R. Pitti, S. Marsters, S. Ruppert, C. Donahue, A. Moore et al., Identification and characterization of a new member of the TNF family that induces apoptosis Following a TRAIL: update on a ligand and its five receptors8 A resolution crystal structure of human TRAIL, a cytokine with selective antitumor activity TRAIL-R as a negative regulator of innate immune cell responses Increased susceptibility to tumor initiation and metastasis in TNFrelated apoptosis-inducing ligand-deficient mice Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy Reduced apoptosis and ameliorated listeriosis in TRAILnull mice TNF-related apoptosis inducing ligand (TRAIL) as a potential response marker for interferon-beta treatment in multiple sclerosis, J Biol Chem Immunity Cell Res Immunity Immunity J Immunol Cytokine Growth Factor Rev J Immunol Lancet, vol.271, issue.361, pp.12687-12690, 1995.

M. Lub-de-hooge, E. De-vries, S. De-jong, and M. Bijl, Soluble TRAIL concentrations are raised in patients with systemic lupus erythematosus, Annals of the Rheumatic Diseases, vol.64, issue.6, pp.854-858, 2005.
DOI : 10.1136/ard.2004.029058

L. Cherradi, S. Zheng, S. Maguschak, K. Peschon, J. Chen et al., Defective thymocyte apoptosis and accelerated autoimmune diseases in TRAIL???/??? mice, Nature Immunology, vol.4, issue.3, pp.255-260, 2003.
DOI : 10.1038/ni894

K. Takeda, Y. Hayakawa, M. Smyth, N. Kayagaki, N. Yamaguchi et al., Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells, Nature Medicine, vol.7, issue.1, pp.94-100, 2001.
DOI : 10.1038/83416

N. Finnberg, K. Szanto, A. , E. Deiry, and W. , TRAIL-R deficiency in mice promotes susceptibility to chronic inflammation and tumorigenesis, Journal of Clinical Investigation, vol.118, issue.1, pp.111-123, 2008.
DOI : 10.1172/JCI29900DS1

G. Wilde, A. Voloshanenko, O. Bailey, S. Longton, G. Schaefer et al., TRAIL-R deficiency in mice enhances lymph node metastasis without affecting primary tumor development, Journal of Clinical Investigation, vol.118, issue.1, pp.100-110, 2008.
DOI : 10.1172/JCI33061DS1

P. Bos, X. Zhang, C. Nadal, W. Shu, R. Gomis et al., Genes that mediate breast cancer metastasis to the brain, Nature, vol.6, issue.7249, pp.1005-1009, 2009.
DOI : 10.1038/nature08021

G. Pan, K. O-'rourke, A. Chinnaiyan, R. Gentz, R. Ebner et al., The Receptor for the Cytotoxic Ligand TRAIL, Science, vol.276, issue.5309, pp.111-113, 1997.
DOI : 10.1126/science.276.5309.111

G. Pan, J. Ni, Y. Wei, G. Yu, R. Gentz et al., An Antagonist Decoy Receptor and a Death Domain-Containing Receptor for TRAIL, Science, vol.277, issue.5327, pp.815-818, 1997.
DOI : 10.1126/science.277.5327.815

J. Sheridan, S. Marsters, R. Pitti, A. Gurney, M. Skubatch et al., Control of TRAIL-Induced Apoptosis by a Family of Signaling and Decoy Receptors, Science, vol.277, issue.5327, pp.818-821, 1997.
DOI : 10.1126/science.277.5327.818

L. Clancy, K. Mruk, K. Archer, M. Woelfel, J. Mongkolsapaya et al., Preligand assembly domain-mediated ligand-independent association between TRAIL receptor 4 (TR4) and TR2 regulates TRAIL-induced apoptosis, Proceedings of the National Academy of Sciences, vol.102, issue.50, pp.18099-18104, 2005.
DOI : 10.1073/pnas.0507329102

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1312398

J. Emery, P. Mcdonnell, M. Burke, K. Deen, S. Lyn et al., Osteoprotegerin Is a Receptor for the Cytotoxic Ligand TRAIL, Journal of Biological Chemistry, vol.273, issue.23, pp.14363-14367, 1998.
DOI : 10.1074/jbc.273.23.14363

G. Wu, T. Burns, Y. Zhan, E. Alnemri, E. Deiry et al., Molecular cloning and functional analysis of the mouse homologue of the KILLER/DR5 tumor necrosis factor-related apoptosisinducing ligand (TRAIL) death receptor, Cancer Res, vol.59, pp.2770-2775, 1999.

F. Chan, Three is better than one: Pre-ligand receptor assembly in the regulation of TNF receptor signaling, Cytokine, vol.37, issue.2, pp.101-107, 2007.
DOI : 10.1016/j.cyto.2007.03.005

K. Wagner, E. Punnoose, T. Januario, D. Lawrence, R. Pitti et al., Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL, Nature Medicine, vol.280, issue.9, pp.1070-1077, 2007.
DOI : 10.1038/nm1627

R. Nimmanapalli, C. Perkins, M. Orlando, O. Bryan, E. Nguyen et al., Pretreatment with paclitaxel enhances apo-2 ligand/tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis of prostate cancer cells by inducing death receptors 4 and 5 protein levels, Cancer Res, vol.61, pp.759-763, 2001.

R. Takimoto, E. Deiry, and W. , Wild-type p53 transactivates the KILLER/DR5 gene through an intronic sequence-specific DNA-binding site, Oncogene, vol.19, issue.14, pp.1735-1743, 2000.
DOI : 10.1038/sj.onc.1203489

T. Burns, E. Bernhard, E. Deiry, and W. , Tissue specific expression of p53 target genes suggests a key role for KILLER/DR5 in p53-dependent apoptosis in vivo, Oncogene, vol.20, issue.34, pp.4601-4612, 2001.
DOI : 10.1038/sj.onc.1204484

F. Gonzalvez and A. Ashkenazi, New insights into apoptosis signaling by Apo2L/TRAIL, Oncogene, vol.173, issue.34, pp.4752-4765, 2010.
DOI : 10.1038/onc.2010.221

A. Rossin, M. Derouet, A. Sater, F. Hueber, and A. , Palmitoylation of the TRAIL receptor DR4 confers an efficient TRAIL-induced cell death signalling, Biochemical Journal, vol.419, issue.1, pp.185-192, 2009.
DOI : 10.1042/BJ20081212

URL : https://hal.archives-ouvertes.fr/hal-00370029

C. Austin, D. Lawrence, A. Peden, E. Varfolomeev, K. Totpal et al., Death-receptor activation halts clathrin-dependent endocytosis, Proceedings of the National Academy of Sciences, vol.103, issue.27, pp.10283-10288, 2006.
DOI : 10.1073/pnas.0604044103

S. Kohlhaas, A. Craxton, X. Sun, M. Pinkoski, and G. Cohen, Receptor-mediated Endocytosis Is Not Required for Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL)-induced Apoptosis, Journal of Biological Chemistry, vol.282, issue.17, pp.12831-12841, 2007.
DOI : 10.1074/jbc.M700438200

A. Sanlioglu, B. Karacay, I. Koksal, T. Griffith, and S. Sanlioglu, DcR2 (TRAIL-R4) siRNA and adenovirus delivery of TRAIL (Ad5hTRAIL) break down in vitro tumorigenic potential of prostate carcinoma cells, Cancer Gene Therapy, vol.16, issue.12, pp.976-984, 2007.
DOI : 10.1038/sj.cgt.7701087

A. Sanlioglu, A. Korcum, E. Pestereli, G. Erdogan, S. Karaveli et al., TRAIL Death Receptor???4 Expression Positively Correlates With the Tumor Grade in Breast Cancer Patients With Invasive Ductal Carcinoma, International Journal of Radiation Oncology*Biology*Physics, vol.69, issue.3
DOI : 10.1016/j.ijrobp.2007.03.057

R. Riccioni, L. Pasquini, G. Mariani, E. Saulle, A. Rossini et al., TRAIL decoy receptors mediate resistance of acute myeloid leukemia cells to TRAIL, Haematologica, vol.90, pp.612-624, 2005.

T. Griffith, W. Chin, G. Jackson, D. Lynch, and M. Kubin, Intracellular regulation of TRAILinduced apoptosis in human melanoma cells

D. Mérino, N. Lalaoui, A. Morizot, P. Schneider, E. Solary et al., Differential Inhibition of TRAIL-Mediated DR5-DISC Formation by Decoy Receptors 1 and 2, Molecular and Cellular Biology, vol.26, issue.19, pp.7046-7055, 2006.
DOI : 10.1128/MCB.00520-06

W. Simonet, D. Lacey, C. Dunstan, M. Kelley, M. Chang et al., Osteoprotegerin: A Novel Secreted Protein Involved in the Regulation of Bone Density, Cell, vol.89, issue.2, pp.309-319, 1997.
DOI : 10.1016/S0092-8674(00)80209-3

G. Screaton, J. Mongkolsapaya, X. Xu, A. Cowper, A. Mcmichael et al., TRICK2, a new alternatively spliced receptor that transduces the cytotoxic signal from TRAIL, Current Biology, vol.7, issue.9, pp.693-696, 1997.
DOI : 10.1016/S0960-9822(06)00297-1

A. Krieg, J. Schulte-am-esch-2-nd, U. Ramp, S. Hosch, W. Knoefel et al., TRAIL-R4-??: A new splice variant of TRAIL-receptor 4 lacking the cysteine rich domain 1, Biochemical and Biophysical Research Communications, vol.349, issue.1, pp.115-121, 2006.
DOI : 10.1016/j.bbrc.2006.08.031

J. Medema, C. Scaffidi, F. Kischkel, A. Shevchenko, M. Mann et al., FLICE is activated by association with the CD95 death-inducing signaling complex (DISC), The EMBO Journal, vol.16, issue.10, pp.2794-2804, 1997.
DOI : 10.1093/emboj/16.10.2794

F. Kischkel, D. Lawrence, A. Chuntharapai, P. Schow, K. Kim et al., Apo2L/TRAIL-Dependent Recruitment of Endogenous FADD and Caspase-8 to Death Receptors 4 and 5, Immunity, vol.12, issue.6, pp.611-620, 2000.
DOI : 10.1016/S1074-7613(00)80212-5

N. Danial and S. Korsmeyer, Cell Death, Cell, vol.116, issue.2, pp.205-219, 2004.
DOI : 10.1016/S0092-8674(04)00046-7

L. Galluzzi, M. Maiuri, I. Vitale, H. Zischka, M. Castedo et al., Cell death modalities: classification and pathophysiological implications, Cell Death and Differentiation, vol.94, issue.7, pp.1237-1243, 2007.
DOI : 10.1038/sj.cdd.4402148

C. Scaffidi, S. Fulda, A. Srinivasan, C. Friesen, F. Li et al., Two CD95 (APO-1/Fas) signaling pathways, The EMBO Journal, vol.17, issue.6, pp.1675-1687, 1998.
DOI : 10.1093/emboj/17.6.1675

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1170515

H. Li, H. Zhu, C. Xu, and J. Yuan, Cleavage of BID by Caspase 8 Mediates the Mitochondrial Damage in the Fas Pathway of Apoptosis, Cell, vol.94, issue.4, pp.491-501, 1998.
DOI : 10.1016/S0092-8674(00)81590-1

X. Luo, I. Budihardjo, H. Zou, C. Slaughter, and X. Wang, Bid, a Bcl2 Interacting Protein, Mediates Cytochrome c Release from Mitochondria in Response to Activation of Cell Surface Death Receptors, Cell, vol.94, issue.4, pp.481-490, 1998.
DOI : 10.1016/S0092-8674(00)81589-5

H. Zou, W. Henzel, X. Liu, A. Lutschg, and X. Wang, Apaf-1, a Human Protein Homologous to C. elegans CED-4, Participates in Cytochrome c???Dependent Activation of Caspase-3, Cell, vol.90, issue.3, pp.405-413, 1997.
DOI : 10.1016/S0092-8674(00)80501-2

M. Macfarlane, TRAIL-induced signalling and apoptosis, Toxicology Letters, vol.139, issue.2-3, pp.89-97, 2003.
DOI : 10.1016/S0378-4274(02)00422-8

D. Esposti, M. Dougall, W. Smolak, P. Waugh, J. Smith et al., The Novel Receptor TRAIL-R4 Induces NF-??B and Protects against TRAIL-Mediated Apoptosis, yet Retains an Incomplete Death Domain, Immunity, vol.7, issue.6, pp.813-820, 1997.
DOI : 10.1016/S1074-7613(00)80399-4

H. Li and X. Lin, Positive and negative signaling components involved in TNF??-induced NF-??B activation, Cytokine, vol.41, issue.1, pp.1-8, 2008.
DOI : 10.1016/j.cyto.2007.09.016

A. Trauzold, D. Siegmund, B. Schniewind, B. Sipos, J. Egberts et al., TRAIL promotes metastasis of human pancreatic ductal adenocarcinoma, Oncogene, vol.5, issue.56, pp.7434-7439, 2006.
DOI : 10.1038/sj.onc.1209719

M. Ricci, S. Kim, K. Ogi, J. Plastaras, J. Ling et al., Reduction of TRAIL-Induced Mcl-1 and cIAP2 by c-Myc or Sorafenib Sensitizes Resistant Human Cancer Cells to TRAIL-Induced Death, Cancer Cell, vol.12, issue.1, pp.66-80, 2007.
DOI : 10.1016/j.ccr.2007.05.006

P. Secchiero, A. Gonelli, E. Carnevale, D. Milani, A. Pandolfi et al., TRAIL Promotes the Survival and Proliferation of Primary Human Vascular Endothelial Cells by Activating the Akt and ERK Pathways, Circulation, vol.107, issue.17, pp.2250-2256, 2003.
DOI : 10.1161/01.CIR.0000062702.60708.C4

L. Belyanskaya, A. Ziogas, H. Donaldson, S. Kurtz, S. Simon et al., TRAIL-induced survival and proliferation of SCLC cells is mediated by ERK and dependent on TRAIL-R2/DR5 expression in the absence of caspase-8, Lung Cancer, vol.60, issue.3, pp.355-365, 2008.
DOI : 10.1016/j.lungcan.2007.11.005

N. Ishimura, H. Isomoto, S. Bronk, and G. Gores, Trail induces cell migration and invasion in apoptosis-resistant cholangiocarcinoma cells, AJP: Gastrointestinal and Liver Physiology, vol.290, issue.1
DOI : 10.1152/ajpgi.00242.2005

Y. Gazitt, TRAIL is a potent inducer of apoptosis in myeloma cells derived from multiple myeloma patients and is not cytotoxic to hematopoietic stem cells, Leukemia, vol.13, issue.11, pp.1817-1824, 1999.
DOI : 10.1038/sj.leu.2401501

H. Walczak, R. Miller, K. Ariail, B. Gliniak, T. Griffith et al., Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo, Nat Med, vol.5, pp.157-163, 1999.

A. Ashkenazi, R. Pai, S. Fong, S. Leung, D. Lawrence et al., Safety and antitumor activity of recombinant soluble Apo2 ligand, Journal of Clinical Investigation, vol.104, issue.2, pp.155-162, 1999.
DOI : 10.1172/JCI6926

S. Kelley, L. Harris, D. Xie, L. Deforge, K. Totpal et al., Preclinical studies to predict the disposition of Apo2L/tumor necrosis factor-related apoptosis-inducing ligand in humans: characterization of in vivo efficacy, pharmacokinetics, and safety, J Pharmacol Exp Ther, vol.299, pp.31-38, 2001.

I. Pollack, M. Erff, and A. Ashkenazi, Direct stimulation of apoptotic signaling by soluble Apo2l/ tumor necrosis factor-related apoptosisinducing ligand leads to selective killing of glioma cells, Clin Cancer Res, vol.7, pp.1362-1369, 2001.

P. Marini, A. Schmid, V. Jendrossek, H. Faltin, P. Daniel et al., Irradiation specifically sensitises solid tumour cell lines to TRAIL mediated apoptosis, BMC Cancer, vol.63, issue.1, p.5, 2005.
DOI : 10.1002/pros.20069

K. Song, N. Benhaga, R. Anderson, K. Far, and R. , Transduction of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand into Hematopoietic Cells Leads to Inhibition of Syngeneic Tumor Growth In vivo, Cancer Research, vol.66, issue.12, pp.6304-6311, 2006.
DOI : 10.1158/0008-5472.CAN-05-3501

M. Jo, T. Kim, D. Seol, J. Esplen, K. Dorko et al., Apoptosis induced in normal human hepatocytes by tumor necrosis factor-related apoptosis-inducing ligand, Nat Med, vol.6, pp.564-567, 2000.

T. Ganten, R. Koschny, J. Sykora, S. Bergkamen, H. Büchler et al., Preclinical Differentiation between Apparently Safe and Potentially Hepatotoxic Applications of TRAIL Either Alone or in Combination with Chemotherapeutic Drugs, Clinical Cancer Research, vol.12, issue.8, pp.2640-2646, 2006.
DOI : 10.1158/1078-0432.CCR-05-2635

C. Hao, J. Song, B. Hsi, J. Lewis, D. Song et al., TRAIL Inhibits Tumor Growth but Is Nontoxic to Human Hepatocytes in Chimeric Mice, Cancer Research, vol.64, issue.23, pp.8502-8506, 2004.
DOI : 10.1158/0008-5472.CAN-04-2599

E. Menoret, G. Bougie, P. , G. Luseau, A. Daniels et al., Mcl-1L cleavage is involved in TRAIL-R1- and TRAIL-R2-mediated apoptosis induced by HGS-ETR1 and HGS-ETR2 human mAbs in myeloma cells, Blood, vol.108, issue.4, pp.1346-1352, 2006.
DOI : 10.1182/blood-2005-12-007971

G. Wu, TRAIL as a target in anti-cancer therapy, Cancer Letters, vol.285, issue.1, pp.1-5, 2009.
DOI : 10.1016/j.canlet.2009.02.029

M. Nagane, G. Pan, J. Weddle, V. Dixit, W. Cavenee et al., Increased death receptor 5 expression by chemotherapeutic agents in human gliomas causes synergistic cytotoxicity with tumor necrosis factor-related apoptosisinducing ligand in vitro and in vivo, Cancer Res, vol.60, pp.847-853, 2000.

M. Cuello, S. Ettenberg, M. Nau, and S. Lipkowitz, Synergistic Induction of Apoptosis by the Combination of TRAIL and Chemotherapy in Chemoresistant Ovarian Cancer Cells, Gynecologic Oncology, vol.81, issue.3, pp.380-390, 2001.
DOI : 10.1006/gyno.2001.6194

C. Mom, J. Verweij, C. Oldenhuis, J. Gietema, N. Fox et al., Mapatumumab, a Fully Human Agonistic Monoclonal Antibody That Targets TRAIL-R1, in Combination with Gemcitabine and Cisplatin: a Phase I Study, Clinical Cancer Research, vol.15, issue.17, pp.5584-5590, 2009.
DOI : 10.1158/1078-0432.CCR-09-0996

S. Hotte, H. Hirte, E. Chen, L. Siu, L. Le et al., A Phase 1 Study of Mapatumumab (Fully Human Monoclonal Antibody to TRAIL-R1) in Patients with Advanced Solid Malignancies, Clinical Cancer Research, vol.14, issue.11, pp.3450-3455, 2008.
DOI : 10.1158/1078-0432.CCR-07-1416

F. Greco, P. Bonomi, J. Crawford, K. Kelly, Y. Oh et al., Phase 2 study of mapatumumab, a fully human agonistic monoclonal antibody which targets and activates the TRAIL receptor-1, in patients with advanced non-small cell lung cancer, Lung Cancer, vol.61, issue.1, pp.82-90, 2008.
DOI : 10.1016/j.lungcan.2007.12.011

T. Trarbach, M. Moehler, V. Heinemann, C. Köhne, M. Przyborek et al., Phase II trial of mapatumumab, a fully human agonistic monoclonal antibody that targets and activates the tumour necrosis factor apoptosis-inducing ligand receptor-1 (TRAIL-R1), in patients with refractory colorectal cancer, British Journal of Cancer, vol.113, issue.3, pp.506-512, 2010.
DOI : 10.1038/onc.2008.299

S. Leong, R. Cohen, D. Gustafson, C. Langer, D. Camidge et al., Mapatumumab, an Antibody Targeting TRAIL-R1, in Combination With Paclitaxel and Carboplatin in Patients With Advanced Solid Malignancies: Results of a Phase I and Pharmacokinetic Study, Journal of Clinical Oncology, vol.27, issue.26, pp.4413-4421, 2009.
DOI : 10.1200/JCO.2008.21.7422

R. Plummer, G. Attard, S. Pacey, L. Li, A. Razak et al., Phase 1 and Pharmacokinetic Study of Lexatumumab in Patients with Advanced Cancers, Clinical Cancer Research, vol.13, issue.20, pp.6187-6194, 2007.
DOI : 10.1158/1078-0432.CCR-07-0950

H. Wakelee, A. Patnaik, B. Sikic, M. Mita, N. Fox et al., Phase I and pharmacokinetic study of lexatumumab (HGS-ETR2) given every 2 weeks in patients with advanced solid tumors, Annals of Oncology, vol.21, issue.2, pp.376-381, 2010.
DOI : 10.1093/annonc/mdp292

C. Adams, K. Totpal, D. Lawrence, S. Marsters, R. Pitti et al., Structural and functional analysis of the interaction between the agonistic monoclonal antibody Apomab and the proapoptotic receptor DR5, Cell Death and Differentiation, vol.57, issue.4, pp.751-761, 2008.
DOI : 10.1016/j.jmb.2004.05.051

L. Mirabello, R. Troisi, and S. Savage, International osteosarcoma incidence patterns in children and adolescents, middle ages and elderly persons, International Journal of Cancer, vol.18, issue.1, pp.229-234, 2009.
DOI : 10.1002/ijc.24320

M. Link, M. Gebhardt, P. Meyers, P. Pizzo, and D. Poplack, In: principles and practices of pediatric oncology, pp.1074-1115, 2006.

P. Wu, W. Chen, C. Chen, O. Lee, C. Haung et al., Primary Osteogenic Sarcoma with Pulmonary Metastasis: Clinical Results and Prognostic Factors in 91 Patients, Japanese Journal of Clinical Oncology, vol.39, issue.8, pp.514-522, 2009.
DOI : 10.1093/jjco/hyp057

R. Wilkins, D. Pritchard, E. Burgert, . Jr, and K. Unni, Ewing's sarcoma of bone. Experience with 140 patients, Cancer, vol.56, issue.11, pp.2551-2555, 1986.
DOI : 10.1002/1097-0142(19861201)58:11<2551::AID-CNCR2820581132>3.0.CO;2-Y

H. Kovar, D. Aryee, and A. Zoubek, The Ewing family of tumors and the search for the Achilles??? heel, Current Opinion in Oncology, vol.11, issue.4, pp.275-284, 1999.
DOI : 10.1097/00001622-199907000-00007

R. Galindo and C. , Pharmacological management of Ewing sarcoma family of tumours, Expert Opinion on Pharmacotherapy, vol.24, issue.6, pp.1257-1270, 2004.
DOI : 10.1517/14656566.5.6.1257

R. Barnes and M. Catto, Chondrosarcoma of bone, J Bone Joint Surg Br, vol.48, pp.729-764, 1966.

M. Linet, L. Ries, M. Smith, R. Tarone, and S. Devesa, Cancer Surveillance Series: Recent Trends in Childhood Cancer Incidence and Mortality in the United States, JNCI Journal of the National Cancer Institute, vol.91, issue.12, pp.1051-1058, 1999.
DOI : 10.1093/jnci/91.12.1051

L. Mirabello, R. Troisi, and S. Savage, Osteosarcoma incidence and survival rates from 1973 to 2004, Cancer, vol.19, issue.112, pp.1531-1543, 2009.
DOI : 10.1002/cncr.24121

G. Gatta, R. Capocaccia, C. Stiller, P. Kaatsch, F. Berrino et al., Childhood Cancer Survival Trends in Europe: A EUROCARE Working Group Study, Journal of Clinical Oncology, vol.23, issue.16, pp.3742-3751, 2005.
DOI : 10.1200/JCO.2005.00.554

E. Kolb, R. Gorlick, P. Houghton, C. Morton, R. Lock et al., Initial testing (stage 1) of a monoclonal antibody (SCH 717454) against the IGF-1 receptor by the pediatric preclinical testing program, Pediatric Blood & Cancer, vol.25, issue.6, pp.1190-1197, 2008.
DOI : 10.1002/pbc.21450

D. Thomas, R. Henshaw, K. Skubitz, S. Chawla, A. Staddon et al., Denosumab in patients with giant-cell tumour of bone: an open-label, phase 2 study, The Lancet Oncology, vol.11, issue.3, pp.275-80, 2010.
DOI : 10.1016/S1470-2045(10)70010-3

A. Evdokiou, S. Bouralexis, G. Atkins, F. Chai, S. Hay et al., Chemotherapeutic agents sensitize osteogenic sarcoma cells, but not normal human bone cells, to apo2l/trail-induced apoptosis, International Journal of Cancer, vol.65, issue.4, pp.491-504, 2002.
DOI : 10.1002/ijc.10376

S. Bouralexis, M. Clayer, G. Atkins, A. Labridinis, S. Hay et al., Sensitivity of fresh isolates of soft tissue sarcoma, osteosarcoma and giant cell tumour cells to Apo2L/TRAIL and doxorubicin, International Journal of Oncology, vol.24, pp.1263-1270, 2004.
DOI : 10.3892/ijo.24.5.1263

S. Bouralexis, D. Findlay, G. Atkins, A. Labrinidis, S. Hay et al., Progressive resistance of BTK-143 osteosarcoma cells to Apo2L, Am J Cancer Res, vol.2, issue.1, pp.45-64, 2012.

T. Hotta, H. Suzuki, S. Nagai, K. Yamamoto, A. Imakiire et al., Chemotherapeutic agents sensitize sarcoma cell lines to tumor necrosis factor-related apoptosis-inducing ligand-induced caspase-8 activation, apoptosis and loss of mitochondrial membrane potential, Journal of Orthopaedic Research, vol.59, issue.5, pp.949-957, 2003.
DOI : 10.1016/S0736-0266(03)00062-7

V. Cenni, N. Maraldi, A. Ruggeri, P. Secchiero, D. Coco et al., Sensitization of multidrug resistant human ostesarcoma cells to Apo2 Ligand/TRAILinduced apoptosis by inhibition of the Akt/PKB kinase, Int J Oncol, vol.25, pp.1599-1608, 2004.

F. Van-valen, S. Fulda, B. Truckenbrod, V. Eckervogt, J. Sonnemann et al., Apoptotic responsiveness of the Ewing's sarcoma family of tumours to tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), International Journal of Cancer, vol.3, issue.2, pp.252-259, 2000.
DOI : 10.1002/1097-0215(20001015)88:2<252::AID-IJC17>3.0.CO;2-U

N. Mitsiades, V. Poulaki, C. Mitsiades, and M. Tsokos, Ewing's sarcoma family tumors are sensitive to tumor necrosis factor-related apoptosisinducing ligand and express death receptor 4 and death receptor 5, Cancer Res, vol.61, pp.2704-2712, 2001.

A. Kumar, A. Jasmin, M. Eby, and P. Chaudhary, Cytotoxicity of Tumor Necrosis Factor related apoptosis-inducing ligand towards Ewing's sarcoma cell lines, Oncogene, vol.20, issue.8, pp.1010-1014, 2001.
DOI : 10.1038/sj.onc.1204154

H. Kontny, K. Hämmerler, R. Klein, P. Shayan, C. Mackall et al., Sensitivity of Ewing's sarcoma to TRAIL-induced apoptosis, Cell Death and Differentiation, vol.8, issue.5, pp.506-514, 2001.
DOI : 10.1038/sj.cdd.4400836

G. Picarda, F. Lamoureux, L. Geffroy, P. Delepine, T. Montier et al., Preclinical Evidence that Use of TRAIL in Ewing's Sarcoma and Osteosarcoma Therapy Inhibits Tumor Growth, Prevents Osteolysis, and Increases Animal Survival, Clinical Cancer Research, vol.16, issue.8, pp.2363-2374, 2010.
DOI : 10.1158/1078-0432.CCR-09-1779

M. Merchant, X. Yang, F. Melchionda, M. Romero, R. Klein et al., Interferon ?? Enhances the Effectiveness of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Receptor Agonists in a Xenograft Model of Ewing's Sarcoma, Cancer Research, vol.64, issue.22, pp.8349-8356, 2004.
DOI : 10.1158/0008-5472.CAN-04-1705

A. Vaculova, V. Kaminskyy, E. Jalalvand, O. Surova, and B. Zhivotovsky, Doxorubicin and etoposide sensitize small cell lung carcinoma cells expressing caspase-8 to TRAIL, Molecular Cancer, vol.9, issue.1, p.87, 2010.
DOI : 10.1186/1476-4598-9-87

A. Lee, S. Dhillon, Y. Wang, S. Pervaiz, W. Fan et al., Synergistic anti-cancer effects via co-delivery of TNF-related apoptosis-inducing ligand (TRAIL/Apo2L) and doxorubicin using micellar nanoparticles, Molecular BioSystems, vol.1, issue.5, pp.1512-1522, 2011.
DOI : 10.1039/c0mb00266f

S. Aroui, D. Mili, S. Brahim, D. Waard, M. Kenani et al., Doxorubicin coupled to penetratin promotes apoptosis in CHO cells by a mechanism involving c-Jun NH2-terminal kinase, Biochemical and Biophysical Research Communications, vol.396, issue.4, pp.908-914, 2010.
DOI : 10.1016/j.bbrc.2010.05.020

URL : https://hal.archives-ouvertes.fr/inserm-00587561

E. Zawahry, A. Mckillop, J. Johnson, and C. , Doxorubicin increases the effectiveness of Apo2L/TRAIL for tumor growth inhibition of prostate cancer xenografts, BMC Cancer, vol.5, issue.2, 2005.

G. Lu, V. Punj, and P. Chaudhary, Proteasome inhibitor Bortezomib induces cell-cycle arrest and apoptosis in cell lines derived from Ewing???s sarcoma family of tumors and synergizes with TRAIL, Cancer Biology & Therapy, vol.7, issue.4, pp.603-608, 2008.
DOI : 10.4161/cbt.7.4.5564

P. Horak, D. Pils, and G. Haller, Contribution of Epigenetic Silencing of Tumor Necrosis Factor-Related Apoptosis Inducing Ligand Receptor 1 (DR4) to TRAIL Resistance and Ovarian Cancer, Molecular Cancer Research, vol.3, issue.6, pp.335-343, 2005.
DOI : 10.1158/1541-7786.MCR-04-0136

Z. Jin, E. Mcdonald, D. Dicker, E. Deiry, and W. , Deficient Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) Death Receptor Transport to the Cell Surface in Human Colon Cancer Cells Selected for Resistance to TRAIL-induced Apoptosis, Journal of Biological Chemistry, vol.279, issue.34, pp.35829-35839, 2004.
DOI : 10.1074/jbc.M405538200

M. Dyer, M. Macfarlane, and G. Cohen, Barriers to Effective TRAIL-Targeted Therapy of Malignancy, Journal of Clinical Oncology, vol.25, issue.28, pp.4505-4506, 2007.
DOI : 10.1200/JCO.2007.13.1011

S. Fulda, M. Küfer, E. Meyer, F. Van-valen, D. Dworniczak et al., Sensitization for death receptor- or drug-induced apoptosis by re-expression of caspase-8 through demethylation or gene transfer, Oncogene, vol.20, issue.41, pp.5865-5877, 2001.
DOI : 10.1038/sj.onc.1204750

A. Lissat, T. Vraetz, M. Tsokos, R. Klein, M. Braun et al., Interferon-?? Sensitizes Resistant Ewing's Sarcoma Cells to Tumor Necrosis Factor Apoptosis-Inducing Ligand-Induced Apoptosis by Up-Regulation of Caspase-8 Without Altering Chemosensitivity, The American Journal of Pathology, vol.170, issue.6, pp.1917-1930, 2007.
DOI : 10.2353/ajpath.2007.060993

D. White and S. Burchill, Fenretinide-dependent upregulation of death receptors through ASK1 and p38?? enhances death receptor ligand-induced cell death in Ewing's sarcoma family of tumours, British Journal of Cancer, vol.54, issue.9, pp.1380-1390, 2010.
DOI : 10.1203/01.PDR.0000085038.53151.D0

M. Moon, J. Jeong, J. Seo, Y. Lee, and S. Park, death receptor 5 upregulation, Experimental and Molecular Medicine, vol.34, issue.3, pp.138-145, 2011.
DOI : 10.3858/emm.2011.43.3.016

R. Locklin, E. Federici, B. Espina, P. Hulley, R. Russell et al., Selective targeting of death receptor 5 circumvents resistance of MG-63 osteosarcoma cells to TRAIL-induced apoptosis, Molecular Cancer Therapeutics, vol.6, issue.12, pp.3219-3228, 2007.
DOI : 10.1158/1535-7163.MCT-07-0275

S. Takeda, A. Iwai, M. Nakashima, D. Fujikura, S. Chiba et al., LKB1 is crucial for TRAIL-mediated apoptosis induction in osteosarcoma, Anticancer Res, vol.27, pp.761-768, 2007.

Y. Wang, D. Mandal, S. Wang, E. Kleinerman, R. Pollock et al., Platelet-derived growth factor receptor ?? inhibition increases tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) sensitivity, Cancer, vol.25, issue.suppl 5, pp.3892-3902, 2010.
DOI : 10.1002/cncr.25107

J. Sonnemann, L. Dreyer, M. Hartwig, C. Palani, T. Hong-le et al., Histone deacetylase inhibitors induce cell death and enhance the apoptosis-inducing activity of TRAIL in Ewing???s sarcoma cells, Journal of Cancer Research and Clinical Oncology, vol.88, issue.11, pp.847-858, 2007.
DOI : 10.1007/s00432-007-0227-8

S. Theoleyre, Y. Wittrant, S. Tat, Y. Fortun, F. Redini et al., The molecular triad OPG/RANK/RANKL: involvement in the orchestration of pathophysiological bone remodeling, Cytokine & Growth Factor Reviews, vol.15, issue.6
DOI : 10.1016/j.cytogfr.2004.06.004

F. Lamoureux, G. Moriceau, G. Picarda, J. Rousseau, V. Trichet et al., Regulation of osteoprotegerin pro- or anti-tumoral activity by bone tumor microenvironment, Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, vol.1805, issue.1, pp.17-24, 2010.
DOI : 10.1016/j.bbcan.2009.08.004

I. Holen, P. Croucher, F. Hamdy, and C. Eaton, Osteoprotegerin (OPG) is a survival factor for human prostate cancer cells, Cancer Res, vol.62, pp.1619-1623, 2002.

N. Webb, H. Cross, N. Eaton, C. Nyambo, R. Evans et al., Osteoprotegerin (OPG) produced by bone marrow stromal cells protects breast cancer cells from TRAIL-induced apoptosis, Breast Cancer Res Treat, vol.86, pp.269-279, 2004.

C. Shipman and P. Croucher, Osteoprotegerin is a soluble decoy receptor for tumor necrosis factor-related apoptosis-inducing ligand/Apo2 ligand and can function as a paracrine survival factor for human myeloma cells, Cancer Res, vol.63, pp.912-916, 2003.

T. Griffith, S. Wiley, M. Kubin, L. Sedger, C. Maliszewski et al., Monocyte-mediated Tumoricidal Activity via the Tumor Necrosis Factor???related Cytokine, TRAIL, The Journal of Experimental Medicine, vol.88, issue.8, pp.1343-1354, 1999.
DOI : 10.1084/jem.186.8.1365

K. Takeda, M. Smyth, E. Cretney, Y. Hayakawa, N. Kayagaki et al., Critical Role for Tumor Necrosis Factor???related Apoptosis-inducing Ligand in Immune Surveillance Against Tumor Development, The Journal of Experimental Medicine, vol.161, issue.2, pp.161-169, 2002.
DOI : 10.1038/35074122

J. Vitovski, J. Phillips, . Sayers, and P. Croucher, Investigating the Interaction between Osteoprotegerin and Receptor Activator of NF-??B or Tumor Necrosis Factor-related Apoptosis-inducing Ligand: EVIDENCE FOR A PIVOTAL ROLE FOR OSTEOPROTEGERIN IN REGULATING TWO DISTINCT PATHWAYS, Journal of Biological Chemistry, vol.282, issue.43, pp.31601-31609, 2007.
DOI : 10.1074/jbc.M706078200

I. Holen, S. Cross, N. Webb, H. Cross, N. Balasubramanian et al., Osteoprotegerin (OPG) Expression by Breast Cancer Cells in vitro and Breast Tumours in vivo ??? A Role in Tumour Cell Survival?, Breast Cancer Research and Treatment, vol.275, issue.30, pp.207-215, 2005.
DOI : 10.1007/s10549-005-2419-8

R. Nyambo, N. Cross, J. Lippitt, I. Holen, G. Bryden et al., Human Bone Marrow Stromal Cells Protect Prostate Cancer Cells From TRAIL-Induced Apoptosis, Journal of Bone and Mineral Research, vol.107, issue.Suppl, pp.269-279, 2004.
DOI : 10.1359/JBMR.040703

D. Heath, K. Vanderkerken, X. Cheng, O. Gallagher, M. Prideaux et al., An Osteoprotegerin-like Peptidomimetic Inhibits Osteoclastic Bone Resorption and Osteolytic Bone Disease in Myeloma, Cancer Research, vol.67, issue.1, pp.202-208, 2007.
DOI : 10.1158/0008-5472.CAN-06-1287

S. Barillé-nion, B. Barlogie, R. Bataille, P. Bergsagel, J. Epstein et al., Advances in Biology and Therapy of Multiple Myeloma, Hematology, vol.2003, issue.1, pp.248-278, 2003.
DOI : 10.1182/asheducation-2003.1.248

F. Lamoureux, P. Richard, Y. Wittrant, S. Battaglia, P. Pilet et al., Therapeutic Relevance of Osteoprotegerin Gene Therapy in Osteosarcoma: Blockade of the Vicious Cycle between Tumor Cell Proliferation and Bone Resorption, Cancer Research, vol.67, issue.15, pp.7308-7318, 2007.
DOI : 10.1158/0008-5472.CAN-06-4130

M. Mogi and A. Kondo, THE PRESENCE OF TRAIL???OPG COMPLEX IN HUMAN OSTEOSARCOMA AND HUMAN SALIVARY GLAND ADENOCARCINOMA, Journal of Immunoassay and Immunochemistry, vol.106, issue.1, pp.70-78, 2011.
DOI : 10.1126/science.277.5327.818

N. Cross, M. Papageorgiou, and C. Eaton, Bone marrow stromal cells promote growth and survival of prostate cancer cells, Biochemical Society Transactions, vol.35, issue.4, pp.698-700, 2007.
DOI : 10.1042/BST0350698

F. Corallini, C. Celeghini, E. Rimondi, M. Di-lasio, A. Gonelli et al., Trail down-regulates the release of osteoprotegerin (OPG) by primary stromal cells, Journal of Cellular Physiology, vol.3, issue.9, 2010.
DOI : 10.1002/jcp.22564

V. Nicolin and P. Narducci, Breast adenocarcinoma MCF-7 cell line induces spontaneous osteoclastogenesis via a RANK-ligand-dependent pathway, Acta Histochemica, vol.110, issue.5, pp.388-396, 2008.
DOI : 10.1016/j.acthis.2007.12.002

S. Cha, B. Sung, Y. Kim, Y. Song, H. Kim et al., Crystal Structure of TRAIL-DR5 Complex Identifies a Critical Role of the Unique Frame Insertion in Conferring Recognition Specificity, Journal of Biological Chemistry, vol.275, issue.40, pp.31171-31177, 2000.
DOI : 10.1074/jbc.M004414200

M. Eck and S. Sprang, The structure of tumor, Am J Cancer Res, vol.2, issue.1, pp.45-64, 2012.

M. Karpusas, Y. Hsu, J. Wang, J. Thompson, S. Lederman et al., 2 ?? crystal structure of an extracellular fragment of human CD40 ligand, Structure, vol.3, issue.10, pp.1031-1039, 1995.
DOI : 10.1016/S0969-2126(01)00239-8