T. Chambers, Regulation of the differentiation and function of osteoclasts, The Journal of Pathology, vol.401, issue.1, pp.4-13, 2000.
DOI : 10.1002/1096-9896(2000)9999:9999<::AID-PATH645>3.0.CO;2-Q

G. Roodman, Regulation of Osteoclast Differentiation, Annals of the New York Academy of Sciences, vol.102, issue.1, pp.100-109, 2006.
DOI : 10.1210/en.133.1.397

B. Epker and H. Frost, Correlation of Bone Resorption and Formation with the Physical Behavior of Loaded Bone, Journal of Dental Research, vol.44, issue.1, pp.33-41, 1965.
DOI : 10.1177/00220345650440012801

J. Ilvesaro and J. Tuukkanen, Gap-Junctional Regulation of Osteoclast Function, Critical Reviews in Eukaryotic Gene Expression, vol.13, issue.2-4, pp.133-146, 2003.
DOI : 10.1615/CritRevEukaryotGeneExpr.v13.i24.70

D. Heymann, J. Guicheux, F. Gouin, N. Passuti, and G. Daculsi, CYTOKINES, GROWTH FACTORS AND OSTEOCLASTS, Cytokine, vol.10, issue.3, pp.155-168, 1998.
DOI : 10.1006/cyto.1997.0277

S. Theoleyre, Y. Wittrant, S. Tat, Y. Fortun, F. Redini et al., The molecular triad OPG/RANK/RANKL: involvement in the orchestration of pathophysiological bone remodeling, Cytokine & Growth Factor Reviews, vol.15, issue.6, pp.457-475, 2004.
DOI : 10.1016/j.cytogfr.2004.06.004

N. Takahashi, N. Udagawa, and T. Suda, A New Member of Tumor Necrosis Factor Ligand Family, ODF/OPGL/TRANCE/RANKL, Regulates Osteoclast Differentiation and Function, Biochemical and Biophysical Research Communications, vol.256, issue.3, pp.449-455, 1999.
DOI : 10.1006/bbrc.1999.0252

H. Yasuda, N. Shima, N. Nakagawa, K. Yamaguchi, M. Kinosaki et al., Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL, Proceedings of the National Academy of Sciences, vol.95, issue.7, pp.3597-3602, 1998.
DOI : 10.1073/pnas.95.7.3597

D. Lacey, E. Timms, H. Tan, M. Kelley, C. Dunstan et al., Osteoprotegerin Ligand Is a Cytokine that Regulates Osteoclast Differentiation and Activation, Cell, vol.93, issue.2, pp.165-176, 1998.
DOI : 10.1016/S0092-8674(00)81569-X

URL : http://doi.org/10.1016/s0092-8674(00)81569-x

Y. Kong, H. Yoshida, I. Sarosi, H. Tan, E. Timms et al., OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis, Nature, vol.397, pp.315-323, 1999.

B. Wong, J. Rho, A. J. Robinson, E. Orlinick, J. Chao et al., TRANCE Is a Novel Ligand of the Tumor Necrosis Factor Receptor Family That Activates c-Jun N-terminal Kinase in T Cells, Journal of Biological Chemistry, vol.272, issue.40, pp.25190-25194, 1997.
DOI : 10.1074/jbc.272.40.25190

M. Baud-'huin, L. Duplomb, R. Velasco, C. Fortun, Y. Heymann et al., Key roles of the OPG-RANK-RANKL system in bone oncology, Expert Rev Anticancer Ther, vol.7, pp.221-232, 2007.

W. Boyle, W. Simonet, and D. Lacey, Osteoclast differentiation and activation, Nature, vol.34, issue.6937, pp.337-342, 2003.
DOI : 10.1007/s007740200049

Y. Wittrant, S. Theoleyre, S. Couillaud, C. Dunstan, D. Heymann et al., Relevance of an in vitro osteoclastogenesis system to study receptor activator of NF-kB ligand and osteoprotegerin biological activities, Experimental Cell Research, vol.293, issue.2, pp.292-301, 2004.
DOI : 10.1016/j.yexcr.2003.10.016

H. Blair, L. Robinson, and M. Zaidi, Osteoclast signalling pathways, Osteoclast signalling pathways, pp.728-738, 2005.
DOI : 10.1016/j.bbrc.2004.11.077

M. Matsumoto, T. Sudo, T. Saito, H. Osada, and M. Tsujimoto, Involvement of p38 Mitogen-activated Protein Kinase Signaling Pathway in Osteoclastogenesis Mediated by Receptor Activator of NF-??B Ligand (RANKL), Journal of Biological Chemistry, vol.275, issue.40, pp.31155-31161, 2000.
DOI : 10.1074/jbc.M001229200

S. Lee, K. Woo, S. Kim, H. Kim, K. Kwack et al., The phosphatidylinositol 3-Kinase, p38, and extracellular signal-regulated kinase pathways are involved in osteoclast differentiation, Bone, vol.30, issue.1, pp.71-77, 2002.
DOI : 10.1016/S8756-3282(01)00657-3

T. Hall, H. Jeker, and M. Schaueblin, Wortmannin, a potent inhibitor of phosphatidylinositol 3-kinase, inhibits osteoclastic bone resorption in vitro, Calcified Tissue International, vol.64, issue.4, pp.336-338, 1995.
DOI : 10.1007/BF00318056

I. Nakamura, N. Takahashi, T. Sasaki, S. Tanaka, N. Udagawa et al., Wortmannin, a specific inhibitor of phosphatidylinositol-3 kinase, blocks osteoclastic bone resorption, FEBS Letters, vol.267, issue.1, pp.79-84, 1995.
DOI : 10.1016/0014-5793(95)00153-Z

G. Senaldi, B. Varnum, U. Sarmiento, C. Starnes, J. Lile et al., Novel neurotrophin-1/B cell-stimulating factor-3: A cytokine of the IL-6 family, Proceedings of the National Academy of Sciences, vol.96, issue.20, pp.11458-11463, 1999.
DOI : 10.1073/pnas.96.20.11458

P. Heinrich, I. Behrmann, S. Haan, H. Hermanns, G. Muller-newen et al., Principles of interleukin (IL)-6-type cytokine signalling and its regulation, Biochemical Journal, vol.374, issue.1, pp.1-20, 2003.
DOI : 10.1042/bj20030407

T. Kishimoto, S. Akira, M. Narazaki, and T. Taga, Interleukin-6 family of cytokines and gp130, Blood, vol.86, pp.1243-1254, 1995.

T. Hideshima, N. Nakamura, D. Chauhan, and K. Anderson, Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma, Oncogene, vol.20, issue.42, pp.5991-6000, 2001.
DOI : 10.1038/sj.onc.1204833

S. Manolagas and R. Jilka, Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis, N Engl J Med, vol.332, pp.305-311, 1995.

G. Girasole, R. Jilka, G. Passeri, S. Boswell, G. Boder et al., 17 beta-estradiol inhibits interleukin-6 production by bone marrow-derived stromal cells and osteoblasts in vitro: a potential mechanism for the antiosteoporotic effect of estrogens., Journal of Clinical Investigation, vol.89, issue.3, pp.883-891
DOI : 10.1172/JCI115668

G. Roodman, Studies in Paget's disease and their relevance to oncology, Seminars in Oncology, vol.28, issue.11, pp.15-21, 2001.
DOI : 10.1016/S0093-7754(01)90227-1

B. Klein, X. Zhang, J. M. Boiron, J. Portier, M. Lu et al., Interleukin-6 is the central tumor growth factor in vitro and in vivo in multiple myeloma, Eur Cytokine Net, vol.1, pp.193-201, 1990.

S. Kotake, K. Sato, K. Kim, N. Takahashi, N. Udagawa et al., Interleukin-6 and soluble interleukin-6 receptors in the synovial fluids from rheumatoid arthritis patients are responsible for osteoclast-like cell formation, Journal of Bone and Mineral Research, vol.152, issue.suppl, pp.88-95, 1996.
DOI : 10.1002/jbmr.5650110113

A. Grey, M. Mitnick, S. Shapses, A. Ellison, C. Gundberg et al., Circulating levels of interleukin-6 and tumor necrosis factor-are elevated in primary hyperparathyroidism and correlate with markers of bone resorption?a clinical research center study, J Clin Endocrinol Metab, vol.81, pp.3450-3454, 1996.

D. Heymann and A. Rousselle, gp130 CYTOKINE FAMILY AND BONE CELLS, Cytokine, vol.12, issue.10, pp.1455-1468, 2000.
DOI : 10.1006/cyto.2000.0747

I. Holt, M. Davie, and M. Marshall, Osteoclasts are not the major source of interleukin-6 in mouse parietal bones, Bone, vol.18, issue.3, pp.221-226, 1996.
DOI : 10.1016/8756-3282(95)00482-3

P. Palmqvist, E. Persson, H. Conaway, and U. Lerner, IL-6, Leukemia Inhibitory Factor, and Oncostatin M Stimulate Bone Resorption and Regulate the Expression of Receptor Activator of NF-??B Ligand, Osteoprotegerin, and Receptor Activator of NF-??B in Mouse Calvariae, The Journal of Immunology, vol.169, issue.6, pp.3353-3362, 2002.
DOI : 10.4049/jimmunol.169.6.3353

J. Vandesompele, D. Preter, K. Pattyn, F. Poppe, B. Van-roy et al., Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes, Genome Biol, vol.3, p.34, 2002.

O. Coqueret and H. Gascan, Functional Interaction of STAT3 Transcription Factor with the Cell Cycle Inhibitor p21WAF1/CIP1/SDI1, Journal of Biological Chemistry, vol.275, issue.25, pp.18794-18800, 2000.
DOI : 10.1074/jbc.M001601200

K. Kim, J. Kim, J. Lee, H. Jin, H. Kook et al., MafB negatively regulates RANKL-mediated osteoclast differentiation, Blood, vol.109, issue.8, pp.3253-3259, 2007.
DOI : 10.1182/blood-2006-09-048249

H. Hotokezaka, E. Sakai, K. Kanaoka, K. Saito, K. Matsuo et al., U0126 and PD98059, Specific Inhibitors of MEK, Accelerate Differentiation of RAW264.7 Cells into Osteoclast-like Cells, Journal of Biological Chemistry, vol.277, issue.49, pp.47366-47372, 2002.
DOI : 10.1074/jbc.M208284200

N. Reich and L. Liu, Tracking STAT nuclear traffic, Nature Reviews Immunology, vol.16, issue.8, pp.602-612, 2006.
DOI : 10.1038/nri1885

D. Jr and J. , STATs and gene regulation, Science, vol.277, pp.1630-1635, 1997.

Z. Zhang, T. Welte, N. Troiano, S. Maher, X. Fu et al., Osteoporosis with increased osteoclastogenesis in hematopoietic cell-specific STAT3-deficient mice, Biochemical and Biophysical Research Communications, vol.328, issue.3, pp.800-807, 2005.
DOI : 10.1016/j.bbrc.2005.01.019

N. Sims, B. Jenkins, J. Quinn, A. Nakamura, M. Glatt et al., Glycoprotein 130 regulates bone turnover and bone size by distinct downstream signaling pathways, Journal of Clinical Investigation, vol.113, issue.3, pp.379-389, 2004.
DOI : 10.1172/JCI19872

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC324544

Y. Minegishi, M. Saito, S. Tsuchiya, I. Tsuge, H. Takada et al., Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome, Nature, vol.286, issue.7157, pp.1058-1062, 2007.
DOI : 10.1038/nature06096

S. Holland, F. Deleo, H. Elloumi, A. Hsu, G. Uzel et al., Mutations in the Hyper-IgE Syndrome, STAT3 mutations in the hyper-IgE syndrome, pp.1608-1619, 2007.
DOI : 10.1056/NEJMoa073687

B. Grimbacher, S. Holland, J. Gallin, F. Greenberg, S. Hill et al., Hyper-IgE Syndrome with Recurrent Infections ??? An Autosomal Dominant Multisystem Disorder, New England Journal of Medicine, vol.340, issue.9, pp.692-702, 1999.
DOI : 10.1056/NEJM199903043400904

H. Liu, Y. Ma, S. Cole, C. Zander, K. Chen et al., Serine phosphorylation of STAT3 is essential for Mcl-1 expression and macrophage survival, Blood, vol.102, issue.1, pp.344-352, 2003.
DOI : 10.1182/blood-2002-11-3396

J. Schuringa, H. Schepers, E. Vellenga, and W. Kruijer, Ser727-dependent transcriptional activation by association of p300 with STAT3 upon IL-6 stimulation, FEBS Letters, vol.21, issue.1-2, pp.71-76, 2001.
DOI : 10.1016/S0014-5793(01)02354-7

Z. Wen, Z. Zhong, D. Jr, and J. , Maximal activation of transcription by statl and stat3 requires both tyrosine and serine phosphorylation, Cell, vol.82, issue.2, pp.241-250, 1995.
DOI : 10.1016/0092-8674(95)90311-9

B. Ceresa and J. Pessin, Insulin Stimulates the Serine Phosphorylation of the Signal Transducer and Activator of Transcription (STAT3) Isoform, Journal of Biological Chemistry, vol.271, issue.21, pp.12121-12124, 1996.
DOI : 10.1074/jbc.271.21.12121

C. Lim and X. Cao, Serine Phosphorylation and Negative Regulation of Stat3 by JNK, Journal of Biological Chemistry, vol.274, issue.43, pp.31055-31061, 1999.
DOI : 10.1074/jbc.274.43.31055

J. Chung, E. Uchida, and T. Grammer, STAT3 serine phosphorylation by ERK-dependent and -independent pathways negatively modulates its tyrosine phosphorylation., Molecular and Cellular Biology, vol.17, issue.11, pp.6508-6516
DOI : 10.1128/MCB.17.11.6508

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC232504

N. Jain, T. Zhang, S. Fong, and C. Lim, Repression of Stat3 activity by activation of mitogen-activated protein kinase (MAPK), Oncogene, vol.17, issue.24, pp.3157-3167
DOI : 10.1038/sj.onc.1202238

Y. Ng and Z. Cheung, STAT3 as a Downstream Mediator of Trk Signaling and Functions, Journal of Biological Chemistry, vol.281, issue.23, pp.15636-15644, 2006.
DOI : 10.1074/jbc.M601863200

J. Yang, X. Liao, M. Agarwal, L. Barnes, P. Auron et al., Unphosphorylated STAT3 accumulates in response to IL-6 and activates transcription by binding to NF??B, Genes & Development, vol.21, issue.11, pp.1396-1408, 2007.
DOI : 10.1101/gad.1553707

K. Tat, S. Padrines, M. Theoleyre, S. Heymann, D. Fortun et al., IL-1: interrelations in bone resorption pathophysiology, Cytokine Growth Factor Rev, vol.15, pp.49-60, 2004.