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Osteoclasts are bone-resorptive cells that differentiate from
hematopoietic precursors upon receptor activator of nuclear
factor �B ligand (RANKL) activation. Previous studies dem-
onstrated that IL-6 indirectly stimulates osteoclastogenesis
through the production of RANKL by osteoblasts. However,
few data described the direct effect of IL-6 on osteoclasts. To
investigate this effect, we used several models: murine
RAW264.7 cells, mouse bone marrow, and human blood mono-
cytes. In the three models used, the addition of IL-6 inhibited
RANKL-induced osteoclastogenesis. Furthermore, IL-6 de-
creased the expression of osteoclast markers and up-modu-
lated macrophage markers. To elucidate this inhibition, sig-
nal transducer and activator of transcription (STAT) 3, the
main signaling molecule activated by IL-6, was analyzed. Ad-

dition of two STAT3 inhibitors completely abolished RANKL-
induced osteoclastogenesis, revealing a key role of STAT3. We
demonstrated that a basal level of phosphorylated-STAT3 on
Serine727 associated with an absence of phosphorylation on
Tyrosine705 is essential for osteoclastogenesis. Furthermore, a
decrease of Serine727 phosphorylation led to an inhibition of
osteoclast differentiation, whereas an increase of Tyrosine705

phosphorylation upon IL-6 stimulation led to the formation of
macrophages instead of osteoclasts. In conclusion, we showed
for the first time that IL-6 inhibits RANKL-induced osteoclas-
togenesis by diverting cells into the macrophage lineage, and
demonstrated the functional role of activated-STAT3 and its
form of phosphorylation in the control of osteoclastogenesis.
(Endocrinology 149: 3688–3697, 2008)

BONE REMODELING depends on osteoblast and oste-
oclast cells. Osteoblasts are responsible for bone ap-

position, whereas osteoclasts are specialized in bone resorp-
tion. Osteoclasts are multinucleated cells that differentiate
from hematopoietic precursors localized in bone marrow
and are closely related to macrophages (1, 2). Osteoclastic
precursors differentiate into mature osteoclasts thanks to a
tight interaction with osteoblastic/stromal cells: cell to cell
interactions are necessary as well as the production of factors
by osteoblasts (3–6). The receptor activator of nuclear factor
�B ligand (RANKL), also called osteoprotegerin ligand, TNF-
related activation-induced cytokine, or differentiation factor,
is a key factor during osteoclastogenesis (7–12). RANKL

binds to its receptor, receptor activator of nuclear factor �B
(RANK) present at the cell surface of osteoclast precursors
and consequently activates different signal transduction
pathways, leading to the formation and maturation of oste-
oclasts (13, 14). The binding of RANKL to RANK activates
TNF receptor-associated factor adaptator proteins, particu-
larly TNF receptor-associated factor 6, which in turn targets
different proteins such as MAPKs, including ERK, p38, and
c-Jun N-terminal kinase, and transcription factors such as
nuclear factor-�B (NF-�B) or nuclear factor of activated T
cells (6, 13, 15, 16). The phosphatidylinositol 3-kinase is also
involved in osteoclastogenesis (17) as well as in the function
of bone resorption of mature osteoclasts (18, 19).

IL-6 belongs to the gp130 family, which is composed of
IL-6, IL-11, oncostatin M, leukemia inhibitory factor, car-
diotrophin-1, and novel neurotrophin-1/B-cell stimulatory
factor-3 (20, 21). They are pleiotropic cytokines, sharing the
glycoprotein chain gp130 as a common signal transducer (20,
22, 23). The binding of IL-6 to its receptor leads to the acti-
vation of two main signal transduction pathways: the Janus
kinase/signal transducer and activator of transcription
(STAT) and the MAPK pathways. Activation of phosphati-
dylinositol 3-kinase after IL-6 stimulation has also been dem-
onstrated in multiple myeloma cells for example (24). In
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pathologies associated with bone loss, such as postmeno-
pausal osteoporosis (25, 26), Paget’s disease (27), multiple
myeloma (28), rheumatoid arthritis (29), and hyperparathy-
roidism (30), elevation of IL-6 expression and secretion has
been demonstrated (31). In bone microenvironment, IL-6
produced by stromal cells and osteoblasts but not by oste-
oclasts (32) has stimulated osteoclastogenesis. Indeed, IL-6 in
association with its soluble receptor (soluble receptor IL-6)
has been a good stimulator of bone resorption in a model of
neonatal mouse calvaria (33) or in a model of mouse bone
marrow cells in coculture with osteoblastic or stromal cells
(34). However, this activity appears mainly due to the pro-
duction of RANKL by osteoblastic cells, which in turn stim-
ulates the differentiation of osteoclast precursors into oste-
oclasts, and, thus, induces their maturation and functions
(33). Therefore, the effect of IL-6 on osteoclastogenesis can be
defined as indirect through the production of RANKL by
osteoblasts. However, the direct effect of IL-6 on osteoclas-
togenesis has never been described. The present study pro-
vides strong evidence that IL-6 directly inhibits RANKL-
induced osteoclastogenesis in three models using only pre-
osteoclastic cells in the absence of osteoblastic or stromal
cells: the murine cell line RAW 264.7, mouse bone marrow
cells, and human CD14� monocytes isolated from peripheral
blood. Furthermore, we demonstrate the implication of
STAT3 and its various phosphorylation forms during
osteoclastogenesis.

Materials and Methods
Cell culture and osteoclast differentiation assays

Murine RAW 264.7 monocytic cells (American Type Culture Collec-
tion, Promochem, Molsheim, France) were cultured in phenol red-free
�-MEM (Invitrogen, Eragny, France) supplemented with 10% fetal calf
serum (FCS) (Perbio, Logan, UT), and 1% nonessential amino acids
(Invitrogen). To induce osteoclast formation, RAW 264.7 cells were
scraped and put back at 37 C for 2 min to allow adherence of the more
differentiated cells. Nonadherent cells were then seeded in fresh me-
dium at 3 � 103 or 10 � 103 cells in 96- or 24-well plates. After 2 h,
recombinant human RANKL, kindly provided by Amgen Inc. (Thou-
sand Oaks, CA), and recombinant human IL (hIL)-6 (R&D Systems,
Abington, UK) were added at the concentration of 100 ng/ml (otherwise
as noted in the figure legends). In some experiments, specific inhibitors
of STAT3 (AG490 and STAT3 inhibitor peptide) or of the MAPK ERK1/2
(UO126) (Calbiochem, Fontenay sous Bois, France) were added at 5 and
100 �m, respectively. In some experiments, RAW 264.7 cells were pre-
treated with 100 ng/ml hIL-6 before induction of osteoclast differenti-
ation. Multinucleated cells were counted under a light microscope [Leica
DM IRB (Leica Microsystems GmbH, Wetzlar, Germany), Olympus D70
camera (Hamburg, Germany), and Olympus DP controller/manager
analysis software] after May Grünwald/Giemsa (MGG) staining (Sigma,
Saint Quentin-Fallavier, France) or tartrate-resistant acid phosphatase
(TRAP) staining (Leukocyte Acid Phosphatase Assay kit; Sigma). All
experiments were performed in triplicate at least three times.

Differentiation of mouse bone marrow cells into osteoclasts

Bone marrow cells were obtained by flushing femur and tibiae from
4-wk-old C57BL6 male mice. Total bone marrow cells were seeded in a
150-mm culture-treated petri dish in �-MEM containing 10% fetal calf
serum and 1% penicillin/streptomycin. After 2 h, nonadherent cells
were transferred in a new 150-mm petri dish for 18 h. After this second
adherence, nonadherent cells were transferred in a nontreated petri dish
in �-MEM containing 10% fetal calf serum, 1% penicillin/streptomycin,
and 30 ng/ml mouse macrophage colony-stimulating factor (M-CSF).
After 3 d, cells were detached by trypsin-EDTA treatment for 10 min, and
then seeded at 350 � 103 cells per well in 24-well plates in the presence

of 10 ng/ml mouse M-CSF, with or without 100 ng/ml human RANKL
(hRANKL) and 100 ng/ml hIL-6. Medium was changed every 4 d. TRAP
staining was performed after 20-d culture. All experiments were per-
formed in triplicate at least three times.

Differentiation of human CD14� cells into osteoclasts

Human peripheral blood mononuclear cells were isolated by cen-
trifugation over Ficoll gradient (Sigma Chemicals Co., St. Louis, MO).
CD14� cells were magnetically labeled with CD14 Microbeads and
positively selected by MACS technology (Miltenyi Biotec, Bergisch
Gladbach, Germany). CD14� cells were seeded in 24-well plates (250 �
103 cells per well) in �-MEM containing 10% FCS and 25 ng/ml human
M-CSF. After 3-d culture, medium was changed with fresh medium
containing 10% FCS, 25 ng/ml human M-CSF, with or without 100
ng/ml hRANKL, and with or without 100 ng/ml hIL-6. Thereafter,
medium was changed every 4 d. The formation of osteoclasts occurred
around 12-d culture and was observed by TRAP staining.

RNA isolation and real-time PCR

Total RNA was extracted using TRIzol reagent (Invitrogen). First-
strand cDNA was synthesized at 37 C for 1 h from 5 �g total RNA in
a 50 �l mixture containing RT buffer, 0.5 �g Random Primers, 0.5 mm
deoxynucleotide triphosphate mix, 20 U Rnasout, and 400 U Moloney
murine leukemia virus-reverse transcriptase (all from Invitrogen). Se-
quences of primers used for real-time PCR are listed in Table 1. The
real-time PCR contained, in a final volume of 10 �l, 10 ng reverse-
transcribed total RNA, 300 nm of the forward and reverse primers, and
5 �l 2� SYBR green buffer (Bio-Rad, Marnes-la-Coquette, France). PCRs
were performed in triplicate in 96-well plates, using the Chromo4 Sys-
tem (Bio-Rad). Mus musculus hypoxanthine guanine phosphoribosyl
transferase 1 and cytochrome c-1 were used as an invariant control.
Analysis was performed using the Vandesompele method (35).

Western blot analysis

RAW 264.7 and CD14� cells were cultured in the presence or not of
100 �m AG490 for 4 h at 37 C, and then stimulated with 25 ng/ml hIL-6
for 15 min. Extractions of cytoplasmic and nuclear proteins were per-
formed with the NE-PER nuclear and cytoplasmic extraction kit from
Pierce (Rockford, IL) according to the manufacturer’s instructions. Pro-
tein concentrations were determined with the BCA protein assay
(Sigma). Proteins were run on 10% SDS-PAGE and transferred to Im-
mobilon-P membrane (Millipore, Bedford, MA). The membrane was
blotted with antibodies to actin, phospho-STAT3 Tyr705 and phospho-
STAT3 Ser727 (Cell Signaling Technologies, Beverly, MA), in PBS, 0.05%
Tween 20, 3% BSA, washed, and probed with the secondary antibody
coupled to horseradish peroxidase. The labeled proteins were detected
using ECL reagent (Roche, Mannheim, Germany) according to the man-
ufacturer’s recommendations. Bands on Western blots were visualized
using a CCD camera (Syngene G-Box; Syngene, Cambridge, UK), and

TABLE 1. Oligonucleotide primers used for real-time PCR

Gene Accession no. Primers sequence (5�–3�)

Hprt NM_013556.2 TCCTCCTCAGACCGCTTTT
CCTGGTTCATCATCGCTAATC

Cyc1 NM_025567.1 TGTGCTACACGGAGGAAGAA
CATCATCATTAGGGCCATCC

TRAP (Acp5) NM_007388 CGTCTCTGCACAGATTGCAT
AAGCGCAAACGGTAGTAAGG

CTR NM_007588 GAAGATGAGGTTCCTTCTCGTG
GATCAAGGCCGGAGTCAGTG

Ctsk NM_007802.2 GGAGGCGGCTATATGACCA
GGCGTTATACATACAACTTTCATCC

RANK NM_057149.1 AGACACAGAAGCACTACCTGACTC
GGCCCCACAATGTGTTGTA

Emr1 NM_010130 TCCTCCTTGCCTGGACACT
GCCTTGAAGGTCAGCAACC

CD11b NM_008401 GGCACGCAGACAGGAAGT
CCCAGCAAGGGACCATTA
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quantification of band densities was obtained using the Syngene Gene-
Tool software. Experiments were performed four times for RAW 264.7
cells and twice for CD14� cells.

Luciferase activity

RAW 264.7 cells were cotransfected using lipofectamine 2000 reagent
(Invitrogen) with pSiemLuc vectors expressing a Firefly luciferase re-
porter gene containing three copies of a STAT3 consensus binding site
linked to a minimal thymidine kinase promoter (kindly provided by Dr.
H. Gascan, Institut National de la Santé et de la Recherche Médicale
Unité Mixte de Recherche 564, Angers, France) (36) and pRL-CMV as an
internal control of transfection. pSiemLuc is a plasmid demonstrating
STAT3 activity, and pZTK plasmid is the corresponding empty control
vector. Luciferase activity was determined using the Dual Luciferase
Reporter Assay system kit from Promega (Charbonnières, France) ac-
cording to the manufacturer’s recommendations. Experiments were per-
formed three times.

Flow cytometry

At the end of the differentiation culture, RAW 264.7 cells were har-
vested with 0.02% EDTA, incubated with mouse seroblock to eliminate
nonspecific binding, then incubated at 4 C for 30 min with different
antibodies against macrophage specific markers [PE-CD11b (Mac-1),
PE-F4/80, and mouse seroblock all from Serotec Ltd., Oxford, UK] in
PBS containing 1% BSA, and then washed and fixed in PBS 1% form-
aldehyde. Irrelevant isotype-matched antibodies were used to deter-
mine levels of nonspecific binding. Flow cytometry analysis was per-
formed on a FACScan using CELLQuest software (both from BD,
Franklin Lakes, NJ). The experiment was performed at least three times.

Statistical analysis

The mean � sd was calculated for all conditions and compared by
ANOVA, with the Bonferroni multiple comparisons test as a post hoc test.
Differences relative to a probability of two-tailed P � 0.05 were con-
sidered significant.

Results
IL-6 inhibits osteoclastogenesis on RAW 264.7 cells

To investigate the direct role of IL-6 on osteoclast differ-
entiation, we examined the effect of IL-6 on RANKL-induced
osteoclast formation from murine RAW 264.7 cells. RAW
264.7 cells were cultured for 5 d in the presence of 100 ng/ml
hRANKL with or without 100 ng/ml hIL-6. After 4-d culture
in the presence of hRANKL, a large number of multinucle-
ated osteoclast-like cells (more than three nuclei) can be
observed (Fig. 1A). Interestingly, although IL-6 alone had no
effect on osteoclast differentiation of RAW 264.7 cells, 100
ng/ml hIL-6 added during the culture strongly inhibited the
hRANKL-dependent osteoclast formation, and only a few
and very small multinucleated cells persisted. Thus, the ad-
dition of IL-6 inhibited RANKL-induced osteoclast differen-
tiation of RAW 264.7 cells in a dose-dependent manner (no
inhibition at 1 ng/ml, 38% inhibition at 10 ng/ml and 81%
inhibition at 100 ng/ml compared with the control without
cytokine, P � 0.05) (Fig. 1B). Furthermore, IL-6 acted during
the earliest steps of osteoclastic differentiation. Indeed, when
IL-6 was added at d 1 of the experiment, RANKL-induced
osteoclastogenesis was totally abolished, but if IL-6 was
added at d 2 or 3, IL-6 had no effect on RANKL-induced
osteoclastogenesis (Fig. 2A). To determine whether the in-
hibition of osteoclastogenesis induced by IL-6 was reversible
or not, RAW 264.7 cells were cultured during 3 d with or
without 100 ng/ml hIL-6 before adding hRANKL for 5 d with

or without hIL-6. As shown in Fig. 2B, the effect induced by
hIL-6 was irreversible. Indeed, after being exposed for 3 d to
hIL-6, RAW 264.7 cells were unable to differentiate into os-
teoclasts upon hRANKL activation. Interestingly, a new cell
morphology appeared when RAW 264.7 cells were cultured
for 5 d with hIL-6, and this became evident after 3 more days
of culture (Fig. 2B). Indeed, the new large cells (black arrows)
are characterized by a dense central zone containing nucleus
and a poorly stained peripheral cytoplasm possessing nu-
merous vacuoles. These cells also possessed numerous fine
and dense filopodia. The cytological aspect of these cells is
totally different from the multinucleated osteoclasts, and
their size is smaller than osteoclasts. Thus, we hypothesized
that these cells are macrophages, and we investigated this
possibility.

IL-6 differentially modulates osteoclast and macrophage
markers on RAW 264.7 cells

We next investigated the mRNA expression profile of
some osteoclast and macrophage markers in RAW 264.7 cells
cultured in the presence of 100 ng/ml hRANKL with or
without 100 ng/ml hIL-6. Four specific osteoclast markers
[TRAP, RANK, calcitonin receptor (CTR), and cathepsin K
(Ctsk)] and two macrophage markers (Emr1 and CD11b)
were analyzed by real-time PCR (Fig. 3A). As expected,
hRANKL significantly increased osteoclastic markers: 11
times for TRAP, 24 times for CTR, and seven times for Ctsk.
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FIG. 1. IL-6 inhibits RANKL-induced osteoclastogenesis on RAW
264.7 cells. A, MGG staining of RAW 264.7 cells. RAW 264.7 cells were
cultured for 5 d in the presence or not of 100 ng/ml hRANKL with or
without 100 ng/ml hIL-6 (original magnification, �100). B, Dose re-
sponse of hIL-6 activity (0–100 ng/ml) in the presence of 100 ng/ml
hRANKL to induce osteoclastogenesis. RAW 264.7 cells were stained
with MGG, and multinucleated cells (more than three nuclei) were
counted under a light microscope. Results are expressed as the num-
ber of multinucleated cells per well. Each value represents the mean
(�SD) of multinucleated cells per well of a triplicate. All experiments
were performed independently three times in triplicate. ***, P � 0.001
compared with hRANKL conditions.
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Moreover, the results clearly showed that hIL-6, even in the
presence of hRANKL, strongly abolished the mRNA expres-
sion of the four osteoclastic markers studied. We next eval-
uated the mRNA expression of macrophagic markers such as
CD11b and Emr1. RAW 264.7 cells expressed a basal level of
these two markers, which were decreased during hRANKL-
induced osteoclast differentiation. When hIL-6 was present
in the culture medium, the mRNA expression of both mac-
rophagic markers increased, even in the presence of
hRANKL, confirming the hypothesis that hIL-6 induced a
macrophage phenotype instead of an osteoclastic one.

Flow cytometry analysis was performed to confirm the
phenotype of the RAW 264.7 cells cultured in the presence
of hIL-6 and/or hRANKL (Fig. 3B). First experiments
showed, after treatment with hIL-6, a very strong non-
specific background with the IgG2-PE isotype control. We
observed that this high background was due to the pres-
ence of Fc-receptors CD16:CD32, induced at the RAW
264.7 cell surface by hIL-6 (data not shown). High expres-
sion of Fc-receptors is well known on macrophages, which
is thus a first argument in favor of a macrophage differ-
entiation induced by IL-6. To abolish the background as-
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FIG. 3. IL-6 diverts RAW 264.7 cells
into macrophages. A, RAW 264.7 cells
were cultured in the presence or not of
100 ng/ml hRANKL with or without
100 ng/ml hIL-6. After 5 d in culture,
mRNA expression of osteoclastic and
macrophagic markers was analyzed
by real-time PCR. Results are ex-
pressed as fold increase compared
with the control. B, RAW 264.7 cells
were cultured for 5 or 11 d in the pres-
ence or not of 100 ng/ml hRANKL with
or without 100 ng/ml hIL-6. Cells were
then analyzed for their expression of
macrophagic markers by flow cytom-
etry (faint curve � control unstimu-
lated cells; bold curve � stimulated
cells). Experiments were performed at
least three times in triplicate. FL2-H,
Fluorescence-2 height.
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FIG. 2. IL-6 acts during the earliest
stages of differentiation, and its effect is
irreversible. A, hIL-6 (100 ng/ml) was
added to the hRANKL (100 ng/ml)-con-
taining culture medium at d 1, 2, or 3 of
the experiment. At d 5 of the culture,
MGG staining was performed, and
multinucleated cells (more than three
nuclei) were counted under a light mi-
croscope. Results are expressed as the
number of multinucleated cells per
well. Each value represents the mean
(�SD) of multinucleated cells per well of
a triplicate experiment. The experi-
ment was performed independently at
least three times in triplicate. B, RAW
264.7 cells were pretreated with or
without hIL-6 (100 ng/ml) for 3 d.
Thereafter, cells were scrapped and put
back in culture with the usual protocol
of differentiation [i.e. 5 d in the presence
or not of hRANKL (100 ng/ml) � hIL6
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�100 and �200). ***, P � 0.001.
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sociated with Fc-receptor expression, next experiments
were performed with mouse seroblock reagent (anti-
CD16:CD32 antibody) before incubation with specific an-
tibodies. As shown in Fig. 3B, after 5-d culture, CD11b was
increased with hIL-6 (with or without hRANKL), confirm-
ing our hypothesis. Because no significant effect was ob-
served on F4/80 antigen (encoded by Emr1) after 5 d, we
continued the culture of RAW 264.7 cells for 6 more days.
At the end of this longer culture period, F4/80 expression
was significantly increased at the cell surface of RAW 264.7
cells cultured in the presence of hIL-6 (with or without
hRANKL). On the contrary, RANKL strongly down mod-
ulated F4/80 expression. Furthermore, TRAP staining per-
formed at the end of these 11-d cultures showed that these
cells remained in a TRAP negative state (data not shown).
The up-regulation of CD16:CD32 and CD11b, and a bit
later of F4/80 by hIL-6 confirmed the commitment of RAW
264.7 cells into the macrophage lineage. These results dem-
onstrated that the inhibitory effect of hIL-6 on RANKL-
induced osteoclastogenesis was due to the differentiation
of RAW 264.7 into macrophages and not to a blockade into
osteoclast precursors.

Recently, it has been shown that MafB, a protein of the Maf
family selectively expressed in monocytes and macrophages,
negatively regulates RANKL-induced osteoclastogenesis by
down-regulation of nuclear factor of activated T-cell c1 and
osteoclast-associated receptor, and induces macrophage dif-
ferentiation (37). Thus, we hypothesized that IL-6 could up-
regulate MafB in RAW 264.7 cells and then could divert cells
to the macrophage lineage instead of the osteoclast one.
However, no modulation of MafB was detected in our study
(data not shown).

Serine727-phosphorylated STAT3 is mandatory for
osteoclastogenesis

To understand further the mechanism of action of hIL-6,
we focused our investigations on the STAT-3 transcription
factor and MAPK, the two main signal transduction path-
ways induced by IL-6. UO126, a specific inhibitor of MAPK
ERK1/2, did not reverse the inhibitory effect of IL-6 on
hRANKL-induced osteoclastogenesis, but, as previously
shown by Hotokezaka et al. (38), UO126 significantly in-
creased RANKL-induced osteoclastogenesis (data not
shown). Two specific inhibitors of STAT3, AG490 and a
STAT3-inhibitor peptide, were used to determine the in-
volvement of the STAT3 signaling pathway in the IL-6 effects
on osteoclastogenesis. At the concentrations used, cells grew
normally, and no toxicity was observed with these inhibitors
(data not shown). As shown in Fig. 4, A and B, STAT3
inhibitors did not reverse the inhibitory effect of hIL6 on
hRANKL-induced osteoclastogenesis of RAW 264.7 cells.
However, an unexpected result showed that in the presence
of hRANKL and STAT3 inhibitors, the osteoclastogenesis
was completely blocked, indicating for the first time the
essential role played by STAT3 during osteoclastogenesis
induced by RANKL. Because STAT3 is not activated by
hRANKL (data not shown), the constitutively activated
phosphorylated forms of STAT3 were analyzed by Western
blots. Even if nuclear import is independent of phosphory-
lation, Tyrosine705 phosphorylation is necessary for STAT3
activation, inducing STAT3 to dimerize, translocate to the
nucleus, bind to DNA, and induce specific gene transcription
(39, 40). Constitutive phosphorylation of Tyrosine705 STAT3
was not detected in RAW 264.7 cells in cytoplasmic or nu-
clear fractions, but as expected, hIL-6 treatment of RAW 264.7
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FIG. 4. STAT3 and its phosphorylation tightly con-
trol osteoclastogenesis. RAW 264.7 cells were cul-
tured in the presence of two STAT3 inhibitors,
AG490 (5 �M) (A) and STAT 3 inhibitor peptide (100
�M) (B), with or without 100 ng/ml hRANKL and with
or without 25 ng/ml hIL-6. After 5-d culture, MGG
staining was performed, and multinucleated cells
(more than three nuclei) were counted under a light
microscope. C, RAW 264.7 cells were cultured for 4 h
in the presence or not of 100 �M AG490 and then
stimulated or not with IL-6 for 15 min. Western blot
analysis was performed on cell lysate to determine
the level of STAT3 phosphorylated on Tyrosine705 or
Serine727. Actin informed about equal loading
charge. Below the Western blot, histograms showed
the band intensities quantified using GeneTool soft-
ware and represented as a ratio to actin signals.
Experiments were performed four times. D, Lucif-
erase activity in RAW 264.7 cells was measured 48 h
after transfection with pSiemLuc, which is a plasmid
demonstrating STAT3 activity, or its corresponding
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cells for 15 min induced a strong activation of phospho-
Tyrosine705 STAT3 in both cytoplasmic and nuclear fractions
(Fig. 4C). In contrast, phospho-Serine727 was detected at a
basal level in unstimulated cells, and the up-regulation after
IL-6 treatment was mainly observed in the nuclear fraction
of these cells. Furthermore, we estimated the level of endog-
enous active STAT3 using a luciferase reporter gene con-
taining three copies of a STAT3 consensus binding site linked
to a minimal thymidine kinase promoter. In these conditions,
luciferase activity correlated with active STAT3. As shown in
Fig. 4C, RAW 264.7 cells expressed a basal level of endog-
enous active STAT3. Although this experiment could not
reveal which form of STAT3 was active, it evidenced that this
activity was associated with phospho-Serine727 STAT3. The
addition of 100 �m AG490 for 4 h inhibited the IL-6 induced
STAT3-Tyrosine705 and Serine727 phosphorylations, as well
as the basal level of phospho-Serine727 in the control condi-
tion without hIL-6 (Fig. 4C). These observations evidenced
that a sufficient level of constitutive activation of STAT3 by
phosphorylation on Serine727 is mandatory to generate os-
teoclasts because the presence of AG490 inhibited osteoclas-
togenesis (Fig. 4A) by reducing the level of Serine727 phos-
phorylated STAT3 (Fig. 4C).

Furthermore, we checked NF-�B signaling in cells pre-
treated with IL-6: cells were treated or not with hIL-6 for 3 d
before hRANKL stimulation (100 ng/ml, 20 min). As ex-
pected, hRANKL induced the phosphorylation of p65 and
p105 in control conditions. When hIL-6 was present for 3 d
before hRANKL stimulation, the induction of phosphoryla-
tion of p105 and p65 still remained, with the same intensity
observed upon hRANKL stimulation. Therefore, hIL-6 does
not modulate hRANKL induced-NF-�B signaling (data not
shown).

IL-6 inhibits RANKL-induced osteoclastogenesis of mouse
bone marrow cells and human CD14� monocytes

To confirm the inhibitory effect of IL-6 on osteoclastogen-
esis, similar experiments were performed using two other
models of osteoclast generation: mouse bone marrow cells
and human CD14� monocytes isolated from peripheral
blood cultured in the presence of M-CSF and RANKL. In-
deed, after 20 d, 234 � 59 TRAP-positive multinucleated cells
were generated from mouse bone marrow cells cultured in
the presence of M-CSF and hRANKL, whereas only 40 � 8
TRAP-positive multinucleated cells were formed in the pres-
ence of hIL-6 (Fig. 5). This result is in agreement with the
results obtained on the RAW 264.7 cell model and confirms
the inhibitory effect of hIL6 on RANKL-induced osteoclas-
togenesis. Similar results were obtained using purified hu-
man CD14� monocytes (Fig. 6). Indeed, in the presence of
hRANKL, 275 � 20 osteoclasts were counted, whereas the
number of TRAP positive multinucleated cells was reduced
by 87% in the presence of hIL-6 (Fig. 6, A and B). The in-
volvement of Serine727-phosphorylated STAT3 in osteoclas-
togenesis was confirmed in these models. Indeed, in control
condition, a basal level of STAT3 phosphorylated on
Serine727 can be observed in human CD14� monocytes,
whereas no phosphorylation on Tyrosine705 was detected.
IL-6 stimulated both Serine727 and Tyrosine705 phosphory-

lations, and this effect was decreased in the presence of
AG490 (Fig. 6C).

Discussion

IL-6 is enhanced in pathological situations of bone loss,
such as multiple myeloma (41), Paget’s disease (27), peri-
odontal disease (42), hyperparathyroidism (30), and rheu-
matoid arthritis (29). For this reason the role of IL-6 has often
been studied in vitro using different models of coculture of
osteoblast and osteoclast progenitors. These studies have
reported a pro-osteoclastic activity of IL-6 (33, 34) with a
direct effect of this cytokine on osteoblasts inducing the pro-
duction of RANKL, which in turn activates the differentia-
tion of osteoclast progenitors into osteoclasts. However, the
influence of IL-6 on osteoclastogenesis remains disputed
(43). Indeed, Kudo et al. (44) showed that IL-6 alone induced
osteoclastogenesis from human CD14� monocytes in the ab-
sence of RANKL, results in favor of a pro-resorption activity
of IL-6. Their results are in accordance with those of Gao et
al. (45), who revealed the expression of IL-6 receptors on
osteoclast progenitors and mature osteoclasts. Similarly, De
Benedetti et al. (46) reported that IL-6 overexpression in pre-
pubertal mice causes an increased osteoclastogenesis, lead-
ing to an accelerated bone resorption. On the contrary, Kita-
mura et al. (47) generated transgenic mice overexpressing
hIL-6, which presented a decrease in osteoclast number and
bone resorption measured by histomorphometry. The dif-
ference observed in these two studies had already been dis-
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FIG. 5. IL-6 inhibits hRANKL-induced osteoclastogenesis from
mouse bone marrow cells. Mouse bone marrow cells were cultured for
20 d in the presence or the absence of 100 ng/ml hRANKL with or
without 100 ng/ml IL-6. TRAP staining was performed (A), and
TRAP� multinucleated cells were counted (B) under a light micro-
scope. Results are expressed as number of TRAP� multinucleated
cells (more than three nuclei) per well. Each value represents the
mean (�SD) of osteoclast per well of a triplicate experiment. Exper-
iments were performed independently at least three times (original
magnification, �100).
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cussed by De Benedetti et al. (46), who suggested that the
impact of IL-6 on osteoclasts may depend on the age of the
animal. Indeed, De Benedetti et al. (46) studied prepubertal
mice, whereas Kitamura et al. (47) studied adult mice. This
phenomenon relative to the development of the animal had
been observed by Hoshino et al. (48) in a model of collagen-
induced arthritis in rats. Adult rats showed a decrease in
bone resorption due to a decrease in osteoclastogenesis,
whereas prepubertal rats displayed an increase of bone re-
sorption and an increased number of osteoclasts. In the
present study, we have explored the direct effect of IL-6 on
osteoclast progenitors obtained from three different models
(RAW 264.7 cell line, mouse bone marrow cells, and human
CD14� monocytes), and demonstrated in these three models
that IL-6 targeted osteoclast precursors and inhibited
RANKL-induced osteoclastogenesis, diverting them into the
macrophage lineage. Similarly, Flanagan et al. (49) demon-
strated that IL-6 failed to induce bone resorption in contrast
to vitamin D3. These apparent discrepancies could be ex-
plained by the model of osteoclastogenesis and especially the
experimental conditions used (serum, medium, etc.), and by
the potential interaction of IL-6 signaling with Ca2� sensing
(50). Indeed, Ca2� levels strongly affect osteoclastogenesis,
and modulate the expression of IL-6 and IL6 receptors. Such
an autocrine-paracrine loop may affect osteoclastic activity in
the face of Ca2� level generated locally during resorption and
present in the serum and culture medium. A dual function
of IL-6 cannot be excluded depending on the biological mi-
croenvironment (ions, cytokines, etc.). IL-6 may be consid-
ered as a pro-resorption factor as well as a protector of bone.
Indeed, high IL-6 concentration produced during osteolytic
pathologies may reflect a protective mechanism of the skel-
eton to compensate increased bone resorption especially in-
duced by RANKL. IL-6 may then be produced to counter-
balance the high RANKL concentrations produced in bone

microenvironment. Such a protective mechanism has been
envisaged for osteoprotegerin in osteoporosis (51).

The transcription factor STAT3 and the SHP2/ras/MAPK
pathway are the two main signaling pathways activated by
IL-6. Their implications during osteoclastogenesis have been
proven directly in osteoclasts and indirectly through the
production of RANKL by osteoblast cells. Indeed, STAT3 is
activated in osteoblasts or stromal cells upon IL-6 stimula-
tion, and it leads to the production of RANKL for induction
of osteoclastogenesis (52). In osteoclasts, the role of STAT3 is
controversial. Kim et al. (53) demonstrated that an inhibitor
of STAT3 (PIAS3) completely abolished osteoclastogenesis,
whereas other studies showed an increased number of os-
teoclasts generated from STAT3 deficient osteoclast precur-
sors (54). Furthermore, Sims et al. (55) used knock-in gp130
mutant mice unable to elicit either gp130-dependent
STAT1/3 or SHP2/ras/MAPK activation and suggested that
MAPK activation in osteoclasts inhibits osteoclastogenesis,
whereas STAT3 in osteoblasts increases osteoclastogenesis
through the production of RANKL. Some recent studies in-
directly demonstrated the importance of STAT3 in bone
physiology. Indeed, STAT3 mutations in its DNA-binding
domain cause hyper-IgE syndrome, which is associated with
skeletal/dental abnormalities, bone fragility due to increased
bone resorption and decreased mineralization (56–58).

In the present study, we confirm the inhibitory role of the
MAPK ERK1/2 during hRANKL-induced osteoclastogen-
esis (38), but we did not confirm the implication of the gp130-
SHP2/ras/MAPK pathway in the inhibitory role of IL-6 in
osteoclast differentiation. In contrast, the key role of STAT3
and its various forms of phosphorylation were evidenced in
osteoclast precursors. Indeed, inhibition of STAT3 by AG490
or STAT3 inhibitor peptide totally prevented hRANKL-in-
duced osteoclastogenesis. Osteoclast precursors express a
basal level of Serine727-phosphorylated STAT3 at both cyto-
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FIG. 6. IL-6 inhibits hRANKL-induced osteoclasto-
genesis from purified human CD14� cells. Purified
human CD14� monocytes isolated from peripheral
blood were cultured for 12 d in the presence or not of
100 ng/ml hRANKL with or without 100 ng/ml IL-6.
TRAP staining was then performed (A), and TRAP�

multinucleated cells (more than three nuclei) were
counted (B) under a light microscope (original mag-
nification, �100). Experiments were performed in-
dependently more than three times. C, Human
CD14� monocytes were cultured 4 h in the presence
or absence of 100 �M AG490 and then stimulated or
not with 100 ng/ml hIL-6 for 15 min. Western blot
analysis was performed on cell lysates to determine
the level of phospho-Tyrosine705 and -Serine727

STAT3. Actin informed about equal loading charge.
Below the Western blot, histograms showed the band
intensities quantified using GeneTool software and
represented as a ratio to actin signals. Experiments
were performed three times independently. Ct, Con-
trol medium.
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plasmic and nuclear localization, this form being active as
revealed by luciferase assay. This result is in agreement with
the work of Liu et al. (59), which demonstrated in a macro-
phage cell line a basal level of Serine727 phosphorylation
without any detection of Tyrosine705 phosphorylation. Fur-
thermore, we showed that Tyrosine705 phosphorylation,
which is undetectable at the basal level but enhanced after
IL-6 stimulation, prevailed over the activation of Serine727

phosphorylation, inducing differentiation of RAW 264.7 cells
into macrophages and, thus, inhibiting RANKL-induced os-
teoclastogenesis. Thus, our study indicates that Tyrosine705-
phosphorylated STAT3 is involved in the inhibition of os-
teoclastogenesis by IL-6, whereas a basal level of Serine727-
phosphorylated STAT3 is mandatory to support
osteoclastogenesis (Fig. 7).

The role of Serine727 phosphorylation remains unclear. It
is generally suggested that Serine727 phosphorylation of
STAT3, and even other STATs such as STAT1, is required to
achieve a complete and maximal transcriptional activity of
STATs (60, 61). However, some transcriptional activity of
STAT3 only phosphorylated on Serine727 has also been dem-
onstrated (62, 63). Chung et al. (64) had suggested that phos-
phorylation of STAT3 on Tyrosine705 or Serine727 can be two
independent phenomena, which can be induced and regu-
lated independently. This group and others proposed an
inhibitory effect of Serine727 phosphorylation on Tyrosine705

phosphorylation (64, 65). Thus, even if Tyrosine705 phos-
phorylation of STAT3 has always been suggested as required
for STAT3 activation, some studies agree to give more im-
portance to Serine727 phosphorylation. For example,
Serine727 phosphorylation mediates the expression of Mcl1 in
macrophages (59) or induces transcriptional activity upon
nerve growth factor stimulation on PC12 cells (66).

Interconnections between NF-�B, usually activated by the
TNF superfamily cytokines, including RANKL, and STAT3
mostly activated by the gp130 cytokine family have been
recently evidenced (67). These authors demonstrated the

constitution of a novel transcription factor complex, formed
by the unphosphorylated form of STAT3 bound to unphos-
phorylated NF-�B, a complex able to compete with inhibitor
�B. The complex unphosphorylated STAT3-NF-kB accumu-
lates in the nucleus and activates specific genes. Further-
more, they evidenced a feedback loop in which IL-6 induces
the phosphorylation of STAT3 leading, in a second step, to
an increase of unphosphorylated STAT3 interacting with
NF-�B. A similar mechanism may be hypothesized to explain
the cross talk between IL-6 and RANKL (68), especially the
inhibitory effect of IL-6 on RANKL-induced osteoclastogen-
esis. In our present data, IL-6 inhibits RANKL-induced os-
teoclastogenesis, revealing a functional cross talk between
IL-6 and RANKL.

In conclusion, the present work reveals a key role of STAT3
Serine727 phosphorylation during osteoclastogenesis, and al-
lows clarifying the balance between MAPK ERK1/2 and
STAT3 in the bone biology. Thus, our data suggest a dual role
of STAT3 depending on the cells (osteoblast or osteoclast)
and its phosphorylation form. Indeed, STAT3 in osteoblasts
is a pro-osteoclastic molecule inducing the production of
RANKL (55). In osteoclasts, STAT3 phosphorylated on
Serine727 is also a pro-osteoclastic molecule, but as soon as
STAT3 phosphorylated on Tyrosine705 becomes in excess of
STAT3 phosphorylated on Serine727 (e.g. after IL-6 stimula-
tion), STAT3 becomes an antiosteoclastic molecule. Here, we
also evidenced a dual role of IL-6 depending on its target cell.
On osteoblast, IL-6 is a pro-resorptive cytokine, whereas on
osteoclast, IL-6 is an antiresorptive cytokine. Further inves-
tigations are needed to clarify the involvement of STAT3,
NF-�B, and MAPK ERK1/2 interrelations in osteoclast dif-
ferentiation to better define novel therapeutic strategies of
osteolytic disorders. In pathologies associated with bone
loss, such as postmenopausal osteoporosis, Paget’s disease,
multiple myeloma, rheumatoid arthritis, and hyperparathy-
roidism, elevation of IL-6 expression and secretion has been
demonstrated, and clinical trials using neutralizing IL-6 an-
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FIG. 7. Schematic representation of the implication
of STAT3 during osteoclast or macrophage differen-
tiation. In undifferentiated pre-osteoclast cells, a
pool of Serine (Ser)727-phosphorylated STAT3 is
present at a sufficient level and is mandatory for the
formation of osteoclast upon RANKL stimulation. In
the presence of AG490, Serine727-phosphorylated
STAT3 is decreased and is not sufficient to support
osteoclastogenesis, leading to the nondifferentiation
of osteoclast progenitors. Upon IL-6 stimulation,
both Serine727 and Tyrosine (Tyr)705 are phosphor-
ylated, but Tyrosine705 phosphorylation prevailed
against Serine727 phosphorylation and leads to inhi-
bition of osteoclastogenesis and induction of macro-
phage differentiation.
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tibodies are in progress. In this context a better comprehen-
sion of IL-6 activities on bone cells and its molecular mode
of action are necessary to develop new and more effective
therapies. Our results suggest that better antiresorption treat-
ments could be achieved by targeting more specifically the
deleterious effects of IL-6 on osteoblasts and leaving the
beneficial antiresorptive effects on osteoclasts. This could be
obtained by a specific inhibition of STAT3 in osteoblast, and
not in osteoclast.
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