D. Hanahan and R. Weinberg, Hallmarks of Cancer: The Next Generation, Cell, vol.144, issue.5, pp.646-674, 2011.
DOI : 10.1016/j.cell.2011.02.013

M. Mueller and N. Fusenig, Friends or foes ??? bipolar effects of the tumour stroma in cancer, Nature Reviews Cancer, vol.22, issue.11, pp.839-849, 2004.
DOI : 10.1038/nrc1477

I. Haviv, K. Polyak, W. Qiu, M. Hu, and I. Campbell, Origin of carcinoma associated fibroblasts, Cell Cycle, vol.8, issue.4, pp.589-595, 2009.
DOI : 10.4161/cc.8.4.7669

M. Studeny, F. Marini, and J. Dembinski, Mesenchymal Stem Cells: Potential Precursors for Tumor Stroma and Targeted-Delivery Vehicles for Anticancer Agents, JNCI Journal of the National Cancer Institute, vol.96, issue.21, pp.1593-1603, 2004.
DOI : 10.1093/jnci/djh299

P. Mishra, R. Humeniuk, and D. Medina, Carcinoma-Associated Fibroblast-Like Differentiation of Human Mesenchymal Stem Cells, Cancer Research, vol.68, issue.11, pp.4331-4339, 2008.
DOI : 10.1158/0008-5472.CAN-08-0943

K. Shinagawa, Y. Kitadai, and M. Tanaka, Mesenchymal stem cells enhance growth and metastasis of colon cancer, International Journal of Cancer, vol.64, issue.10, pp.2323-2333, 2010.
DOI : 10.1002/ijc.25440

A. Karnoub, A. Dash, and A. Vo, Mesenchymal stem cells within tumour stroma promote breast cancer metastasis, Nature, vol.9, issue.7162, pp.557-563, 2007.
DOI : 10.1038/nature06188

J. Corre, K. Mahtouk, and M. Attal, Bone marrow mesenchymal stem cells are abnormal in multiple myeloma, Leukemia, vol.63, issue.5, pp.1079-1088, 2007.
DOI : 10.1038/sj.leu.2404621

URL : https://hal.archives-ouvertes.fr/inserm-00270565

L. Peduto, S. Dulauroy, and M. Lochner, Inflammation recapitulates the ontogeny of lymphoid stromal cells Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21, J Immunol. Science, vol.182328, issue.105979, pp.5789-5799749, 2009.

S. Mueller and R. Germain, Stromal cell contributions to the homeostasis and functionality of the immune system, Nature Reviews Immunology, vol.171, issue.9, pp.618-629, 2009.
DOI : 10.1038/nri2588

P. Amé-thomas, M. Hajjami, H. Monvoisin, and C. , Human mesenchymal stem cells isolated from bone marrow and lymphoid organs support tumor B-cell growth: role of stromal cells in follicular lymphoma pathogenesis, Blood, vol.109, issue.2, pp.693-702, 2007.
DOI : 10.1182/blood-2006-05-020800

J. Burger, P. Ghia, and A. Rosenwald, The microenvironment in mature B-cell malignancies: a target for new treatment strategies, Blood, vol.114, issue.16, pp.3367-3375, 2009.
DOI : 10.1182/blood-2009-06-225326

S. Dave, G. Wright, and B. Tan, Prediction of Survival in Follicular Lymphoma Based on Molecular Features of Tumor-Infiltrating Immune Cells, New England Journal of Medicine, vol.351, issue.21, pp.2159-2169, 2004.
DOI : 10.1056/NEJMoa041869

V. Thomazy, F. Vega, L. Medeiros, P. Davies, and D. Jones, Phenotypic Modulation of the Stromal Reticular Network in Normal and Neoplastic Lymph Nodes, Prognostic factors in follicular lymphoma, pp.2902-2913165, 2003.
DOI : 10.1016/S0002-9440(10)63640-1

T. Lwin, L. Hazlehurst, and Z. Li, Bone marrow stromal cells prevent apoptosis of lymphoma cells by upregulation of anti-apoptotic proteins associated with activation of NF-??B (RelB/p52) in non-Hodgkin's lymphoma cells, Leukemia, vol.15, issue.7, pp.1521-1531, 2007.
DOI : 10.1182/blood.V100.10.3749

T. Lwin, L. Crespo, and A. Wu, Lymphoma cell adhesion-induced expression of B cell-activating factor of the TNF family in bone marrow stromal cells protects non-Hodgkin's B lymphoma cells from apoptosis, Leukemia, vol.107, issue.1, pp.170-177, 2009.
DOI : 10.1038/leu.2008.266

D. Canioni, P. Brice, and E. Lepage, Bone marrow histological patterns can predict survival of patients with grade 1 or 2 follicular lymphoma: a study from the Groupe d'Etude des Lymphomes Folliculaires The stromal composition of malignant lymphoid aggregates in bone marrow: variations in architecture and phenotype in different B-cell tumours al. Clonal selection in the bone marrow involvement of follicular lymphoma, Br J Haematol. Br J Haematol. Leukemia, vol.12611719, issue.219, pp.364-371569, 2002.

K. Tarte, J. Gaillard, and J. Lataillade, Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation Functional alteration of the lymphoma stromal cell niche by the cytokine context: role of indoleamine-2,3 dioxygenase Expression of the p16INK4A gene is associated closely with senescence of human mesenchymal stem cells and is potentially silenced by DNA methylation during in vitro expansion, Blood. Cancer Res. Stem Cells, vol.1156925, issue.249, pp.1549-15533228, 2007.

B. Streubel, A. Chott, and D. Huber, Lymphoma-Specific Genetic Aberrations in Microvascular Endothelial Cells in B-Cell Lymphomas, New England Journal of Medicine, vol.351, issue.3, pp.250-259, 2004.
DOI : 10.1056/NEJMoa033153

J. Coppe, P. Desprez, A. Krtolica, J. Campisi, P. Farinha et al., The senescence-associated secretory phenotype: the dark side of tumor suppression Analysis of multiple biomarkers shows that lymphoma-associated macrophage (LAM) content is an independent predictor of survival in follicular lymphoma (FL) Immunoregulatory function of mesenchymal stem cells, Annu Rev Pathol. Blood. Eur J Immunol, vol.510636, issue.2810, pp.99-1182169, 2005.

A. Cutler, V. Limbani, J. Girdlestone, and C. Navarrete, Umbilical Cord-Derived Mesenchymal Stromal Cells Modulate Monocyte Function to Suppress T Cell Proliferation, The Journal of Immunology, vol.185, issue.11, pp.6617-6623, 2010.
DOI : 10.4049/jimmunol.1002239

Y. Cao, Positive and Negative Modulation of Angiogenesis by VEGFR1 Ligands, Science Signaling, vol.2, issue.59
DOI : 10.1126/scisignal.259re1

F. Liotta, R. Angeli, and L. Cosmi, Toll-Like Receptors 3 and 4 Are Expressed by Human Bone Marrow-Derived Mesenchymal Stem Cells and Can Inhibit Their T-Cell Modulatory Activity by Impairing Notch Signaling, Stem Cells, vol.18, issue.1, pp.279-289, 2008.
DOI : 10.1634/stemcells.2007-0454

D. Shi, L. Liao, and B. Zhang, Human adipose tissue???derived mesenchymal stem cells facilitate the immunosuppressive effect of cyclosporin A on T lymphocytes through Jagged-1???mediated inhibition of NF-??B signaling, Experimental Hematology, vol.39, issue.2, pp.214-224, 2011.
DOI : 10.1016/j.exphem.2010.10.009

N. Erez, M. Truitt, P. Olson, S. Arron, D. T. Hanahan et al., Cancer-Associated Fibroblasts Are Activated in Incipient Neoplasia to Orchestrate Tumor-Promoting Inflammation in an NF-??B-Dependent Manner, Cancer Cell, vol.17, issue.2, pp.135-147, 2010.
DOI : 10.1016/j.ccr.2009.12.041

H. Roca, Z. Varsos, S. Sud, M. Craig, C. Ying et al., CCL2 and interleukin-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis, J Biol Chem. Nature, vol.284475, issue.367355, pp.34342-34354222, 2009.

C. Shi, T. Jia, and S. Mendez-ferrer, Bone marrow mesenchymal stem and progenitor cells induce monocyte emigration in response to circulating toll-like receptor ligands Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production, Immunity. Nat Med, vol.3415, issue.39, pp.590-60142, 2009.

H. Choi, R. Lee, N. Bazhanov, J. Oh, and D. Prockop, Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-??B signaling in resident macrophages, Blood, vol.118, issue.2, pp.330-338, 2011.
DOI : 10.1182/blood-2010-12-327353

E. Monsalve, A. Ruiz-garcia, and V. Baladron, Notch1 upregulates LPS-induced macrophage activation by increasing NF-??B activity, European Journal of Immunology, vol.109, issue.9, pp.2556-2570, 2009.
DOI : 10.1002/eji.200838722

X. Hu, A. Chung, and I. Wu, Integrated regulation of Toll-like receptor responses by Notch and interferon-gamma pathways Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche Increased angiogenic sprouting in poor prognosis FL is associated with elevated numbers of CD163+ macrophages within the immediate sprouting micro-environment, Immunity. J Exp Med. Clear AJ Blood, vol.29208115, issue.4324, pp.691-703261, 2008.

T. Alvaro, M. Lejeune, and F. Camacho, The presence of STAT1-positive tumor-associated macrophages and their relation to outcome in patients with follicular lymphoma, Haematologica, vol.91, issue.12, pp.1605-1612, 2006.

X. Hu, K. Park-min, H. Ho, and L. Ivashkiv, IFN-??-Primed Macrophages Exhibit Increased CCR2-Dependent Migration and Altered IFN-?? Responses Mediated by Stat1, The Journal of Immunology, vol.175, issue.6, pp.3637-3647, 2005.
DOI : 10.4049/jimmunol.175.6.3637

C. Mueller, C. Boix, and W. Kwan, Critical role of monocytes to support normal B cell and diffuse large B cell lymphoma survival and proliferation, Journal of Leukocyte Biology, vol.82, issue.3, pp.567-575, 2007.
DOI : 10.1189/jlb.0706481

URL : https://hal.archives-ouvertes.fr/hal-00165353

F. Munari, S. Lonardi, and M. Cassatella, Tumor-associated macrophages as major source of APRIL in gastric MALT lymphoma, Blood, vol.117, issue.24, pp.6612-6616, 2011.
DOI : 10.1182/blood-2010-06-293266

W. Ding, T. Knox, and R. Tschumper, Platelet-derived growth factor (PDGF)-PDGF receptor interaction activates bone marrow-derived mesenchymal stromal cells derived from chronic lymphocytic leukemia: implications for an angiogenic switch, Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets, pp.585-5982984, 2007.
DOI : 10.1182/blood-2010-02-269894