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Multiple imputation for estimation of an
occurrence rate in cohorts with attrition and
discrete follow-up time points: a simulation study
Noémie Soullier1,2,3, Elise de La Rochebrochard1,2,3, Jean Bouyer1,2,3*

Abstract

Background: In longitudinal cohort studies, subjects may be lost to follow-up at any time during the study. This

leads to attrition and thus to a risk of inaccurate and biased estimations. The purpose of this paper is to show how

multiple imputation can take advantage of all the information collected during follow-up in order to estimate the

cumulative probability P(E) of an event E, when the first occurrence of this event is observed at t successive time

points of a longitudinal study with attrition.

Methods: We compared the performance of multiple imputation with that of Kaplan-Meier estimation in several

simulated attrition scenarios.

Results: In missing-completely-at-random scenarios, the multiple imputation and Kaplan-Meier methods performed

well in terms of bias (less than 1%) and coverage rate (range = [94.4%; 95.8%]). In missing-at-random scenarios, the

Kaplan-Meier method was associated with a bias ranging from -5.1% to 7.0% and with a very poor coverage rate

(as low as 0.2%). Multiple imputation performed much better in this situation (bias <2%, coverage rate >83.4%).

Conclusions: Multiple imputation shows promise for estimation of an occurrence rate in cohorts with attrition. This

study is a first step towards defining appropriate use of multiple imputation in longitudinal studies.

Background
Longitudinal studies are the most appropriate way of

analysing the occurrence of an event E and of estimating

its cumulative probability during follow-up P(E). One of

the most important drawbacks of such studies is that

subjects may be lost to follow-up at any time point.

These drop-outs accumulate over time and lead to attri-

tion of the initial cohort, which has fewer and fewer

participants as time goes by. Attrition can lead to biased

and inaccurate estimations of P(E) [1], especially in clas-

sical complete-case analyses [2,3]. For example, in a UK

cohort study of ocular outcome after premature birth,

which involved 558 children born before 32 weeks of

gestation in 1990-1991, abnormalities were more fre-

quent among drop-outs, and complete-case analysis

thus underestimated the prevalence of ocular abnormal-

ities in the study population [4].

Survival analysis and Kaplan-Meier estimation are com-

monly used to examine time-to-event measurements [5,6].

This approach takes into account the fact that subjects are

followed for different lengths of time. However, it assumes

that censored patients (including patients lost to follow-

up) would have the same probability of experiencing a

subsequent event as non-censored patients. This assump-

tion has been challenged in various fields [4,7,8]. One spe-

cific example, which motivated the present study, is the

issue of in vitro fertilization (IVF) success rates [9]. In IVF

cohorts, drop-out corresponds to treatment interruption,

which is partly linked to a poor likelihood of success [10].

Couples who drop out therefore have a lower chance of

success than couples who persevere [11]. The Kaplan-

Meier approach tends to overestimate the IVF success

rate, and alternative methods have recently been proposed:

drop-outs are divided into two groups depending on the

chances of success (poor/not poor) [12], or, equivalently,

according to whether IVF treatment is interrupted for
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medical causes or not [13]. Couples with a poor chance of

success will be considered as having a zero probability of

subsequent success, whereas those with a good prognosis

will have the same chance of subsequent success as those

who persevere. This method makes it possible to take into

account auxiliary information on the probability of success

among drop-outs, through individual prognostic factors,

considered in two groups. This idea may be developed by

looking for ways of taking into account more of this auxili-

ary information. Multiple imputation is a good candidate

approach in this setting.

Multiple imputation was developed thirty years ago

[14] and is now used in observational as well as in ran-

domized studies [15,16]. However, epidemiological

applications have been limited [17]. Previous works have

addressed the use of multiple imputation in longitudinal

studies [18-20], but few focused on estimation of the

occurrence rate at the end of the follow-up. This is a

special issue, as it implies imputation of the missing

covariates and outcomes. Hsu et al. developed a

weighted Kaplan-Meier method to take into account

dependant interval censoring in the estimation of a

recurrence rate [21,22]. Our objective is similar. How-

ever, we preferred to use multiple imputation, which

consists in replacing missing values with a set of plausi-

ble values, based on auxiliary information and which has

the advantage of being routinely implemented and easily

applicable. Moreover, IVF studies have a particular way

of defining time, as each time point of the study is an

IVF attempt. The length of time elapsing between the

attempts is not considered. The method of Hsu et al.

implied imputing midpoints of intervals and is therefore

not appropriate here. Kaplan-Meier estimation was cho-

sen for comparison with multiple imputation, because

this method is often used to estimate cumulative success

rates in IVF.

The purpose of this paper is to show how multiple

imputation can take advantage of all information col-

lected during follow-up. It focuses specifically on the

estimation of a cumulative probability P(E) of an event

E, when the first occurrence of this event is observed at

t successive time points of a longitudinal study. The per-

formance of multiple imputation was compared with

that of the Kaplan-Meier approach by simulating several

attrition scenarios.

Methods
Attrition types

Three types of missingness mechanisms can be distin-

guished: missing completely at random (MCAR), miss-

ing at random (MAR) and not missing at random

(NMAR) [23]. If the probability of drop-out depends

neither on missing data nor on observed data, then the

data are MCAR. In this case attrition implies a loss of

power, but no bias occurs in complete-case estimations.

An example of MCAR situation in the context of IVF is

the accidental loss of patient records. If, given the

observed data, the probability of drop-out does not

depend on missing data, then the data are MAR. Bias

may arise but it can be minimized with appropriate

methods, such as multiple imputation, that take into

account available information explaining the missingness

mechanism. As an example, suppose that records of

patients older than 35 years are recorded separately (file

A for patients younger than 35, and file B for patients

older than 35). The situation is MAR if all the file A is

available but a part of file B is accidentally lost. Finally,

if the probability of drop-out depends on missing data

or on other unobserved variables, then the data are

NMAR. Bias due to attrition cannot be reduced in this

case, and sensitivity analyses have to be conducted

under various NMAR assumptions. An example is the

situation in which patients are recorded differentially

according to the outcome of the attempt: all patients

with a delivery would be recorded, but only a part of

those with pregnancy loss would. The present study

focuses on MAR attrition.

Simulation study

Data were simulated using SAS Software (SAS Institute

Inc. 2004. SAS/STAT® 9.1 User’s Guide. Cary, NC: SAS

Institute Inc.).

The simulation process took place in three steps

detailed below: first, a complete cohort was simulated,

then attrition was added and samples were randomly

drawn, and finally the different methods of estimation

were applied to the samples with attrition.

Complete cohort generation

A cohort of 100 000 subjects with four follow-up time

points was simulated. Simulated data consisted in a bin-

ary outcome E representing occurrence of the event,

and a continuous covariate X predictive of both occur-

rence and drop-out. Measures for subject i at time point

t were named Eit and Xit. In our IVF motivating exam-

ple, the outcome is delivery and the covariate is the age

of the woman.

The covariate X was simulated Gaussian and the link

between the successive time points was the following:

X N
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For simplicity, coefficients were taken as being equal

to one: ait = bit = 1 and s
it

2 = 10.

The outcome Eit was drawn from a Bernoulli distribu-

tion with a probability of occurrence of the event equal to

pit, so that pit = P(Eit = 1). In order to make X a predictor
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of E, the value of pit was linked to the value of Xit. The

supposition was that two sub-populations with specific

probabilities of occurrence of the event coexist in the

population. To achieve this, subjects were divided into two

categories C1 and C2 according to their Xit values. The

probabilities of occurrence of the event pit could differ

according to the category. The threshold delimiting the

two categories was the median of X1 (0.014). The same

threshold was kept for all time points, i.e. C1 was defined

as Xit < 0.014 whatever the value of t. For a given category

of subjects, the probabilities of occurrence pit were taken

as identical at each time point. The different values con-

sidered for pit were 10% and 60%.

Only the first occurrence of the event was of interest.

Thus, the final endpoint Ei (occurrence/non-occurrence)

was either non-occurrence of the event in subject i if all

Eit values (1≤ t ≤4) were zeros, or occurrence of the

event in subject i if one of the Eit values was one. In

other words, the final endpoint Ei was a binary variable

indicating whether a subject i experienced the event

during follow-up.

The final true occurrence rate P(E) represented the

cumulative occurrence rate of Ei at the end of the fol-

low-up, calculated in this complete cohort of 100 000

subjects.

Attrition generation

The binary variable Dit indicates whether subject i

dropped out immediately after time t. If Dik = 1, then

Xij and Eij are missing for all j >k. Note that drop-out

can only occur after non-occurrence of the event at the

previous time point(s), and that all variables were mea-

sured in all subjects at the first time point (i.e. no miss-

ing data on Xi1 and Ei1).

The variable Dit (interrupt/continue) was drawn from

a Bernoulli distribution with a probability of drop-out of

rit, so that rit = P(Dit = 1). In order to make X a predic-

tor of D, the value of rit was linked to the value of Xit in

the same way as for pit. Indeed, the probabilities of

drop-out rit could differ according to the category of

subjects, thus being linked to Xit. This corresponds to

the assumption that the probability of drop-out immedi-

ately after time point t depended on the observed cov-

ariate at time point t. For a given category of subjects,

the probabilities of drop-out rit were taken as identical

at each time point. The different values considered for

rit were 10%, 30% and 60% (see Table 1).

The total drop-out rate represented the cumulative

drop-out rate at the end of the follow-up, calculated in

the cohort of 100 000 subjects with drop-outs.

Methods

The Kaplan-Meier method [5,6] was applied considering

drop-out as censor. Subjects encountering four non-

events were also censored at the end of the study. The

event occurrence rate was estimated as [1-S(t)] at time

t = 4, S(t) being the survival function.

Multiple imputation consists of replacing missing

values with a set of plausible values, based on auxiliary

information. In this way, all subjects can be included in

the analysis. Multiple imputation was implemented with

the SAS MI procedure (SAS Institute Inc. 2004. SAS/

STAT® 9.1 User’s Guide. Cary, NC: SAS Institute Inc.).

Multiple imputation was performed at each time point

(except the first, where all subjects were observed) for

the subjects who failed and dropped out at a previous

time point. For instance at time point 2, values were

imputed for subjects i with Ei1 = 0 (ie subjects with fail-

ure at time point 1); at period 3, values were imputed

for subjects i with Ei2 = 0 (ie subjects with failure at

time point 2, regardless this failure is observed or

imputed at the previous step). A specific SAS program

executed the successive imputations one after another.

The covariate Xit was first imputed linearly according to

the covariate and the outcome value at the previous

time (Xit-1 and Eit-1 respectively). The response Eit was

then imputed by using logistic regression according to

observed and imputed values of this covariate Xit. The

covariate Xit was included linearly in the logistic regres-

sion to enable an evaluation of the results of the multi-

ple imputation procedure as close as possible to its

practical use, in which the threshold 0.014 is unknown.

As only the first occurrence of the event was of interest,

the response Eit was imputed only when Eij = 0 for all

j <t. Thus, the covariate Xit and the intermediate out-

come Eit were imputed at each time point following

drop-out of subject i, until the event occurred or until

the end of follow-up. Then the final endpoint Ei was

calculated. Following Rubin’s recommendations, five

imputations were made at each time point [24].

Design of the evaluation

Table 1 presents the eight scenarios that were tested

and gives the final drop-out and true occurrence rates

resulting from each of the eight scenarios. A scenario

was determined by a probability of occurrence pit and a

probability of drop-out rit for each category of subjects

C1 and C2. Scenarios explored different contrasts

between the categories C1 and C2, starting from scenario

1 which was the reference scenario where all probabil-

ities equalled 10%. The robustness of the Kaplan-Meier

method and the performance of multiple imputation

were examined as the difference between the categories

C1 and C2 was amplified.

In scenarios 2 and 3, the difference between the cate-

gories C1 and C2 lay only in the probabilities of occur-

rence pit. The probabilities of drop-out rit were equal in

both categories (rit = 10% for all subjects). This means
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that drop-out did not depend on the observed value of

the covariate X (nor on any other observed or unob-

served value), and so that the data were missing comple-

tely at random (MCAR). In these cases, Kaplan-Meier

and multiple imputation estimates were expected to be

unbiased.

In scenarios 4 to 8, the probabilities of occurrence pit
and the probabilities of drop-out rit differed according

to the category (pit = 10%, 30%, 60%; rit = 10%, 60%).

The difference increased to peak with the last scenario,

in which probabilities of occurrence and drop-out corre-

sponded to inverse situations between the categories.

The difference between probabilities of drop-out means

that drop-out depended on the observed value of the

covariate X, and so that the data were missing at ran-

dom (MAR). Scenario 4 was a particular case, where

both categories had the same probability of occurrence

of the event (pit = 10%). Consequently, even if probabil-

ities of drop-out differed, both methods were expected

to be unbiased. Otherwise, multiple imputation was

expected to handle MAR attrition, whereas the Kaplan-

Meier method was not. Scenarios 4 to 6 corresponded

to the situation where the second category of subjects

C2 had a higher chance of occurrence of the event pit
and also a higher chance of drop-out rit. This could

happen when the event is negative, such as a disease:

patients more likely to be ill are more likely to drop out

of the cohort. Scenarios 7 and 8 corresponded to the

inverse situation where the second category of subjects

C2 had a higher chance of occurrence of the event pit
but a lower chance of drop-out rit. This could reflect

the IVF situation, where women more likely to have a

child are less likely to discontinue.

For each scenario, a cohort of 100 000 subjects was

created with corresponding pit and rit. For the simula-

tion study, 500 replications of samples of 2000 subjects

were drawn from each simulated cohort of 100 000 sub-

jects. The cumulative probability P(E) of the event

E during follow-up was estimated in each sample using

both methods (Kaplan-Meier and multiple imputation).

For each scenario, mean value of the estimate and of

the standard error of the 500 replications were com-

puted. Bias and the coverage rate for the 95% confidence

interval of P(E) were also provided. Bias was defined as

the mean difference over the 500 replications between

the estimation obtained by the method and the true

occurrence rate of the event E in the complete simu-

lated cohort (100 000 subjects with no drop-outs). The

coverage rate was the percentage of times when the 95%

confidence interval contained the true value of P(E).

Results
Results of the simulations for the 8 scenarios are

displayed in Table 2.

As expected, in MCAR scenarios 1, 2 and 3, both

methods (Kaplan-Meier and multiple imputation) were

unbiased. Their coverage rates were close to the nom-

inal level of 95% (range = [94.6%; 95.8%]).

In scenario 4, data were MAR but probabilities of

occurrence of the event were equal in both categories of

subjects. Both methods were as efficient as in MCAR

scenarios: estimates were unbiased and coverage rates

close to 95%. This was expected because both categories

had the same probability of occurrence of the event

(= 10%), so the difference in the probabilities of drop-

out did not impact the estimation.

In the MAR scenarios 5 to 8, the amplitude of bias

obtained with the Kaplan-Meier method was approxi-

mately 10% of P(E) (bias≈5%) and the coverage rate was

very poor (less than 15%). The bias tended towards an

underestimation of the true occurrence rate of the event

E when subjects in the category C2 with a higher prob-

ability of the event had a higher probability of drop-out

(scenarios 5 and 6), and towards an overestimation

when subjects in the category C2 with a lower probabil-

ity of the event had a higher probability of drop-out

Table 1 Probabilities of occurrence of the event and probabilities of drop-out at each time point, according to the

subject category

Scenario n° Probability of occurrence
of the event pit at each

time point (%)

Probability of drop-out rit
after each time point (%)

Total drop-out rate (%) Final true occurrence rate of the event E (%)

Category C1 Category C2 Category C1 Category C2

1 10 10 10 10 22.2 34.4

2 10 30 10 10 17.6 54.1

3 10 60 10 10 12.6 80.4

4 10 10 10 60 60.0 34.4

5 10 30 10 60 45.9 61.3

6 10 60 10 60 27.6 80.4

7 10 30 60 10 47.1 61.3

8 10 60 60 10 40.8 80.4
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(scenarios 7 and 8). The bias was worse in the last

scenario where the difference between the categories

was maximised.

In these MAR scenarios 5 to 8, multiple imputation

yielded a very small bias (less than 2%) and a very good

coverage rate (above 83%). The method seemed to be

less efficient in scenarios 7 and 8 when the category C2

with the higher probability of occurrence had the lower

probability of drop-out.

To point up the importance of the difference between

the estimations distributions in MAR scenarios, histo-

grams of all estimates according to the method used are

provided in Figure 1 for scenarios 3 (MCAR) and

5 (MAR).

Simulations were done with a smaller sample size of

500 (results not shown). This led to larger standard

errors, that mechanically increased the coverage rate. In

scenarios 5 to 8, the coverage rates ranged from 41.6%

to 69.4% for the Kaplan-Meier estimate and from 88.4%

to 94.8% for multiple imputation estimations. Bias was

unchanged. Conclusions remained the same concerning

the performance of the methods.

Discussion
Multiple imputation has been developed to deal with

missing data, which is a particular problem in longitudi-

nal studies which suffer from attrition. However, little

attention has been paid to how multiple imputation

might be applied to studies with successive data collec-

tion points. The estimation of an occurrence rate in a

cohort with attrition is a recurrent issue in reproductive

health in general, and in IVF studies in particular. These

studies have the characteristics of having discrete time

points corresponding to attempts. Intervals between

time points are not taken into account, thus leading to

no distribution of the event times. Methods developed

in previous publications thus cannot be applied here

[25,26] We therefore used a simulation study to com-

pare the performance of multiple imputation with that

of the widely used Kaplan-Meier method, for the esti-

mation of an occurrence rate in a cohort with attrition.

We found that in MAR scenarios, Kaplan-Meier esti-

mation performed fairly well with respect to bias, but

not with respect to the coverage rate. The direction of

the biases was as expected, owing to the differences in

the probabilities of occurrence of the event and of drop-

out between the two subject categories. Indeed, when

subjects dropping out tended to have a higher chance of

experiencing the event, the Kaplan-Meier assumption

that subjects dropping out have the same chance of

occurrence of the event as other subjects led to an

under-estimation, and vice-versa. The amplitude of bias

was quite small. However, the Kaplan-Meier estimate

was very precise around this biased estimation. This

implies that the confidence interval rarely included the

true value, and therefore that the coverage rate was

poor. Thus, even if the bias is considered acceptable,

one must be aware that the confidence interval will

almost never contain the true value.

In contrast, multiple imputation was virtually bias-free

and gave robust estimates in all the scenarios. This

approach enables auxiliary information to be incorpo-

rated in the estimation. This makes it possible to take

into account the fact that subjects’ chances of experien-

cing the event may differ. This was the case in the simu-

lated cohort in which two categories of subjects

co-existed and were defined by their covariate values.

Thus, multiple imputation succeeded in correcting the

Table 2 Estimation of the final occurrence rate of the event P(E) at the end of follow-up according to the estimation

method in MCAR and MAR scenarios (500 replications of samples sized 2000)

Scenario
n°

True occurrence rate of the
event P(E) (%)

Kaplan-Meier Multiple Imputation

Estimate
(a)

Standard
Error (a)

Bias
(b)

Coverage
(c)

Estimate
(a)

Standard
Error (a)

Bias
(b)

Coverage
(c)

MCAR
scenarios

1 34.4 34.3 1.1 -0.04 94.6 34.4 1.2 -0.01 94.6

2 61.3 61.3 1.2 -0.09 95.6 61.3 1.2 -0.08 95.0

3 80.4 80.5 1.0 0.08 95.8 80.5 1.0 0.09 95.4

MAR
scenarios

4 34.4 34.3 1.5 -0.07 95.2 34.4 1.8 0.01 94.4

5 61.3 56.3 1.6 -5.1 10.6 61.5 1.8 0.2 92.4

6 80.4 75.7 1.2 -4.7 2.6 80.6 1.1 0.2 92.2

7 61.3 66.2 1.6 4.9 14.8 63.0 1.8 1.6 85.2

8 80.4 87.4 1.5 7.0 0.2 82.1 1.8 1.7 83.4

(a) mean value of the estimate and of the standard error of the 500 replications

(b) difference between estimate and the true occurrence rate P(E)

(c) proportion of 500 simulations-runs where the 95% Confidence Interval contained the true occurrence rate
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bias inherent in the Kaplan-Meier method. By replacing

each missing value with several values, multiple imputa-

tion takes into account the uncertainty of the imputed

value [23,27]. Therefore, the standard errors of multiple

imputation were larger than those of the Kaplan-Meier

estimation, resulting in larger confidence intervals and

better coverage rates.

In comparison with the method of Hsu et al. [22],

multiple imputation makes it possible to include the

information contained in auxiliary variables without

summarizing them in risk scores. Moreover, it gives a

good estimation of variance, as it takes into account the

uncertainty of the imputed values.

Multiple imputation was evaluated here under the

assumption that the probability of drop-out immediately

after time point t depended on the observed covariate at

time point t. This type of attrition is likely to occur in

most epidemiological cohorts. For example, a cohort of

patients attending regular medical appointments would

fit this attrition mechanism if the probability of drop-

ping out after a given visit was likely to depend on the

results of the same visit. This is the case in IVF, where

failure of a procedure may indicate a poor chance of

subsequent success and lead a couple to discontinue

treatment. Multiple imputation at each time point is

compatible with this attrition mechanism, as imputation

at time point t is performed according to the observed

or imputed covariate values at the same time point.

This highlights the fact that data have to be investigated

in order to apply a multiple imputation strategy that fits

their pattern. The part of the auxiliary information that

has to be included in the imputation model would be of

particular interest: in some situations, baseline data

could be sufficient, whereas in other situations, inclusion

of intermediate measures could be advantageous. Impu-

tation appears a preferable method than complete case

analysis that assumes stronger hypotheses (MCAR data)

and induces an important loss of statistical power.

The multiple imputation method could be generalized

without theoretical problems to situations with a larger

number of time intervals. However, it would rise practi-

cal difficulties such as a (much) longer computational

time and a decreasing accuracy of the estimates, espe-

cially with limited sample size, due to categories of sub-

jects with drop-out rates almost equal to 100% as the

time goes by.

Data not missing at random were not tested in this

work. In practice, implementations of multiple imputa-

tion in statistical software are made under the MAR

assumption. Attrition was fully explained in the simula-

tion study, as all the variables explaining attrition were

taken into account. This may not be the case with

observational data. Sensitivity analyses are necessary to

determine whether the results are robust to deviations

from this assumption.

The second difference between simulated and observa-

tional data is that, with simulated data, the model

underlying the response and the covariates is known.

The relations are then correctly used for imputation.

With observational data,matters can be much more

Figure 1 Histograms of all estimates according to the method (multiple imputation and Kaplan Meier) for scenarios 3 (MCAR) and 5

(MAR).

Soullier et al. BMC Medical Research Methodology 2010, 10:79

http://www.biomedcentral.com/1471-2288/10/79

Page 6 of 7



difficult. The relations used for imputation rarely repro-

duce exactly the relations underlying the data. With

observational data, multiple imputation could lose preci-

sion and eventually generate bias. The consequences of

misspecification of the imputation model were not

explored here and require more research.

Conclusions
Although our findings have the limitations of any simu-

lation study, they point to a new way of estimating an

occurrence rate in cohorts with attrition, using auxiliary

information collected during follow-up. The robust esti-

mations of multiple imputation in this simulation study

are very satisfactory and promising. Our results suggest

that in an observational context, comparison of the

results of Kaplan-Meier estimation and of multiple

imputation could provide a measure of the impact of

attrition on the estimation. If this impact appears small,

further analyses could be made using the easier-to-

implement Kaplan-Meier approach.

This study is a first step towards defining the appro-

priate use of multiple imputation in longitudinal studies.
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