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Abstract

Background: Patients-Reported Outcomes (PRO) are increasingly used in clinical and epidemiological research.

Two main types of analytical strategies can be found for these data: classical test theory (CTT) based on the

observed scores and models coming from Item Response Theory (IRT). However, whether IRT or CTT would be the

most appropriate method to analyse PRO data remains unknown. The statistical properties of CTT and IRT,

regarding power and corresponding effect sizes, were compared.

Methods: Two-group cross-sectional studies were simulated for the comparison of PRO data using IRT or CTT-

based analysis. For IRT, different scenarios were investigated according to whether items or person parameters

were assumed to be known, to a certain extent for item parameters, from good to poor precision, or unknown

and therefore had to be estimated. The powers obtained with IRT or CTT were compared and parameters having

the strongest impact on them were identified.

Results: When person parameters were assumed to be unknown and items parameters to be either known or not,

the power achieved using IRT or CTT were similar and always lower than the expected power using the well-

known sample size formula for normally distributed endpoints. The number of items had a substantial impact on

power for both methods.

Conclusion: Without any missing data, IRT and CTT seem to provide comparable power. The classical sample size

formula for CTT seems to be adequate under some conditions but is not appropriate for IRT. In IRT, it seems

important to take account of the number of items to obtain an accurate formula.

Background

Many clinical studies attempt to incorporate measure of

important characteristics, such as health related Quality

of Life (QoL), anxiety, depressive symptoms, fatigue,

addictive behaviours using Patient reported outcomes

(PRO), in order to measure endpoints that reflect

patient’s perception of his or her well-being and

satisfaction with therapy. QoL and other perceived

health measures (pain, fatigue, ...) are increasingly used

as important outcomes in clinical trials and medical sur-

veillance and are considered as highly valued endpoints

of medical care [1].

PRO differ from other measurements because such

patient’s characteristics cannot be directly observed and

measured and are usually evaluated using self-assess-

ment questionnaires which consist of a set of questions

often called items whose responses provided by the

patients are frequently combined to give scores. Two
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main types of analytical strategies can be used for such

data: so-called classical test theory (CTT) and models

coming from Item Response Theory (IRT). CTT relies

on the observed scores (possibly weighted sum of

patients items’ responses) that are assumed to provide a

good representation of a “true” score, while IRT relies

on an underlying response model relating the items

responses to a latent parameter, often called latent trait,

interpreted as the true individual QoL, for instance.

Such IRT models also take into account some items

parameters.

Methods coming from modern measurement theory,

such as IRT models, might provide a powerful frame-

work to build and reduce PRO instruments and analyse

such data in an efficient and reliable manner and should

provide valid measures of QoL, anxiety, or pain for

instance [2]. IRT can improve on the classical approach

to PRO assessment with advantages that might some-

times include appropriate management of possible floor

and ceiling effects, comparison of patients across differ-

ent instruments, interval measurements on the latent

trait scale. Indeed, models coming from IRT are more

and more used for the construction, validation and

reduction of questionnaires [3,4], in particular in the fra-

mework of the Patient-Reported Outcomes Measure-

ment Information System (PROMIS) network [5] for

creating item banks. Consequently, many PRO instru-

ments are found to be well adapted to IRT modelling

either because of the way they were developed using

such IRT-based strategies or because of their desired

psychometric properties.

In most of current literature of intervention and

observational studies, the choice of a statistical strategy

for PRO data analysis is more often based on CTT and

occasionally on IRT and seems to be driven to date by

the researchers ’ practice and familiarity with one

approach or another. However, if IRT models best

describe data coming from some PRO instruments,

such as QoL questionnaires, one may wonder whether

they should provide a better and more powerful strat-

egy than CTT to detect clinically meaningful effects. In

the case of the comparison of QoL levels between two

independent groups of patients, power will depend in

particular on the difference in the means of QoL levels

and the standard deviation of one of the groups (or

pooled standard deviation), often combined together

into the concept of effect size (difference in means

over the standard deviation). The required sample size

to detect a pre-specified effect size with type I error

(a) and power (1-b) is often computed during the

planning of studies. The larger the effect size, the lar-

ger the power for a given sample size. In all cases, an

appropriate analytical strategy and an accurate

estimation of the effect size from data is required to

achieve the desired power. Hence, if an IRT model fits

the data coming from some QoL questionnaire well,

the precision of the estimated effect size using this

model might be higher than the one provided using

CTT analysis. However, whether one of these

approaches is more powerful than the other remains

unknown especially for IRT that often incorporates

many parameters that might either be fixed as known

constants or estimated. These issues all have strong

implications for sample size planning as well as for the

analysis of PRO data and were investigated through a

simulation study. The purpose of our work was there-

fore to study the statistical properties of CTT and IRT

by simulations regarding power and corresponding

effect sizes, to compare these methods between them

and to provide some guidelines for sample size deter-

mination for studies evaluating PRO.

Methods

IRT modelling

Some of the commonly used IRT models are the Rasch

model for binary responses [6,7], and the Rating Scale

model or the Partial Credit model for multiple (> 2)

response options [8,9]. We shall mainly consider the

Rasch model, extensions of the results to other IRT

models will also be discussed.

In IRT models and in the Rasch model in particular,

the responses to the items are modelled as a function of

a latent variable representing the so-called ability of a

patient measured by the questionnaire (e.g. QoL, anxi-

ety, fatigue, ...). Usually, the sample of patients is

believed to be representative of a more general popula-

tion, and the latent variable is then considered as a ran-

dom variable often assumed to follow a normal

distribution. In this model, each item is characterized by

one parameter (δj for the jth item), named difficulty

parameter because the higher its values, the lower the

probability of positive (favourable) responses of the

patient to this item regarding the latent trait being

measured.

Three assumptions govern these models: (i) Unidi-

mensionality: one latent trait influences the responses to

all the items, (ii) Local independence: for a given indivi-

dual, the responses to the items are independent, and

(iii) Monotonicity: the probability to have a positive

response to a given item does not decrease with the

latent variable.

Let us consider that N patients have answered a ques-

tionnaire containing J binary items and let Xij be the

random variable representing the response of patient i

to item j with realization xij, and θi be the realization of

the latent trait θ for this patient.
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For each patient, the probability of responding to each

item is:

P X x
i j x ij

i j
ij ij i j  

  
  / ,

exp

exp
   

 1

where δj represents the difficulty of item j.

We consider the latent variable θ as a random variable

following a normal distribution with unknown parameters

μ and s2. Using the local independence assumption, the

marginal likelihood can be written down and the person

parameters (parameters of the distribution of the latent

trait) can be jointly estimated with the item parameters by

marginal maximum likelihood estimation (MML) obtained

from integrating out the random effects [6].

Sample size determination in the framework of

normally distributed endpoints

Suppose we plan to conduct a cross-sectional study aim-

ing at comparing two independent groups on an end-

point assumed to be normally distributed with common

variance s2. Under these conditions, the well-known

formula for the comparison of normally distributed end-

points in a two independent group study can be used.

Let the study objective involve the comparison of the

two hypotheses: H0: μ1 = μ2 against H1: μ1 ≠ μ2, where

μ1 and μ2 represent the population means in the first

and second group, respectively. The effect size (ES) can

be computed as ES   2 1 [10].

The conventional sample size formula for a two-sided

test size at a and a desired power at 1 - b is the follow-

ing, assuming n1 patients in one group and n2 in the

other group:

n

k Z Z

k
 where n kn1

2

2
2

1 2
2 2 1

1


 








( )

( )

  
 

which can be generalized to:

n

k Z Z

k ES
1

2

2

2

1


  







  with Zh denoting the 100h

th percentage point of the standard normal cumulative

distribution. In practice, s2, μ1 and μ2 are unknown

population parameters and initial estimates based on the

literature or pilot studies are often used for calculations.

For instance, using this formula, about 100 patients (n1
= n2 = N = 105) are required per group to detect an

effect size of 0.5 with 95% power and a 5% type I error

in a two-sided test.

Sample size determination in an IRT framework

Suppose we are willing to plan a similarly designed two-

group cross-sectional study using an IRT model and

that the outcome of interest is, for instance, one of the

aspects of quality of life based on a given dimension of

a questionnaire. Since the latent trait is assumed to fol-

low a normal distribution, we shall make the assumption

that the above-mentioned formula is also well suited for

sample size calculation based on the latent trait

distribution.

In the framework of IRT, let θ be the latent trait

(focused aspect of quality of life) with normal distribu-

tions N(μIRT1, s
2
IRT) and N(μIRT2, s

2
IRT) in the first and

second group, respectively.

Assuming that the study now involves the comparison

of the two hypotheses: H0: μIRT1 = μIRT2 against H1:

μIRT1 ≠ μIRT2, the effect size on the latent trait scale can

be computed as ES IRT
IRT IRT

IRT
  2 1 . If we use the

same sample size formula at a and b levels, we get:

n

k Z Z

k( - )
 where n kn

IRT

IRT IRT2
1

2

2

1
2 2 1

1


  



 

  
 

We may notice that, as before, s2
IRT, μIRT1 and μIRT2

are unknown population parameters with the additional

particularity that they now characterise an unobserved

latent variable.

Simulation study

A thousand cross-sectional studies were simulated for the

comparison of two groups at a point in time on a PRO

measure containing binary items (0/1). The PRO measure

was assumed to follow a Rasch model. The latent trait

level for the patients in the first group θ1 was assumed to

follow a normal distribution with mean μIRT1 and var-

iance s2
IRT and the latent trait in the second group θ2

was assumed to follow a normal distribution with mean

μIRT2 = μIRT1 + d and same variance. The study involved

the comparison of the two previous hypotheses which

can now be expressed in the following way: H0: d = 0

against H1: d ≠ 0, giving the corresponding effect size:

ES IRT
d

IRT
  . All datasets were simulated under H1

with different effect sizes on the latent trait (ESIRT).

In order to reflect the range of effect sizes, samples sizes,

and number of items often encountered in clinical and epi-

demiological research in a variety of situations, data were

simulated using the following values. Furthermore, to bet-

ter capture the influence of the sample size and of the

number of items on power, larger ranges than usually

encountered in clinical research were investigated for both.

- ESIRT: 0.2 (small), 0.5 (medium) or 0.8 (high)

according to Cohen [10]
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- sample size per group: N = 100, 200, 300, 400, 500

or 800

- number of items: J = 5, 10, 15, 20, 50 or 100

- variances of the latent traits: s2IRT = 1

- difficulty parameters: quantiles of a standardized

normal distribution

- μIRT1 is determined by using

 
IRT

IRTESIRT d1 2
2  

/ (as a consequence,

μIRT2 = d/2)

In each simulated dataset, the responses to the items

have been generated using a Rasch model, in which a

group effect was incorporated. Since the variance of the

latent trait is fixed to 1, the group effect parameter is

equal to d. Let Gi the random variable representing the

group of the ith individual and gi its realization (coded

as 0 or 1 for the first and second group, respectively)

and let d be the group effect parameter:

P X d
i j

i j

with

~N d g

ij i j

IRT i

    
  

 

1
1

1

/ , ,
exp

exp

( ,

   
 

   IRT
2 )

For each simulated dataset, the parameters d and

s2
IRT were estimated using marginal maximum likeli-

hood. The μIRT1 and δj parameters could be considered

either as known or as unknown parameters (and were

estimated in this case). In the former case, for the δjs, a

precision parameter ε was used in the simulations in the

following way:

Let u with u Unifj j   * ~ ( , )  

where Unif represents the uniform distribution, δj*

denotes the known item parameter used in the Rasch

model for data analysis and δj is the parameter used for

simulating the data.

Two possibilities were investigated:

▪ The parameters δj are known with a good preci-

sion and ε = 0.0, hence δj* = δj

▪ The parameters δj are known with a moderate or

poor precision and ε varies from 0.1 to 1 (with

values 0.1, 0.25, 0.5, 0.75, and 1.0)

The possibility to fix μIRT1 and δj might correspond to

three practical kinds of situations:

▪ Situation 1: the μIRT1 and δj parameters are

known and fixed. This might correspond to a rando-

mized clinical trial where the questionnaire has been

validated by an IRT model in exactly the same popu-

lation than the studied population.

▪ Situation 2: only the δj parameters are known and

fixed (μIRT1 is estimated). This might correspond to

a study where the questionnaire has been validated

by an IRT model in a population close to the studied

population: the properties of the questionnaire are

assumed to be similar in both populations; neverthe-

less, we suppose that the studied population can dis-

play a shift on the mean of the latent trait as

compared to the population of validation, and this

shift is estimated.

▪ Situation 3: none of the parameters are known

and fixed (μIRT1 and δj parameters are estimated).

This corresponds to a study where the questionnaire

has already been validated using classical methods

(face validity, reliability, structure validity...), but not

using an IRT model.

The test statistic of group effect used for IRT was d

and its statistical significance was assessed by a Wald

test.

In order to compute the power of CTT and to com-

pare CTT and IRT in terms of power and corresponding

effect sizes, the score for each patient was calculated as

the unweighted sum of his/her responses to the items.

Since the data have been simulated using an IRT model,

the effect size on the latent trait scale (ESIRT) was

known whereas the effect size on the score scale

(ESCTT) had to be calculated from the simulated data. It

was computed using the estimated mean scores in each

group ( ̂1CTT and ̂2CTT ) along with the estimation of

the global standard deviation ̂ CTT . The effect size for

CTT was then estimated as ESCTT
CTT CTT

CTT
 ˆ ˆ

ˆ
 2 1 . The

comparison of the mean scores between groups was per-

formed using a two-sample t test.

For IRT and CTT approaches, the powers were com-

puted as the proportion of significant group effects

among the 1,000 simulated datasets. The power and

effect sizes obtained using IRT modelling (Rasch model)

or CTT were compared and the major parameters hav-

ing the strongest impact on them were identified. The

datasets were simulated using the -simirt- module of the

Stata 11 package [11] and analysed using the -raschtest-

module [12].

Results

Simulation study

Situation 1 (δj and μIRT1 are known and fixed)

The power achieved by the tests of group effects using

IRT modelling (Rasch model) with fixed μIRT1 and δj
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parameters (j = 1, ..., J) with different levels of precision

for the latter as compared with their simulated values

are given in additional file 1 for different values of the

effect sizes on the latent trait ESIRT, sample sizes per

group N, and number of items J.

The power was of the same order of magnitude (for

J = 5) or even higher (for J > 5) than the expected

power using the well-known formula for normally dis-

tributed endpoints based on the corresponding ESIRT
and sample size per group N. The impact of the preci-

sion of the fixed item difficulty parameters on power

was moderate but noticeable, especially for small N and

J, the power decreasing as ε increased. Indeed, the maxi-

mum decrease in power was observed for ESIRT = 0.2, N

= 100 and J = 5: as compared with an expected power of

0.293, a 6%, 11%, and 16% decrease in power was

noticed with a good, moderate or poor precision of the

item difficulty parameters, respectively. Moreover, this

decrease was significant; the 95% confidence interval of

the power mean did not include the expected value of

0.293 when ε ≠ 0. A strong impact of the number of

items J was also observed on power. It increased with J

and was larger than the expected power as soon as J

was at least equal to 5 items, whatever the precision, the

increase in power being more marked when ESIRT = 0.2

and for small N. Indeed, as compared with the corre-

sponding expected power of 0.293, for an ESIRT = 0.2

and N = 100, a 27% and 72% increase on average in

power was observed when J = 10 and 100 items, respec-

tively. The power was close to its maximum value of

1.000, so only a corresponding 2% increase in power

was observed when N = 800 when J ≥ 10 items. The

power reached its maximum value of 1.000 as soon as

ESIRT was higher than 0.5 and N larger than 200.

Situation 2 (δj known and fixed, μIRT1 is estimated) and

situation 3 (δj and μIRT1 are estimated)

The power achieved by the tests of group effects using

IRT modelling (Rasch model) or CTT approaches are

given in figure 1 for both situations for an ESIRT = 0.5

on the latent trait and N = 100 patients per group, and

in additional file 2 for all investigated effect sizes ESIRT
for different values of sample sizes per group N and

number of items J.

When μIRT1 was estimated, the power was of the same

order of magnitude using either IRT modelling or CTT

for all values of N and J, whether δj were assumed to be

known and fixed or not. Furthermore, the precision

associated with the item difficulty parameters did not

have an impact on power (data not shown). Moreover,

the power using either method was most of the times

much lower than the expected one based on the effect

size on the latent trait, ESIRT, except for large ESIRT, N

and J. For instance, as compared with an expected

power of 0.942, for N = 100 patients per group and

Figure 1 Power achieved by the tests of group effects using IRT or CTT. Description: Evolution of the power achieved by the tests of

group effects using IRT (Rasch model) or CTT (classical test theory) as a function of the number of items of the questionnaire for an effect size

on the latent trait ESIRT = 0.5 and N = 100 patients per group. IRT: item response theory. Situation 2: unknown person parameters and known

item parameters; Situation 3: unknown person and item parameters.
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ESIRT = 0.5, an approximate 26% decrease in power was

observed for IRT and CTT when J = 5. This decrease

reduced to 2% when J = 100. About N = 200 patients

per group was required to reach a power of at least

0.900 when ESIRT = 0.5. As expected, the impact of the

effect size ESIRT and sample size per group N was

observed with a rise in power as they increased. A

strong impact of the number of items J was also

observed, the increase in power being more marked for

small ESIRT and N. Indeed, for an ESIRT = 0.2 when N =

100, an 86% increase in power (from 0.145 to 0.270)

was observed as the number of items rose from J = 5 to

J = 100. A corresponding 23% increase in power (from

0.790 to 0.970) was observed when N = 800. For an

ESIRT = 0.5, the increase in power was either 33% or 1%

for N = 100 or 300, respectively, as J increased from 5

to 100 items. Almost no increase was observed for N ≥

400. For an ESIRT = 0.8, the power rapidly reached its

maximum value of 1.000, only a slight increase in power

(2%) was observed for N = 100 when J rose from 5 to

50 items.

The mean effect size for CTT, computed from the

simulated data (1,000 simulations) as previously

described, is given in additional file 3 for different values

of the ESIRT on the latent trait, sample sizes per group

N and number of items J. The mean effect size on the

score scale was always lower on average than the corre-

sponding effect size on the latent trait scale for all

values of the number of items J or sample size per

group N. It increased with the number of items J for all

N. Indeed, for all values of the ESIRT (0.2 to 0.8), when

J = 5 items or J = 100 items, the mean effect size on the

score scale represented on average 69% or 94% of the

corresponding effect size on the latent trait scale,

respectively. Moreover, in most of the cases, the 95%

confidence intervals of the mean of the effect size of the

score (data not shown) did not include the correspond-

ing expected value on the latent trait scale, except for

ESIRT = 0.2, N < 200 and J = 100.

A practical example using NHP data

We illustrate the results of the simulation study with an

example coming from a pilot study whose data were

used for sample size calculations for the planning of a

future larger study. The main objective of the upcoming

study is to compare the level of pain between two

groups of patients having muscular dystrophies. The

first group concerns patients with Steinert disease, and

the second group concern others muscular dystrophies,

mainly Duchenne’s and Becker’s muscular dystrophies.

The ethics committee of Reims, France granted approval

for the study.

In the preliminary study, patients were recruited from

the university hospital of Reims, 52 patients were

included with Steinert’s disease and 95 patients with

others muscular dystrophies. The Nottingam Health

Profil (NHP) questionnaire was used in order to evalu-

ate the global Quality of Life of the patients and the

main outcome was the score on the pain subscale. The

latter is composed of 8 binary items and the score is cal-

culated as a weighted sum of the items, according to the

NHP manual.

Patients completed the NHP at inclusion in the study.

The mean scores for the pain subscale in each group

were 32.9 (s2 = 27.92) for patients with a Steinert’s dis-

ease and 25.5 (s2 = 26.62) for patients with other dis-

eases (the global variance = 27.32). Consequently, the

effect size on the weighted score was: (32.9-25.5)/27.3 =

0.271. The test of the difference between the mean

scores using a Student’s test was not significant

(p = 0.15).

A mixed Rasch model including a group effect was

fitted on these data. The global fit of the Rasch model

was not rejected by the R1m test (p = 0.329) [13]. The

estimations of the difference between the mean levels of

the latent trait of the two groups of patients was 0.649

and the variance of the latent trait was 1.9832 (non sig-

nificant difference between groups: p = 0.08). Conse-

quently, an estimation of the effect size on the latent

trait was: 0.649/1.983 = 0.327. When computing the

required sample size using these data and the classical

formula with a type I error of 5% and a power of 90%,

287 patients per group are required using the effect size

of the score scale, and 195 patients per group using the

effect size obtained with the Rasch model, on the latent

trait scale.

In order to evaluate the relevance of these sample

sizes, a Rasch model was used to simulate datasets with

287 or 195 patients per group. The Rasch model para-

meters were randomly drawn in the 95% confidence

interval previously estimated on the pilot study data.

This strategy somehow stands between situations 2 and

3 where items parameters are estimated taking into

account previous knowledge provided by the data. A

thousand datasets were generated using these values for

each calculated sample size. For IRT and CTT

approaches, the powers were computed as the propor-

tion of significant group effects among the 1,000 simu-

lated datasets, using a Rasch model including a group

effect for the former and a t-test on the weighted scores

between the two groups, for the latter. The estimated

powers are given in additional file 4 for 195 and 287

patients per group.

In accordance with the simulation study, we observed

that the estimated effect size was smaller on the score

scale than the one estimated using the Rasch model, on

the latent trait scale (0.271 vs 0.327). Moreover, the

required sample size computed using the effect size on
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the latent trait did not allow obtaining the expected

power (78.9% instead of 90%), stressing the fact that the

usual formula might not be well-suited for IRT models.

In addition, the required sample size computed using

the effect size based on the score allowed obtaining the

expected power, whatever the method of analyse of the

data (score or Rasch model). Consequently, for this

study, it seemed to be reasonable to propose to include

287 patients per group in a future trial aiming to evalu-

ate the difference concerning the perception of pain

between patients with a Steinert’s disease and the

patients with another muscular dystrophy.

Discussion

We investigated and compared the power and corre-

sponding effect sizes of two main approaches for the

analysis of PRO data, namely CTT and IRT-based meth-

ods. For the latter, different scenarios were investigated

according to whether items and/or person (mean of the

latent trait) parameters were assumed to be known

(situations 1 and 2), to a certain extent for item para-

meters, from good (as in some randomized clinical trials

for instance) to poor precision, or unknown and there-

fore had to be estimated (situation 3).

When items and person parameters were both

assumed to be known in the Rasch model (situation 1),

the power was either of the same order of magnitude or

even higher than the expected one using the regular

sample size formula as the number of items increased.

The impact of the precision of item parameters values

was modest and mainly perceptible for high values of ε

(ε = 1.0), corresponding to a rather poor precision that

might be rarely encountered in such a context. Indeed,

using known and prespecified person and item para-

meters can be envisaged in randomized clinical trials

aiming at evaluating PRO where IRT-validated instru-

ments are used. This situation corresponds to the most

favourable one regarding power; however it has to be

stressed that assuming both person and items para-

meters to be known implies that the patient population

in the trial is similar to the one used for validating the

instrument, which can be restrictive. Indeed, the fact

that there isn’t any shift on the mean of the latent trait

between the two populations often remains quite

uncertain.

When person parameters were assumed to be

unknown and items parameters to be either known

(situation 2) or not (situation 3), the power achieved by

the tests of group effects using IRT modelling (Rasch

model) or CTT were similar in all situations and always

lower than the expected power using the well-known

sample size formula for normally distributed endpoints

based on ESIRT (except for large ESIRT, N and J). More-

over, the number of items J had a substantial impact on

power for both methods, the power increasing quite

importantly with J. In light of the observed results, smal-

ler power than anticipated for both methods can possi-

bly be explained as coming from two different

phenomena according to the chosen approach. For

CTT, we also observed that the effect sizes on the score

and on the latent trait scales were different and always

lower for the score based on CTT. We can recall that

sample size calculation was only based on ESIRT and not

on ESCTT (which was calculated from the simulated

data). Since ESCTT was in fact lower than ESIRT, the

sample size required for CTT to detect a smaller effect

size than expected had to be larger than the one calcu-

lated for IRT based on ESIRT. Hence, the power for

CTT was consequently lower than the expected one for

IRT.

For IRT, the loss in power might be related mostly to

the precision of the latent trait mean estimation. In fact,

whether item parameters were assumed to be known

exactly (good precision, ε = 0.0) or not had no impact

on power, which was similar in all situations, including

CTT. In all cases, marginal maximum likelihood estima-

tion provided, as expected, unbiased estimates of the

mean of the latent trait (μIRT1) and of item parameters,

when needed. However, the impact on power of the

uncertainty of the estimation of μIRT1, reflecting inter-

individual variability, underlines the importance of tak-

ing it into account in the model. The number of items

also had a strong impact on power that was observed

throughout all of our results whatever the method used

(CTT or IRT with known or unknown item parameters).

In CTT, this number seems to be indirectly taken into

account when calculating the effect size (the value of

the effect size getting bigger as the number of items

increases). Consequently, the expected power in CTT is

correctly computed with the traditional formula using

the effect size on the score scale. This result was

expected because the score is an observed variable, even

if the traditional formula requires some specific condi-

tions to be valid as normality of the score which was

actually artificially created in our study by letting the

difficulty parameters of the items to be regularly spaced.

In IRT, the important effect of the number of items

has strong implications, notably for study design and

sample size calculation. Indeed, it seems that the num-

ber of subjects required for detecting a given effect size

on the latent trait scale with some specified power can

be greatly modified according to the number of items

considered. For instance, for an ESIRT of 0.2, if one

wishes to achieve a power of about 80% using IRT with

unknown person parameters (situations 2 and 3), 800

patients are needed in each group if the number of

items J = 5, an equivalent power size can be obtained

with only 500 patients per group if J = 20 items. Similar
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results of the J effect are obtained when using the

Rasch model with fixed person and items parameters

(situation 1) with much fewer patients required to detect

the same ESIRT with equivalent power: about 400

patients are required for J = 5 items and only about 300

patients if J ranges between 10 and 15 items. Such an

effect of J on power and on sample size requirements

should clearly be taken into account in the sample size

formula for PRO which is not the case at this time. The

latter should indeed incorporate some parameters

related to the number of items of the dimension one is

willing to study.

Some guidelines for sample size determination for

two-group cross-sectional comparisons of PRO have

been suggested in the framework of CTT [14] and a

simulation study has provided some insights for sample

size planning using IRT [15]. In the CTT framework,

several sample size formulas have been proposed assum-

ing either normally distributed continuous data, contin-

uous data using non-parametric methods, ordinal data

[16], or bootstrap sample size estimation. Even though

all of these methods do not take into account the num-

ber of items used to assess the patients explicitly, we

can hypothesise that it is indirectly taken into account

through the influence on the difference between the

mean scores of the two groups and the value of the var-

iance of the score (with an increase for both as the

number of items does). Since the score is observed and

does not necessitate a model for its estimation, it can be

considered as a usual variable which can be directly

measured (biological markers, temperature, blood pres-

sure....) and the formula used to determine the sample

size can still be the usual formula under some condi-

tions [14] such as normality, proportional odds, ....

In the IRT framework, the difference between the

means of the latent trait in the two groups as well as

the variance is not influenced by the number of items

(even if the precision of these estimations are better

with a larger number of items). Nevertheless the power

seems to be improved with large questionnaire. Conse-

quently, the usual formula to determine the sample size

seems to be inadequate, because it does not take into

account the number of items, but only the means and

the variance of the latent trait (whose values do not

depend on the number of items). This inadequacy can

be explained by the latent nature of the latent trait; it is

not an observed variable and its estimation requires the

use of a model which creates uncertainty on a large

number of parameters (parameters of the distribution of

the latent trait and possibly items parameters).

The work of Holman et al. [15] extended recently by

Glas et al. [17] have already stressed the impact of the

size of the studied questionnaire on power and hence,

sample size requirements, but the expected power based

on the mean difference of the latent traits was not com-

puted. Furthermore, they have also recalled that large

sample sizes (> 1000) are usually required to estimate

the items parameters of an IRT model with adequate

precision which is much more often encountered in

educational surveys than in clinical or epidemiological

research. However, they have noted as we did in our

study that small and moderate effect sizes can be

detected with reasonable power even with small sample

sizes provided that the uncertainty of the latent variable

is taken into account. Holding items parameters fixed

does not enhance power, except when person para-

meters are also assumed to be known, which might be

too restrictive as already discussed. However, fixing

items parameters to known values coming from pre-

vious validation studies that integrated IRT models

might be interesting because it allows the comparison of

patients coming from different studies that made use of

the same instrument. Furthermore, such items para-

meters do not constitute the main interest in clinical

studies which are more concerned with latent trait level

estimation and corresponding effect sizes. Hence, this

raises the question of the way of handling these para-

meters, should they be considered as nuisance para-

meters, should they be fixed at some plausible values

coming from published items banks in the literature?

More studies are needed to answer these important

questions that have strong implications for sample size

planning and statistical analysis of PRO.

Several limitations of our study and further necessary

developments can be underlined. Our work focused on

one of the most well-known IRT model, the Rasch model,

other models well suited for the analysis of polytomous

item responses [6] such as the Partial Credit Model or the

Rating Scale Model should also be studied. Indeed, the

number of modalities per item as well as the number of

items could also have an important impact on power.

Another field of investigation that has not been covered by

our study is the impact of a non symmetrical score.

Indeed, in the present study, data were simulated by

adjusting the difficulty of the items on the mean value of

the latent trait (the mean difficulty parameters was equal

to the mean of the simulated latent trait). More, the items

parameters were fixed regularly following the standardized

normal distribution. Consequently, the obtained score had

a distribution close to a normal, which constitutes an opti-

mal condition to use the CTT approach that not always

reflects practical situations. Simulation of data leading to a

non-normal score could be performed and allow

determining the robustness of the CTT approach to the

violation of the normality assumption.

Moreover, in a statistical analysis perspective, the

impact on power of missing values possibly non ignor-

able is also an interesting and necessary extension,
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because such incomplete data are often encountered in

PRO studies. Since the Rasch model allows estimating

the parameters by using all the available information

based on the likelihood, we might expect a better per-

formance of IRT as compared to CTT in this frame-

work. Indeed, the score cannot be computed for

individuals with one or more missing value, unless using

missing value imputation. The impact of the number of

missing values, their potential informativity and of the

imputation method is an important topic for future

research.

Furthermore, other study designs and in particular

longitudinal data settings should be part of further

investigations in this domain since PRO data are often

gathered in this way in order to investigate time, group

effect as well as possible interactions between them or

other covariates. Last, in the framework of PRO data,

adaptive and sequential designs eventually incorporating

samples size re-estimation [18] might also offer a valu-

able tool by using accumulating data to decide how to

modify some aspects of a study as it continues without

undermining its validity and integrity. Whether IRT or

CTT-based approaches would offer the best alternative

in this context is not known at this time.

Conclusions

The following advice can be proposed for sample size

and analysis issues for PRO data: i) one should avoid

using prespecified and fixed person parameters since

patients included in the study of interest and in the vali-

dation study are very likely to differ from one another,

even slightly, and this may lead to a substantial loss in

power, ii) using prespecified and fixed items parameters

coming from IRT-based validated instrument might be

valuable, even if it does not improve power, because it

takes benefit from one of IRT’s strength, that is letting

the possibility to compare patients from different studies

that have used an instrument with similar psychometric

properties, iii) one can, under some conditions, use the

classical sample size formula for CTT (since the score

can be considered as an observed variable) and validate

this sample size estimation with IRT using simulations

as was done for the NHP data.

However, applying this formula directly in an IRT fra-

mework is not appropriate since the latent variable is an

unobserved variable whose estimation requires a model

which creates uncertainty. Moreover, in the IRT

approach, more research is needed and preliminary

work (Hardouin J-B, Amri S, Sébille V. Towards sample

size calculations for item response theory analysis for

the comparison of two groups of patients, submitted)

also confirms that it seems important to take account of

the number of items (and of their difficulty) to obtain

an accurate formula.

Additional file 1: Power achieved by the tests of group effects

using IRT with fixed person and item difficulty parameters. Power

achieved by the tests of group effects using IRT with fixed person (mean

of the latent trait in one group, μIRT1) and item difficulty parameters

(good precision: ε = 0.0/moderate precision: ε = 0.5/poor precision: ε =

1.0) as compared with their simulated values for different values of the

effect size on the latent trait scale (ESIRT), the sample size per group N

and the number of items J of the questionnaire.

Additional file 2: Power achieved by the tests of group effects

using IRT or CTT. Power achieved by the tests of group effects using

IRT (Rasch model) or CTT in three situations: IRTa (fixed item parameters

δj with a good precision (ε = 0.0) and person parameter μIRT1 is

estimated)/IRTb (item parameters δj and person parameter μIRT1 are

estimated)/CTT for different values of the effect size on the latent trait

scale (ESIRT), the sample size per group N and the number of items J of

the questionnaire.

Additional file 3: Effect size on the score scale (CTT). Effect size on

the score scale (CTT) for different values of the effect size on the latent

trait scale (ESIRT), the sample size per group N and the number of items J

of the questionnaire.

Additional file 4: Estimated power achieved by the tests of group

effects using IRT (Rasch model) or CTT. Estimated power (1,000

simulations) achieved by the tests of group effects using IRT (Rasch

model) or CTT for two different sample sizes per group.
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