using ultrasonic backscattered echoes . However, although this concept is interesting, it cannot be[9 ]
directly applied transcranially because the strong attenuation of the skull bone considerably lowers the US imaging performance. In such

cases, another imaging modality is required to provide an indirect estimation of the beam energy at the target.

For transcranial applications, Magnetic Resonance (MR) imaging is most appropriate for guiding the energy-based adaptive focusing

technique. Motion sensitive MR sequences have been previously developed to map micrometric displacements induced by the acoustic

radiation force in biological tissue and called MR-ARFI sequences . In these sequences the displacement is encoded in the phase of[12 –15 ]
the reconstructed MR images. Such MR displacement measurement was later used for adaptive focusing using Hadamard-coded signals[10

. Recently, Hertzberg evaluated an iterative approach and a direct inversion procedure, in 5  fatted milk yoghurt and through a] et al. %
human skull bone in water, with 172 elements of a transducer operating at 710 kHz. They achieved a displacement increase compared to a

CT simulation based correction and reached 90  of the optimal displacement . MR-ARFI adaptive focusing is particularly interesting% [16 ]
for HIFU applications for two reasons. On the one hand, most available technologies are based on therapeutic arrays used only in transmit

mode, so that the estimation of tissue displacement has to be performed by another imaging modality. On the other hand, many HIFU

therapeutic applications are already being performed under MR guidance, such as uterine fibroids , prostate , breast ,  or brain[17 ] [18 ] [19 20 ]
. For brain applications, MR guidance is even mandatory as no other imaging modality can provide a high level 3D delineation of[21 ]

tumor margins for treatment planning and monitoring of temperature elevation during treatment.

In this paper, our aim is to achieve energy-based adaptive focusing in a configuration that closely mimics expected future clinical

conditions. Thus, we demonstrate on a human cadaver head and using a clinical brain HIFU system (SuperSonic Imagine, Aix en

Provence, France) that MR-ARFI adaptive focusing of transcranial HIFU beams can be used prior to treatment to reach optimal focusing.

MATERIALS & METHODS
High power therapeutic system

A 1 MHz, 512 element HIFU array (Imasonic, France) dedicated to human transcranial brain hyperthermia ( ) was employed.Fig. 5 

The elements were oriented as plotted on . This probe is partially spherical (15 cm focus and 23 cm aperture) in order to focus[Fig. 3(a,b) ]
the acoustic energy at the geometrical focus. The elements are circular with a 6 mm diameter to fit the skull correlation length at 1 MHz

and their maximum acoustic intensity is 20 W/cm . They are oriented in non periodic geometry in order to lower grating lobes while2 

permitting a tight ellipsoidal focalization pattern (half-pressure beam dimension of 1.5 mm laterally and 5 mm axially). The 384 elements

of the probe used in this study are plotted as circles in  and the 128 square marks correspond to the unused elements. The array[Fig. 3(a) ]
is composed of non-ferromagnetic materials to avoid imaging artifacts during MR-guided experiments.

Coupling to the sample of interest was achieved through degassed water maintained by a 0.2 mm thick latex membrane. Echographic

gel was also used at the membrane-sample interface to improve acoustic coupling. The head or sample of interest was immobilized in a

stereotactic frame with screws. This frame is mounted on a non-ferromagnetic head holder incorporating three degrees of freedom (the

probe holder provides three additional degrees of freedom for the probe). Both holders have discrete positioning systems that enable a

choice of predefined fixed positions.

Initial pressure measurements of the probe were made in a degassed water tank using a calibrated hydrophone (HNA400, Onda, USA)

in order to evaluate intensity at focus for reference. The hydrophone was placed at the probe focus using a 3D positioning system

(precision  0.1 mm) and the 384 emitting elements used in the study were driven with the same phase during 10 s. The hydrophone±  μ
signal was recorded with a digital oscilloscope (Tektronix, Beaverton, OR, USA) and the peak pressure generated by the system was
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measured at the fundamental frequency. Pressures for adaptive focusing experiments were estimated by taking into account losses due to

the coupling membrane, skull and brain within the linear hypothesis. The coupling membrane attenuation was previously measured to be

1.4 dB at 1 MHz by a transmission measurement method using two transducers. The values of attenuation measured were 11 dB for the

skull and 2.5 dB for the brain (50 mm of brain with a brain attenuation of 0.05 dB/mm). The total probe output power was 1350 acoustic

watts in free field conditions.

MR acquisitions

All MR acquisitions were made with a 1.5 T Philips Achieva scanner. RF acquisition was achieved by standard commercial Flex  ®

surface coils. A dedicated MR-ARFI sequence was developed by adding two motion sensitizing gradient (MSG) modules before and after

the pulse of a standard multislice spin-echo sequence with echo planar imaging (EPI) readout. Each MSG module was a bipolar π
rectangular of opposite polarity, as indicated on the sequence chronogram in . Three contiguous slices oriented perpendicularly toFig. 1 

the US beam were simultaneously acquired and the resolution was set to 2 2 7 mm (Matrix 96 26, FOV 160 mm  72 mm). Two lateral× × 3 × ×
saturation slices were used in the phase encoding direction to prevent signal overlapping. The sequence parameters were: TE  70 ms, TR =

 1.2 s, EPI factor 13, resulting in a 2.4 s acquisition time. The MSGs were placed along the slice selection axis to ensure proper=
displacement encoding. Each rectangular lobe lasted 5 ms with a plateau maximum strength of 41 mT/m. For each TR, two triggering

pulses were sent by the MR scanner to the US electronic boards in order to synchronize the US emissions relative to the MR displacement

encoding. They were placed at the beginning of the second halves of each MSG module as indicated in . This choice was made inFig. 1 

order to avoid encoding residual displacement during the other halves of the MSG periods. For each trigger, the duration of sonication was

adjusted to 5 ms which represented a good compromise between motion sensitivity and limited US duty cycle.

Sonications were made twice per MR EPI shot: once during the negative part of G1 and once during the positive part of G2. In the 26

line image, the EPI acceleration factor was 13 so one image required 2 MR EPI shots. This led to 4 sonications per image. Therefore, 12

sonications were needed to acquire the 3 slices imaged by the MR-ARFI sequence. For each differently encoded US emission of the

adaptive focusing experiment, two MR-ARFI images were acquired: one without and one with sonication as shown for the calf brain case

on . Encoded displacement maps were computed by subtracting the phase images obtained respectively with and without[Fig. 2(a) (b) – ]
sonication, as shown in . This compensates for any drift of the MR scanner during the adaptive focusing experiment.[Fig. 2(c) ]

For each adaptive focusing process, the signal to noise ratio (SNR) was computed using the voxel at the target location of all

MR-ARFI acquisitions. The signal was computed as the mean of the 1536 encoded displacements. The noise computation was the standard

deviation of the 1536 reference phases (without sonications).

Energy-based adaptive focusing

Optimal focusing through an arbitrary phase aberrating medium can be achieved by measuring the acoustic intensity at a chosen target

location inside the medium for a finite set of coded US emissions with a direct inversion , . While this is in theory feasible, an[9 10 ]
absolute measurement of the acoustic intensity is not direct and requires assumptions. Here we directly rely on MR-ARFI encoded tissue

displacement which is assumed to be linearly dependent on the acoustic intensity at the probe focus ; this was verified in the calf brain[10 ]
experiment.

As previously described , the technique consists of using a Hadamard basis to determine 384 virtual elements. By considering two[9 ]
virtual emitters and with having a phase aberrator in front of it, one can measure the intensity of the interference pattern at a desiredA B B 

target and tune the emitted phase of to reach optimal focusing. It has been shown that four different phase emissions are sufficient toB 

reveal their phase shift . This step was undertaken for a fixed virtual emitter and all virtual emitters which led to 384 phase shifts[9 ] A B 

corresponding to the aberrator of the virtual emmiters. To compute the phase aberration of the actual aberrator we then performed a basis

transformation using the inverse of the Hadamard matrix in order to return to the canonical basis.

The adaptive focusing process used the 1536 Hadamard coded US emissions described above (384 4). In order to realize the×
MR-ARFI measurements a total of 18432 US sonications were made (1536 12). Each US sonication consisted of a 5 ms continuous wave×
signal. All sonications had the same acoustic power. Total acquisition time for the whole adaptive focusing procedure was 2 hours and thus

the average duty cycle for the ultrasound emissions was approximately 1.25 .%

Calf brain experiment using virtual aberration

In the first experiment the proposed adaptive focusing technique was tested on freshly excised calf brains. They wereex vivo 

embedded in 3  agar phantom gels to ease the positioning of the sample at the geometrical focus of the US probe. The phantoms were%
prepared with degassed water and special care was given to avoid trapping air bubbles at the gel-brain interface. In order to determine the

probe focus location in the calf brain, sagittal and transverse standard anatomical images were acquired using a T1 MRI pulse sequence

(TE 2.3 ms, TR 5.1 ms, voxel size 1.7 1.7 2 mm ). On the sagittal image, the probe, MR-ARFI imaging plane and probe focus are× × 3 

represented in . On top of the transverse image, the MR-ARFI field of view and probe focus are shown on .[Fig. 3(b) ] [Fig. 3(c) ]
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The duration of the encoded pulse was set to 5 ms in order to have enough signal and to avoid significant heating. We first performed

an initial verification of the linear dependence of the encoded displacement with respect to the acoustic power. Using a US emission with

all elements in phase, we measured the encoded displacement at the probe focus for several acoustic spatial peak intensities between 142

W/cm and 3565 W/cm .2 2 

Once the linear relationship was established, we performed the adaptive focusing. In this setup, no physical phase aberrator was

introduced between the array and the brain. In order to evaluate the adaptive focusing technique, virtual realistic skull aberration phases

plotted on  were electronically added to all the US emissions of the experiment. These phases were obtained from a previous[Fig. 3(a) ]
hydrophone measurement at the brain therapy probe focus through a degassed human skull. This measurement was made in a waterex vivo 

tank using geometrical positioning of the probe and skull similar to that of brain therapy treatment. The skull used for phase measurement

had a thickness of 8.3 mm on average, and was obtained from a 80 year old donor. Angles between skull external surface normals and

individual transducers axes were 8 degrees on average. The adaptive focusing process was then performed as described above and finally

the encoded displacements were measured for the US emission with virtual aberration, with no aberration and with virtual aberration plus

energy-based adaptive focusing correction.

Human brain experiment in head using the skull aberration

A second set of experiments were undertaken using one fresh human cadaver head as approved by the ethics committee of the Centre

du Don des Corps (Ren  Descartes University, Paris). The head was removed at the Institut d Anatomie (UFR Biom dicale des Saints-Pé ’ é è
res, Ren  Descartes University, Paris) 48 hours after death. A clinical Leksell stereotactic frame (Elekta, Stockholm, Sweden) was fixed oné
the head with screws as illustrated in ( ). We used the same elements of the probe as for the calf brain experiment but in this case noFig. 5 

virtual aberration was added: the aberrations were induced by the skull itself. In this experiment, a lower pressure was reached at the focus

due to skull attenuation which is between 9 dB to 15 dB at 1 MHz , so we assumed that the encoded displacement was still linear with− − [1 ]
the acoustic power. We targeted the interthalamic adhesion tissues in the third ventricle. shows the MR-ARFI slice positioning andFig. 4 

target location on top of a conventional anatomic T1 MR image.

In the first experiment, the adaptive focusing process was performed as described above and the encoded displacements were

measured for the US emission without correction, with simulation-based aberration correction and with energy-based adaptive focusing

correction.

In a second experiment the simulation-based correction was used as a pre-correction for a new energy-based adaptive focusing

process, the aim was to increase the SNR in order to obtain a more accurate correction.

Finite differences simulations

Simulation of wave propagation through the skull up to the probe was performed in order to non-invasively obtain an aberration

correction reference. The 3D simulation used second order finite differences time domain (FDTD) computations and was performed using

an acoustic model of the skull developed in previous studies . The skull acoustic properties were obtained from a CT scan of the head[22 ]
having a 0.3 mm in slice resolution and 0.5 mm inter-slice resolution. The simulation spatial step was set to a tenth of a wavelength at 1

MHz (0.15 mm) and the time step was set to 20 ns in order to satisfy Von Neuman stability conditions. The full volume was 1500  1500 × ×
600 voxels and the simulation time was 3 hours using a dual Xeon, 24 GB memory computer. Further information about the procedure can

be found in previous studies , .[23 24 ]

Impact of the MR-ARFI SNR on adaptive focusing

One way to evaluate the impact of the SNR is to numerically add noise on the MR measurements, estimate the corresponding US

correction phases and analyze the theoretical intensity variation at focus. In the human head the adaptive focusing process using the

simulation based solution as a pre-correction led to optimal focusing. Numerical pseudo-random Gaussian noise with different standard

deviations (in order to have a SNR between 4 and 8.3) were added to the MR encoded displacement of the adaptive focusing process. The

corresponding phase corrections were computed for each numerical noise value. The intensity loss relative to the optimal focusing was

then computed for the different phase corrections allowing an estimate of the intensity loss for each numerical noise value.

RESULTS
Acoustic power

The hydrophone pressure measurement at the focal probe led to estimations respectively of 6.2 MPa for the calf brain and 2.3 MPa for

the cadaver head experiments. The spatial peak acoustic intensities at focus were deduced to be respectively 1300 W/cm and 172 W/cm .2 2 

The estimated acoustic power at the focus within the calf brain and the human head was estimated to be lower than 0.3 W on average for

the whole experiment, thus the brain temperature was assumed to remain constant.
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Adaptive focusing in calf brain

Encoded displacement in the calf brain was verified to increase linearly with the acoustic power. The maximum encoded displacement

was obtained for the first Hadamard vector because in this particular case all elements are emitting in phase . Examples of[Fig. 6(a) ]
encoded displacement for other Hadamard vectors  illustrate the displacement variation at the focus from one vector to[Figs. 6(b) (d) – ]
another. The SNR was estimated to be 20.2.

Each of the 1536 Hadamard coded sonications led to measurable displacement. Once they were complete and the aberration correction

computed at the targeted voxel, the encoded displacement was measured and plotted for all three cases. In with aberration, Fig. 7(a) Fig.

without aberration, with aberration and correction. The maximum displacement was found to be at the desired location in all7(b) Fig. 7(c) 

three cases. As shown on the lateral profile of the slices in , the adaptive focusing technique increased the displacement by 48.4 Fig. 7(d) 

 relative to the emission with virtual aberration, and by 14.6  relative to the emission without aberration. This first experiment% %
demonstrates that the aberrations were fully recovered and that energy-based adaptive focusing is an improvement over focusing obtained

without aberration and with in-phase emissions.

Adaptive focusing in human head

In the human head experiment, the encoded displacement was measured for the following three cases: no correction , with[Fig. 8(a) ]
simulation-based correction  and with energy-based adaptive focusing correction . In all three cases, maximum[Fig. 8(b) ] [Fig. 8(c) ]
displacement was found to be at a distance to the targeted voxel not greater than half the wavelength (0.75 mm). As shown in theFig. 8 

energy-based adaptive focusing technique increased displacement by 86.8  relative to the uncorrected emission but the displacement was%
22.3  lower than the emission based on simulation correction.%

The reflection occurring at the skull surface combined with the bone and brain tissue attenuation strongly decreases acoustic intensity

at the focus. The average encoded displacement at the focus of all emissions was 71  lower than in the calf brain, this led to an estimated%
SNR of 5.9. This decrease in SNR was assumed to lower the quality of the correction estimation. It might explain why the adaptive

focusing correction applied without any a priori knowledge had a lower performance than the simulation based correction. One way to test

this assumption was to increase the average encoded displacement of all emissions using a pre correction.

The simulation-based correction was used as a pre-correction for a new energy-based adaptive focusing experiment using a priori

information. The average encoded displacement of all emissions at the target was 59  lower than in the calf brain, this led to an estimated%
SNR of 8.3. As in the previous experiment, the encoded displacement was measured for the three following cases: no correction [Fig. 9(a) ]
, with simulation based correction  and with energy-based adaptive focusing correction using the a priori simulation[Fig. 9(b) ]
pre-correction .[Fig. 9(c) ]

As visible on the lateral profile of the slices shown in , the adaptive focusing technique increased displacement by 218 Fig. 9(d) %
relative to the uncorrected emission and by 48.6  relative to the simulation based correction alone. This demonstrates that the%
energy-based adaptive focusing technique can reach better aberration correction than the simulation based correction. One conclusion is

that a 5.9 SNR is not enough to ensure the efficiency of the adaptive focusing process. It also shows that a minimum SNR is mandatory if

the technique is to be performed successfully. In this case the minimum required SNR seems to be higher than 5.9 and lower than 8.3. In

addition simulation based transcranial correction were previously shown to reach 69  intensity (83  in pressure) of the optimal focusing% %
. Here the gold standard cannot be measured but the intensity obtained with the simulation based correction is 67  of the[24 ] %

energy-based adaptive focusing. This suggests that the proposed method may achieve a near-optimal focusing.

Impact of the MR-ARFI SNR on adaptive focusing

Estimated acoustic intensity relative to optimal focusing intensity is shown in . Using the energy-based adaptive focusingFig. 10 

technique (without prior correction), the SNR was 5.9 and the intensity after correction was 53  of the optimal correction. Thus this%
adaptive focusing based on a 5.9 SNR correlates well with the estimation of . Using this estimation we can deduce that a SNRFig. 10 

higher than 8 should be reached in order to obtain a near optimal focusing.

DISCUSSION

The concept of spatially encoded excitations such as Hadamard vectors developed in this study is the key for working with a large

number of transducers. Compared to recent work performed on 172 independent elements , we were able to correct phase aberrations[16 ]
on 384 independent elements with reasonable acquisition time by using this approach.

Optimal focusing was first demonstrated in the calf brain using numerical phase aberrations previously measured from a real ex vivo 

human skull. Energy-based adaptive focusing was able to fully compensate for the phase aberrations. Compared to the experiment

performed without any phase aberration, energy based adaptive focusing was even able to increase the acoustic intensity at the focus by
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14.6 . This result confirms previous observations made by Larrat using a small animal high field 7 T MR system . Thus the% et al. [10 ]
technique allows optimal correction not only of the numerical phase aberrations, but also of all other uncontrolled sources of phase

aberrations including probe-to-sample transmission medium, tissue heterogeneities, errors on the geometrical focus localization, small

defects in the transducer geometry or mechanical accuracy and electronic phases.

A 20.2 MR-ARFI SNR was obtained in the calf experiment, which allowed us to investigate the accuracy of the adaptive focusing

technique. However, in the cadaver head experiment, strong reflection and attenuation of the ultrasonic wave induced by the skull

considerably decreased acoustic intensity in the brain. The MR-ARFI SNR was therefore much lower in the cadaver head experiment.

With an SNR of 5.9, the sole energy-based adaptive focusing technique (without prior correction based on CT scan) allowed us to improve

the acoustic intensity by 86  at the focus. Finally, by using non-optimal simulation-based correction as the initial emission signals, an%
SNR of 8.3 was obtained and the near optimal acoustic intensity reached a 218  increase. In order to achieve the energy-based adaptive%
focusing we found the required SNR must be in the range between 5.9 and 8.3. The minimal SNR was estimated to be 8. There are several

options to increase the SNR. One possibility consists in increasing the acoustic power. For example, if all the 512 elements of the probe

could be used instead of 384, the SNR would rise to 10.5, leading to optimal focusing without simulation-based corrections. Novel MR

sequences with higher sensitivity could also be investigated in the future in order to increase the SNR. Nevertheless the acquisition time of

such sequences should not exceed a few seconds for future clinical use (as a reference, 2.4 s acquisition time was achieved in this study).

Reducing acquisition time is of interest because it could make this technique suitable for clinical investigations. In this study, the total

acquisition time was 2 hours which is still long for clinical studies. However, the acquisition time could be reduced by further optimization

of the MR sequence and by decreasing the number of vectors used in the adaptive focusing process. This can be done by acquiring only the

Hadamard vectors containing the spatial frequency content of the aberrating skull  or by using other adapted vectors (such as the Walsh[10 ]
basis which sorts Hadamard vectors with increasing spatial frequency). Further work will focus on these optimizations in the hope of

dramatically reducing acquisition time.

This study illustrates the strong potential of this technique in transcranial MR-guided HIFU applications for both aberration correction

and precise localization of the focus in the brain. This technique has several potential advantages over previous techniques based on CT

images , . First, it greatly eases protocol. Indeed, the whole treatment procedure can be performed using MR guidance, thus avoiding[5 25 ]
the requirement for CT scan acquisition prior to treatment coupled to finite differences. Secondly, it eases treatment planning and

especially the targeting accuracy: compared to the 3 different referential frames used today (MR planning, CT planning and MR

monitoring during the treatment) which can introduce many small positioning errors, a single referential frame would be necessary (the

MR referential providing both planning and monitoring). Thirdly, this technique could accelerate the aberration correction process: it could

be performed in a short acquisition time (typically 20 to 30 minutes immediately prior to treatment) with the patient in their clinical

treatment setup. For this reason, this approach could be particularly suitable for stroke treatments where the time to treatment is a major

issue. Fourthly, the method provides a direct image of the focus location as well as the efficiency of the correction. This should result in

better safety control and focusing quality estimation prior to the treatment. Lastly, this method uses only experimental measurements to

provide the optimal focusing beam, thus reducing theoretical assumptions about wave propagation. Contrary to all other approaches based

on simulations that rely on many assumptions about the medium properties, it provides a real correction for skull, brain and coupling

medium in any kind of complex configurations.

In this study, energy-based adaptive focusing of ultrasonic waves is achieved for the first time in a human head under MR guidance.

Using a clinical setup, we demonstrated that energy-based adaptive focusing can successfully achieve optimal focusing and restore sharp

focus in the human brain. By implementing further acceleration and measurement optimization, this could create more accurate HIFU

treatments of central regions of the brain such as thalamus or hypothalamus for neuropathic pain, essential tremors or others pathologies.
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FIG. 1
MR-ARFI sequence used for the adaptive focusing of HIFU beams. Two rectangular bipolar MSG were added to a standard multislice

spin-echo sequence with EPI readout. Two sonications were synchronized to the MSG periods.

FIG. 2
(a) MR-ARFI phase image without US emission, (b) with US emission. (c) Final encoded displacement given by the difference of both

images.
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FIG. 3
(a) Representation of the 512 element HIFU transducer. The 384 elements used are plotted as round shapes and color intensity corresponds to

the virtual skull phase aberration used. (b) Standard anatomic T1 weighted MR image of the setup (sagittal view) with schematic location of

the probe in yellow, focus in red and MR-ARFI imaging plane in white. (c) Standard anatomic T1 weighted MR image of the calf brain

sample in the MR-ARFI imaging plane with the MR-ARFI slice positioning in yellow, saturation bands in blue and probe focus in red.
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FIG. 4
T1 weighted image of the human cadaver head in the MR-ARFI imaging plane with MR-ARFI slice positioning in yellow, saturation bands in

blue and probe focus in red.

FIG. 5
Illustration of the experimental setup.
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FIG. 6
Example of encoded displacement (a), (b), (c) and (d) respectively for emission vectors 1, 6, 7 and 8.

FIG. 7
MR-ARFI encoded displacement obtained with: (a) aberration, (b) no aberration, (c) aberration and energy-based adaptive focusing

correction. (d) Lateral profiles of the slices.
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FIG. 8
MR-ARFI encoded displacement obtained with: (a) no correction, (b) simulation based correction, (c) energy-based adaptive focusing

correction. (d) Lateral profiles of the slices.

FIG. 9
MR-ARFI encoded displacement obtained with: (a) no correction, (b) simulation based correction alone, (c) simulation based correction plus

energy-based adaptive focusing correction. (d) Lateral profiles of the slices.
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FIG. 10
Estimated acoustic intensity relative to the optimal focusing intensity.


