R. Amir, I. Van-den-veyver, M. Wan, C. Tran, U. Francke et al., Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl- CpG-binding protein 2, Nat Genet, vol.23, issue.2, pp.185-188, 1999.

C. Laurvick, N. De-klerk, C. Bower, J. Christodoulou, D. Ravine et al., Rett syndrome in Australia: A review of the epidemiology, The Journal of Pediatrics, vol.148, issue.3, pp.347-352, 2006.
DOI : 10.1016/j.jpeds.2005.10.037

M. Chahrour and H. Zoghbi, The Story of Rett Syndrome: From Clinic to Neurobiology, Neuron, vol.56, issue.3, pp.422-437, 2007.
DOI : 10.1016/j.neuron.2007.10.001

B. Hagberg, F. Hanefeld, A. Percy, and O. Skjeldal, An update on clinically applicable diagnostic criteria in Rett syndrome. Comments to Rett Syndrome Clinical Criteria Consensus Panel Satellite to European Paediatric Neurology Society Meeting, p.11

J. Neul, W. Kaufmann, D. Glaze, J. Christodoulou, A. Clarke et al., Rett syndrome: revised diagnostic criteria and nomenclature, Ann Neurol, issue.6, pp.68944-950, 2010.

S. Ide, M. Itoh, and Y. Goto, Defect in normal developmental increase of the brain biogenic amine concentrations in the mecp2-null mouse, Neuroscience Letters, vol.386, issue.1, pp.14-17, 2005.
DOI : 10.1016/j.neulet.2005.05.056

R. Samaco, C. Mandel-brehm, H. Chao, C. Ward, S. Fyffe-maricich et al., Loss of MeCP2 in aminergic neurons causes cellautonomous defects in neurotransmitter synthesis and specific behavioral abnormalities, Proc Natl Acad Sci, 2009.

J. Roux and L. Villard, Biogenic Amines in Rett Syndrome: The Usual Suspects, Behavior Genetics, vol.25, issue.1, pp.59-75, 2009.
DOI : 10.1007/s10519-009-9303-y

P. Taneja, M. Ogier, G. Brooks-harris, D. Schmid, D. Katz et al., Pathophysiology of Locus Ceruleus Neurons in a Mouse Model of Rett Syndrome, Journal of Neuroscience, vol.29, issue.39, pp.2912187-12195, 2009.
DOI : 10.1523/JNEUROSCI.3156-09.2009

K. Isoda, M. Morimoto, F. Matsui, T. Hasegawa, T. Tozawa et al., Postnatal changes in serotonergic innervation to the hippocampus of methyl-CpG-binding protein 2-null mice, Neuroscience, vol.165, issue.4, pp.1254-1260, 2010.
DOI : 10.1016/j.neuroscience.2009.11.036

M. Santos, T. Summavielle, A. Teixeira-castro, A. Silva-fernandes, S. Duarte-silva et al., Monoamine deficits in the brain of methyl-CpG binding protein 2 null mice suggest the involvement of the cerebral cortex in early stages of Rett syndrome, Neuroscience, vol.170, issue.2, pp.453-467, 2010.
DOI : 10.1016/j.neuroscience.2010.07.010

N. Panayotis, M. Pratte, A. Borges-correia, A. Ghata, L. Villard et al., Morphological and functional alterations in the substantia nigra pars compacta of the Mecp2-null mouse, Neurobiology of Disease, vol.41, issue.2, pp.41385-397, 2011.
DOI : 10.1016/j.nbd.2010.10.006

S. Fyffe, J. Neul, R. Samaco, H. Chao, S. Ben-shachar et al., Deletion of Mecp2 in Sim1-Expressing Neurons Reveals a Critical Role for MeCP2 in Feeding Behavior, Aggression, and the Response to Stress, Neuron, vol.59, issue.6, pp.59947-958, 2008.
DOI : 10.1016/j.neuron.2008.07.030

C. Berridge, Neural Substrates of Psychostimulant-Induced Arousal, Neuropsychopharmacology, vol.494, issue.11, pp.312332-2340, 2006.
DOI : 10.1038/sj.npp.1301159

A. Khan, T. Ponzio, G. Sanchez-watts, B. Stanley, G. Hatton et al., Catecholaminergic Control of Mitogen-Activated Protein Kinase Signaling in Paraventricular Neuroendocrine Neurons In Vivo and In Vitro: A Proposed Role during Glycemic Challenges, Journal of Neuroscience, vol.27, issue.27, pp.277344-7360, 2007.
DOI : 10.1523/JNEUROSCI.0873-07.2007

M. Rodriguez-fermepin, M. Trinchero, J. Minetto, A. Beltran, and B. Fernandez, Brain derived neurotrophic factor and neurotrophin-4 employ different intracellular pathways to modulate norepinephrine uptake and release in rat hypothalamus, Neuropeptides, vol.43, issue.4, pp.275-282, 2009.
DOI : 10.1016/j.npep.2009.06.001

S. Kutlu, M. Aydin, E. Alcin, M. Ozcan, J. Bakos et al., Leptin modulates noradrenaline release in the paraventricular nucleus and plasma oxytocin levels in female rats: A microdialysis study, Brain Research, vol.1317, pp.87-91, 2010.
DOI : 10.1016/j.brainres.2009.12.044

V. Dani, Q. Chang, A. Maffei, G. Turrigiano, R. Jaenisch et al., Reduced cortical activity due to a shift in the balance between excitation and inhibition in a mouse model of Rett Syndrome, Proceedings of the National Academy of Sciences, vol.102, issue.35, pp.10212560-12565, 2005.
DOI : 10.1073/pnas.0506071102

D. Tropea, E. Giacometti, N. Wilson, C. Beard, C. Mccurry et al., Partial reversal of Rett Syndrome-like symptoms in MeCP2 mutant mice, Proceedings of the National Academy of Sciences, vol.106, issue.6, pp.2029-2034, 2009.
DOI : 10.1073/pnas.0812394106

Q. Chang, G. Khare, V. Dani, S. Nelson, and R. Jaenisch, The Disease Progression of Mecp2 Mutant Mice Is Affected by the Level of BDNF Expression, Neuron, vol.49, issue.3, pp.341-348, 2006.
DOI : 10.1016/j.neuron.2005.12.027

M. Poo, Neurotrophins as synaptic modulators, Nature Reviews Neuroscience, vol.395, issue.1, pp.24-32, 2001.
DOI : 10.1038/35049004

A. Balkowiec and D. Katz, Brain-derived neurotrophic factor is required for normal development of the central respiratory rhythm in mice, The Journal of Physiology, vol.378, issue.2, pp.527-533, 1998.
DOI : 10.1111/j.1469-7793.1998.527bk.x

J. Erickson, J. Conover, V. Borday, J. Champagnat, M. Barbacid et al., Mice lacking brain-derived neurotrophic factor exhibit visceral sensory neuron losses distinct from mice lacking NT4 and display a severe developmental deficit in control of breathing, J Neurosci, vol.16, pp.5361-71, 1996.

J. Viemari, J. Roux, A. Tryba, V. Saywell, H. Burnet et al., Mecp2 Deficiency Disrupts Norepinephrine and Respiratory Systems in Mice, Journal of Neuroscience, vol.25, issue.50, pp.2511521-11530, 2005.
DOI : 10.1523/JNEUROSCI.4373-05.2005

URL : https://hal.archives-ouvertes.fr/hal-00287790

T. Oo, D. Marchionini, O. Yarygina, O. Leary, P. Hughes et al., Brain-derived neurotrophic factor regulates early postnatal developmental cell death of dopamine neurons of the substantia nigra in vivo, Molecular and Cellular Neuroscience, vol.41, issue.4, pp.440-447, 2009.
DOI : 10.1016/j.mcn.2009.04.009

Q. Gu, Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity, Neuroscience, vol.111, issue.4, pp.815-835, 2002.
DOI : 10.1016/S0306-4522(02)00026-X

G. Calfa, A. Percy, and L. Pozzo-miller, Experimental models of Rett syndrome based on Mecp2 dysfunction, Experimental Biology and Medicine, vol.196, issue.4, pp.3-19
DOI : 10.1038/35044558

V. Yadav, F. Oury, N. Suda, Z. Liu, X. Gao et al., A Serotonin-Dependent Mechanism Explains the Leptin Regulation of Bone Mass, Appetite, and Energy Expenditure, Cell, vol.138, issue.5, pp.976-989, 2009.
DOI : 10.1016/j.cell.2009.06.051

J. Guy, B. Hendrich, M. Holmes, J. Martin, and A. Bird, A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome, Nature Genetics, vol.27, issue.3, pp.322-326, 2001.
DOI : 10.1038/85899

R. Chen, S. Akbarian, M. Tudor, and R. Jaenisch, Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice, Nature Genetics, vol.27, issue.3, pp.327-331, 2001.
DOI : 10.1038/85906

D. Katz, M. Dutschmann, J. Ramirez, and G. Hilaire, Breathing disorders in Rett syndrome: Progressive neurochemical dysfunction in the respiratory network after birth, Respiratory Physiology & Neurobiology, vol.168, issue.1-2, pp.101-108, 2009.
DOI : 10.1016/j.resp.2009.04.017

URL : https://hal.archives-ouvertes.fr/hal-00417368

D. Lioy, W. Wu, and J. Bissonnette, Autonomic dysfunction with mutations in the gene that encodes methyl-CpG-binding protein 2: Insights into Rett syndrome, Autonomic Neuroscience, vol.161, issue.1-2, 2011.
DOI : 10.1016/j.autneu.2011.01.006

A. Bonham, Neurotransmitters in the CNS control of breathing, Respiration Physiology, vol.101, issue.3, pp.219-230, 1995.
DOI : 10.1016/0034-5687(95)00045-F

M. Pratte, N. Panayotis, A. Gatha, L. Villard, and J. Roux, Progressive motor and respiratory metabolism deficits in post-weaning Mecp2-null male mice, Behavioural Brain Research, vol.216, issue.1, pp.313-333, 2011.
DOI : 10.1016/j.bbr.2010.08.011

J. Tassin, Uncoupling between noradrenergic and serotonergic neurons as a molecular basis of stable changes in behavior induced by repeated drugs of abuse, Biochemical Pharmacology, vol.75, issue.1, pp.85-97, 2008.
DOI : 10.1016/j.bcp.2007.06.038

S. Sara, The locus coeruleus and noradrenergic modulation of cognition, Nature Reviews Neuroscience, vol.19, issue.3, pp.211-223, 2009.
DOI : 10.1016/S0006-3223(99)00140-7

B. Guevara, F. Torrico, I. Hoffmann, and L. Cubeddu, Lesion of caudateputamen interneurons with kainic acid alters dopamine and serotonin metabolism in the olfactory tubercle of the rat, Cell Mol Neurobiol, vol.22, pp.5-6835, 2002.

M. Youdim and Z. Arraf, Prevention of MPTP (N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) dopaminergic neurotoxicity in mice by chronic lithium: involvements of Bcl-2 and Bax, Neuropharmacology, vol.46, issue.8, pp.461130-1140, 2004.
DOI : 10.1016/j.neuropharm.2004.02.005

J. Roux, J. Mamet, D. Perrin, J. Peyronnet, C. Royer et al., Neurochemical development of the brainstem catecholaminergic cell groups in rat, J Neural Transm, vol.110, issue.1, pp.51-65, 2003.