V. Gautier, L. Gu, O. Donoghue, N. Pennington, S. Sheehy et al., In vitro nuclear interactome of the HIV-1 Tat protein, Retrovirology, vol.6, issue.1, p.47, 2009.
DOI : 10.1186/1742-4690-6-47

H. Chang, R. Gallo, and B. Ensoli, Regulation of cellular gene expression and function by the human immunodeficiency virus type 1 tat protein, Journal of Biomedical Science, vol.53, issue.3, pp.189-202, 1995.
DOI : 10.1007/BF02253380

A. Albini, R. Benelli, D. Giunciuglio, T. Cai, G. Mariani et al., Identification of a Novel Domain of HIV Tat Involved in Monocyte Chemotaxis, Journal of Biological Chemistry, vol.273, issue.26, pp.15895-15900, 1998.
DOI : 10.1074/jbc.273.26.15895

H. Xiao, C. Neuveut, H. Tiffany, M. Benkirane, E. Rich et al., Selective CXCR4 antagonism by Tat: Implications for in vivo expansion of coreceptor use by HIV-1, Proceedings of the National Academy of Sciences, vol.97, issue.21, pp.11466-11471, 2000.
DOI : 10.1073/pnas.97.21.11466

A. Cardona, E. Pioro, M. Sasse, V. Kostenko, S. Cardona et al., Control of microglial neurotoxicity by the fractalkine receptor, Nature Neuroscience, vol.24, issue.7, pp.917-924, 2006.
DOI : 10.1038/nn1715

R. Lafrenie, L. Wahl, J. Epstein, I. Hewlett, K. Yamada et al., HIV- 1-Tat modulates the function of monocytes and alters their interactions with microvessel endothelial cells. A mechanism of HIV pathogenesis, J Immunol, vol.156, pp.1638-1645, 1996.

R. Lafrenie, L. Wahl, J. Epstein, I. Hewlett, K. Yamada et al., HIV- 1-Tat protein promotes chemotaxis and invasive behavior by monocytes, J Immunol, vol.157, pp.974-977, 1996.

A. Nimmerjahn, F. Kirchhoff, and F. Helmchen, Resting Microglial Cells Are Highly Dynamic Surveillants of Brain Parenchyma in Vivo, Science, vol.308, issue.5726, pp.1314-1318, 2005.
DOI : 10.1126/science.1110647

C. Power, J. Mcarthur, A. Nath, K. Wehrly, M. Mayne et al., Neuronal death induced by brain-derived human immunodeficiency virus type 1 envelope genes differs between demented and nondemented AIDS patients, J Virol, vol.72, pp.9045-9053, 1998.

R. Puri and B. Aggarwal, Human immunodeficiency virus type 1 tat gene up-regulates interleukin 4 receptors on a human B-lymphoblastoid cell line, Cancer Res, vol.52, pp.3787-3790, 1992.

J. Rautonen, N. Rautonen, N. Martin, and D. Wara, HIV type 1 Tat protein induces immunoglobulin and interleukin 6 synthesis by uninfected peripheral blood mononuclear cells, AIDS Res Hum Retroviruses, vol.10, pp.781-785, 1994.

K. Sastry, H. Reddy, R. Pandita, K. Totpal, and B. Aggarwal, HIV-1 tat gene induces tumor necrosis factor-beta (lymphotoxin) in a human Blymphoblastoid cell line, J Biol Chem, vol.265, pp.20091-20093, 1990.

R. Puri, L. P. Aggarwal, and B. , T Lymphoid (H9) Cell Line, AIDS Research and Human Retroviruses, vol.11, issue.1, pp.31-40, 1995.
DOI : 10.1089/aid.1995.11.31

S. Husain, L. P. Aggarwal, B. Puri, and R. , Gene, AIDS Research and Human Retroviruses, vol.12, issue.14, pp.1349-1359, 1996.
DOI : 10.1089/aid.1996.12.1349

M. Lotz, I. Clark-lewis, and V. Ganu, HIV-1 transactivator protein Tat induces proliferation and TGF beta expression in human articular chondrocytes, The Journal of Cell Biology, vol.124, issue.3, pp.365-371, 1994.
DOI : 10.1083/jcb.124.3.365

G. Herbein and K. Khan, Is HIV infection a TNF receptor signalling-driven disease? Trends Immunol, pp.61-67, 2008.

A. Kumar, S. Manna, S. Dhawan, and B. Aggarwal, HIV-Tat protein activates c- Jun N-terminal kinase and activator protein-1, J Immunol, vol.161, pp.776-781, 1998.

B. Ensoli, L. Buonaguro, G. Barillari, V. Fiorelli, R. Gendelman et al., Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation, J Virol, vol.67, pp.277-287, 1993.

A. Nath and J. Geiger, Neurobiological aspects of human immunodeficiency virus infection:Neurotoxic mechanisms, Progress in Neurobiology, vol.54, issue.1, pp.19-33, 1998.
DOI : 10.1016/S0301-0082(97)00053-1

M. Ghafouri, S. Amini, K. Khalili, and B. Sawaya, HIV-1 associated dementia: symptoms and causes, Retrovirology, vol.3, issue.1, p.28, 2006.
DOI : 10.1186/1742-4690-3-28

R. Ransohoff and V. Perry, Microglial Physiology: Unique Stimuli, Specialized Responses, Annual Review of Immunology, vol.27, issue.1, pp.119-145, 2009.
DOI : 10.1146/annurev.immunol.021908.132528

L. Minghetti and G. Levi, Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide, Progress in Neurobiology, vol.54, issue.1, pp.99-125, 1998.
DOI : 10.1016/S0301-0082(97)00052-X

W. Streit, Microglia and the Response to Brain Injury, Ernst Schering Res Found Workshop, pp.11-24, 2002.
DOI : 10.1007/978-3-662-05073-6_2

W. Sheng, S. Hu, C. Hegg, S. Thayer, and P. Peterson, Activation of Human Microglial Cells by HIV-1 gp41 and Tat Proteins, Clinical Immunology, vol.96, issue.3, pp.243-251, 2000.
DOI : 10.1006/clim.2000.4905

B. Sawaya, P. Thatikunta, L. Denisova, J. Brady, K. Khalili et al., Regulation of TNF?? and TGF??-1 gene transcription by HIV-1 Tat in CNS cells, Journal of Neuroimmunology, vol.87, issue.1-2, pp.33-42, 1998.
DOI : 10.1016/S0165-5728(98)00044-7

E. Polazzi, G. Levi, and L. Minghetti, Human Immunodeficiency Virus Type 1 Tat Protein Stimulates Inducible Nitric Oxide Synthase Expression and Nitric Oxide Production in Microglial Cultures, Journal of Neuropathology and Experimental Neurology, vol.58, issue.8, pp.825-831, 1999.
DOI : 10.1097/00005072-199908000-00005

D. Simone, R. Ajmone-cat, M. Minghetti, and L. , Atypical Antiinflammatory Activation of Microglia Induced by Apoptotic Neurons: Possible Role of Phosphatidylserine???Phosphatidylserine Receptor Interaction, Molecular Neurobiology, vol.29, issue.2, pp.197-212, 2004.
DOI : 10.1385/MN:29:2:197

P. Rosenstiel, R. Lucius, G. Deuschl, J. Sievers, and H. Wilms, From theory to therapy: Implications from an in vitro model of ramified microglia, Microscopy Research and Technique, vol.141, issue.1, pp.18-25, 2001.
DOI : 10.1002/jemt.1116

S. Dollard, H. James, L. Sharer, L. Epstein, H. Gelbard et al., Activation of nuclear factor kB in brains from children with HIV-I encephalitis, Neuropathology and Applied Neurobiology, vol.9, issue.6, pp.518-528, 1995.
DOI : 10.1002/ana.410290613

K. Rostasy, L. Monti, C. Yiannoutsos, J. Wu, J. Bell et al., B activation, TNF-?? expression, and apoptosis in the AIDS-Dementia-Complex, Journal of Neurovirology, vol.6, issue.6, pp.537-543, 2000.
DOI : 10.3109/13550280009091954

A. Nicolini, M. Ajmone-cat, A. Bernardo, G. Levi, and L. Minghetti, Human immunodeficiency virus type-1 Tat protein induces nuclear factor (NF)-??B activation and oxidative stress in microglial cultures by independent mechanisms, Journal of Neurochemistry, vol.33, issue.3, pp.713-716, 2001.
DOI : 10.1046/j.1471-4159.2001.00568.x

A. Bruce-keller, S. Barger, N. Moss, J. Pham, J. Keller et al., Pro-inflammatory and pro-oxidant properties of the HIV protein Tat in a microglial cell line: attenuation by 17??-estradiol, Journal of Neurochemistry, vol.70, issue.6, pp.1315-1324, 2001.
DOI : 10.1046/j.1471-4159.2001.00511.x

A. Bowie, O. Neill, and L. , Oxidative stress and nuclear factor-??B activation, Biochemical Pharmacology, vol.59, issue.1, pp.13-23, 2000.
DOI : 10.1016/S0006-2952(99)00296-8

C. Hegg, S. Hu, P. Peterson, and S. Thayer, ??-Chemokines and human immunodeficiency virus type-1 proteins evoke intracellular calcium increases in human microglia, Neuroscience, vol.98, issue.1, pp.191-199, 2000.
DOI : 10.1016/S0306-4522(00)00101-9

M. Patrizio, M. Colucci, and G. Levi, Human immunodeficiency virus type???1 Tat protein decreases cyclic AMP synthesis in rat microglia cultures, Journal of Neurochemistry, vol.5, issue.2, pp.399-407, 2001.
DOI : 10.1046/j.1471-4159.2001.00249.x

F. Aloisi, D. Simone, R. Columba-cabezas, S. Levi, and G. , Opposite effects of interferon-?? and prostaglandin E2 on tumor necrosis factor and interleukin-10 production in microglia: A regulatory loop controlling microglia pro- and anti-inflammatory activities, Journal of Neuroscience Research, vol.84, issue.6, pp.571-580, 1999.
DOI : 10.1002/(SICI)1097-4547(19990615)56:6<571::AID-JNR3>3.0.CO;2-P

F. Aloisi, G. Penna, J. Cerase, M. Iglesias, B. Adorini et al., IL-12 production by central nervous system microglia is inhibited by astrocytes, J Immunol, vol.159, pp.1604-1612, 1997.

A. Caggiano and R. Kraig, Prostaglandin E Receptor Subtypes in Cultured Rat Microglia and Their Role in Reducing Lipopolysaccharide-Induced Interleukin-1 ?? Production, Journal of Neurochemistry, vol.46, issue.2, pp.565-575, 1999.
DOI : 10.1046/j.1471-4159.1999.0720565.x

D. Davalos, J. Grutzendler, G. Yang, J. Kim, Y. Zuo et al., ATP mediates rapid microglial response to local brain injury in vivo, Nature Neuroscience, vol.19, issue.6, pp.752-758, 2005.
DOI : 10.1523/JNEUROSCI.2294-04.2004

L. Minghetti, A. Nicolini, E. Polazzi, C. Creminon, J. Maclouf et al., Prostaglandin E2 Downregulates Inducible Nitric Oxide Synthase Expression in Microglia by Increasing cAMP Levels, Adv Exp Med Biol, vol.433, pp.181-184, 1997.
DOI : 10.1007/978-1-4899-1810-9_37

L. Minghetti, A. Nicolini, E. Polazzi, C. Creminon, J. Maclouf et al., Inducible nitric oxide synthase expression in activated rat microglial cultures is downregulated by exogenous prostaglandin E2 and by cyclooxygenase inhibitors, Glia, vol.141, issue.2, pp.152-160, 1997.
DOI : 10.1002/(SICI)1098-1136(199702)19:2<152::AID-GLIA6>3.0.CO;2-2

K. Takahashi, M. Prinz, M. Stagi, O. Chechneva, and H. Neumann, TREM2-Transduced Myeloid Precursors Mediate Nervous Tissue Debris Clearance and Facilitate Recovery in an Animal Model of Multiple Sclerosis, PLoS Medicine, vol.436, issue.4, p.124, 2007.
DOI : 10.1371/journal.pmed.0040124.st003

B. Mayr and M. Montminy, Transcriptional regulation by the phosphorylation-dependent factor CREB, Nature Reviews Molecular Cell Biology, vol.13, issue.8, pp.599-609, 2001.
DOI : 10.1038/35085068

H. Kettenmann, D. Hoppe, K. Gottmann, R. Banati, and G. Kreutzberg, Cultured microglial cells have a distinct pattern of membrane channels different from peritoneal macrophages, Journal of Neuroscience Research, vol.81, issue.3, pp.278-287, 1990.
DOI : 10.1002/jnr.490260303

A. Korotzer and C. Cotman, Voltage-gated currents expressed by rat microglia in culture, Glia, vol.81, issue.2, pp.81-88, 1992.
DOI : 10.1002/glia.440060202

S. Visentin, C. Agresti, M. Patrizio, and G. Levi, Ion channels in rat microglia and their different sensitivity to lipopolysaccharide and interferon-gamma

C. Leone, L. Pavec, G. Meme, W. Porcheray, F. Samah et al., Characterization of human monocyte-derived microglia-like cells, Glia, vol.181, issue.3, pp.183-192, 2006.
DOI : 10.1002/glia.20372

URL : https://hal.archives-ouvertes.fr/hal-00512375

S. Visentin and G. Levi, Protein kinase C involvement in the resting and interferon-?-induced K+ channel profile of microglial cells, Journal of Neuroscience Research, vol.242, issue.3, pp.233-241, 1997.
DOI : 10.1002/(SICI)1097-4547(19970201)47:3<233::AID-JNR1>3.0.CO;2-J

S. Visentin, M. Renzi, and G. Levi, Altered outward-rectifying K+ current reveals microglial activation induced by HIV-1 Tat protein, Glia, vol.14, issue.3, pp.181-190, 2001.
DOI : 10.1002/1098-1136(200103)33:3<181::AID-GLIA1017>3.0.CO;2-Q

C. Cheeseman, Molecular mechanisms involved in the regulation of amino acid transport, Progress in Biophysics and Molecular Biology, vol.55, issue.2, pp.71-84, 1991.
DOI : 10.1016/0079-6107(91)90001-9

G. Gras, F. Porcheray, B. Samah, and C. Leone, The glutamate-glutamine cycle as an inducible, protective face of macrophage activation, Journal of Leukocyte Biology, vol.80, issue.5, pp.1067-1075, 2006.
DOI : 10.1189/jlb.0306153

F. Porcheray, C. Leone, B. Samah, A. Rimaniol, N. Dereuddre-bosquet et al., Glutamate metabolism in HIV-infected macrophages: implications for the CNS, AJP: Cell Physiology, vol.291, issue.4, pp.618-626, 2006.
DOI : 10.1152/ajpcell.00021.2006

A. Rimaniol, P. Mialocq, P. Clayette, D. Dormont, and G. Gras, Role of glutamate transporters in the regulation of glutathione levels in human macrophages, Am J Physiol Cell Physiol, vol.281, pp.1964-1970, 2001.

J. Mcarthur, D. Hoover, H. Bacellar, E. Miller, B. Cohen et al., Dementia in AIDS patients: Incidence and risk factors, Neurology, vol.43, issue.11, pp.2245-2252, 1993.
DOI : 10.1212/WNL.43.11.2245

M. Emerman, HIV-1, Vpr and the cell cycle, Current Biology, vol.6, issue.9, pp.1096-1103, 1996.
DOI : 10.1016/S0960-9822(02)00676-0

T. Dragic, V. Litwin, G. Allaway, S. Martin, Y. Huang et al., HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5, Nature, vol.381, issue.6584, pp.667-673, 1996.
DOI : 10.1038/381667a0

R. Subbramanian, A. Kessous-elbaz, R. Lodge, J. Forget, X. Yao et al., Human Immunodeficiency Virus Type 1 Vpr Is a Positive Regulator of ???Viral Transcription and Infectivity in Primary Human Macrophages, The Journal of Experimental Medicine, vol.67, issue.7, pp.1103-1111, 1998.
DOI : 10.1073/pnas.86.7.2365

M. Vodicka, D. Koepp, P. Silver, and M. Emerman, HIV-1 Vpr interacts with the nuclear transport pathway to promote macrophage??infection, Genes & Development, vol.12, issue.2, pp.175-185, 1998.
DOI : 10.1101/gad.12.2.175

G. Jacquot, L. Rouzic, E. David, A. Mazzolini, J. Bouchet et al., Localization of HIV-1 Vpr to the nuclear envelope: Impact on Vpr functions and virus replication in macrophages, Retrovirology, vol.4, issue.1, p.84, 2007.
DOI : 10.1186/1742-4690-4-84

N. Heinzinger, M. Bukinsky, S. Haggerty, A. Ragland, V. Kewalramani et al., The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells., Proceedings of the National Academy of Sciences, vol.91, issue.15, pp.7311-7315, 1994.
DOI : 10.1073/pnas.91.15.7311

K. Ogawa, R. Shibata, T. Kiyomasu, I. Higuchi, Y. Kishida et al., Mutational analysis of the human immunodeficiency virus vpr open reading frame, J Virol, vol.63, pp.4110-4114, 1989.

P. Westervelt, T. Henkel, D. Trowbridge, J. Orenstein, J. Heuser et al., Dual regulation of silent and productive infection in monocytes by distinct human immunodeficiency virus type 1 determinants, J Virol, vol.66, pp.3925-3931, 1992.

C. Balotta, P. Lusso, R. Crowley, R. Gallo, and G. Franchini, Antisense phosphorothioate oligodeoxynucleotides targeted to the vpr gene inhibit human immunodeficiency virus type 1 replication in primary human macrophages, J Virol, vol.67, pp.4409-4414, 1993.

J. Balliet, D. Kolson, G. Eiger, F. Kim, K. Mcgann et al., Distinct Effects in Primary Macrophages and Lymphocytes of the Human Immunodeficiency Virus Type 1 Accessory Genes vpr, vpu, and nef: Mutational Analysis of a Primary HIV-1 Isolate, Virology, vol.200, issue.2, pp.623-631, 1994.
DOI : 10.1006/viro.1994.1225

A. Albright, J. Shieh, T. Itoh, B. Lee, D. Pleasure et al., Microglia express CCR5, CXCR4, and CCR3, but of these, CCR5 is the principal coreceptor for human immunodeficiency virus type 1 dementia isolates, J Virol, vol.73, pp.205-213, 1999.

M. Emerman and M. Malim, HIV-1 Regulatory/Accessory Genes: Keys to Unraveling Viral and Host Cell Biology, Science, vol.280, issue.5371, pp.1880-1884, 1998.
DOI : 10.1126/science.280.5371.1880

A. Frankel and J. Young, HIV-1: Fifteen Proteins and an RNA, Annual Review of Biochemistry, vol.67, issue.1, pp.1-25, 1998.
DOI : 10.1146/annurev.biochem.67.1.1

M. Bukrinsky and A. Adzhubei, Viral protein R of HIV-1, Reviews in Medical Virology, vol.93, issue.1, pp.39-49, 1999.
DOI : 10.1002/(SICI)1099-1654(199901/03)9:1<39::AID-RMV235>3.0.CO;2-3

S. Stewart, B. Poon, J. Song, and I. Chen, Human Immunodeficiency Virus Type 1 Vpr Induces Apoptosis through Caspase Activation, Journal of Virology, vol.74, issue.7, pp.3105-3111, 2000.
DOI : 10.1128/JVI.74.7.3105-3111.2000

J. He, S. Choe, R. Walker, D. Marzio, P. Morgan et al., Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity, J Virol, vol.69, pp.6705-6711, 1995.

J. Jowett, V. Planelles, B. Poon, N. Shah, M. Chen et al., The human immunodeficiency virus type 1 vpr gene arrests infected T cells in the G2 + M phase of the cell cycle, J Virol, vol.69, pp.6304-6313, 1995.

F. Re, D. Braaten, E. Franke, and J. Luban, Human immunodeficiency virus type 1 Vpr arrests the cell cycle in G2 by inhibiting the activation of p34cdc2-cyclin B, J Virol, vol.69, pp.6859-6864, 1995.

B. Sawaya, K. Khalili, W. Mercer, L. Denisova, and S. Amini, Cooperative Actions of HIV-1 Vpr and p53 Modulate Viral Gene Transcription, Journal of Biological Chemistry, vol.273, issue.32, pp.20052-20057, 1998.
DOI : 10.1074/jbc.273.32.20052

S. Bartz, M. Rogel, and M. Emerman, Human immunodeficiency virus type 1 cell cycle control: Vpr is cytostatic and mediates G2 accumulation by a mechanism which differs from DNA damage checkpoint control, J Virol, vol.70, pp.2324-2331, 1996.

X. Yao, A. Mouland, R. Subbramanian, J. Forget, N. Rougeau et al., Vpr stimulates viral expression and induces cell killing in human immunodeficiency virus type 1-infected dividing Jurkat T cells, J Virol, vol.72, pp.4686-4693, 1998.

N. Watanabe, T. Yamaguchi, Y. Akimoto, J. Rattner, H. Hirano et al., Induction of M-Phase Arrest and Apoptosis after HIV-1 Vpr Expression through Uncoupling of Nuclear and Centrosomal Cycle in HeLa Cells, Experimental Cell Research, vol.258, issue.2, pp.261-269, 2000.
DOI : 10.1006/excr.2000.4908

E. Jacotot, K. Ferri, E. Hamel, C. Brenner, C. Druillennec et al., Control of mitochondrial membrane permeabilization by adenine nucleotide translocator interacting with HIV-1 viral protein rR and
URL : https://hal.archives-ouvertes.fr/hal-00315083

S. Gummuluru and M. Emerman, Cell cycle-and Vpr-mediated regulation of human immunodeficiency virus type 1 expression in primary and transformed T-cell lines, J Virol, vol.73, pp.5422-5430, 1999.

L. Wang, S. Mukherjee, F. Jia, O. Narayan, and L. Zhao, Interaction of Virion Protein Vpr of Human Immunodeficiency Virus Type 1 with Cellular Transcription Factor Sp1 and trans-Activation of Viral Long Terminal Repeat, Journal of Biological Chemistry, vol.270, issue.43, pp.25564-25569, 1995.
DOI : 10.1074/jbc.270.43.25564

B. Sawaya, K. Khalili, J. Gordon, R. Taube, and S. Amini, Cooperative Interaction between HIV-1 Regulatory Proteins Tat and Vpr Modulates Transcription of the Viral Genome, Journal of Biological Chemistry, vol.275, issue.45, pp.35209-35214, 2000.
DOI : 10.1074/jbc.M005197200

A. Varin, A. Decrion, E. Sabbah, V. Quivy, J. Sire et al., Synthetic Vpr Protein Activates Activator Protein-1, c-Jun N-terminal Kinase, and NF-??B and Stimulates HIV-1 Transcription in Promonocytic Cells and Primary Macrophages, Journal of Biological Chemistry, vol.280, issue.52, pp.42557-42567, 2005.
DOI : 10.1074/jbc.M502211200

D. Eckstein, M. Sherman, M. Penn, P. Chin, D. Noronha et al., T Cells, The Journal of Experimental Medicine, vol.63, issue.10, pp.1407-1419, 2001.
DOI : 10.1038/77481

N. Vazquez, T. Greenwell-wild, N. Marinos, W. Swaim, S. Nares et al., Human Immunodeficiency Virus Type 1-Induced Macrophage Gene Expression Includes the p21 Gene, a Target for Viral Regulation, Journal of Virology, vol.79, issue.7, pp.4479-4491, 2005.
DOI : 10.1128/JVI.79.7.4479-4491.2005

K. Muthumani, D. Hwang, A. Choo, S. Mayilvahanan, N. Dayes et al., HIV-1 Vpr inhibits the maturation and activation of macrophages and dendritic cells in vitro, International Immunology, vol.17, issue.2, pp.103-116, 2005.
DOI : 10.1093/intimm/dxh190

K. Muthumani, S. Kudchodkar, E. Papasavvas, L. Montaner, D. Weiner et al., HIV-1 Vpr regulates expression of beta chemokines in human primary lymphocytes and macrophages, J Leukoc Biol, vol.68, pp.366-372, 2000.

K. Muthumani, D. Hwang, N. Dayes, J. Kim, and D. Weiner, The HIV-1 Accessory Gene vpr Can Inhibit Antigen-Specific Immune Function, DNA and Cell Biology, vol.21, issue.9, pp.689-695, 2002.
DOI : 10.1089/104454902760330237

G. Herbein, S. Keshav, C. M. Montaner, L. Gordon, and S. , HIV-1 induces tumour necrosis factor and IL-1 gene expression in primary human macrophages independent of productive infection, Clinical & Experimental Immunology, vol.174, issue.3, pp.442-449, 1994.
DOI : 10.1111/j.1365-2249.1994.tb07016.x

F. Cocchi, A. Devico, A. Garzino-demo, S. Arya, R. Gallo et al., Identification of RANTES, MIP-1alpha, and MIP-1beta as the Major HIV-Suppressive Factors Produced by CD8+ T Cells, Science, vol.270, issue.5243, pp.1811-1815, 1995.
DOI : 10.1126/science.270.5243.1811

G. Alkhatib, C. Combadiere, C. Broder, Y. Feng, P. Kennedy et al., CC CKR5: A RANTES, MIP-1??, MIP-1 Receptor as a Fusion Cofactor for Macrophage-Tropic HIV-1, Science, vol.272, issue.5270, pp.1955-1958, 1996.
DOI : 10.1126/science.272.5270.1955

H. Choe, M. Farzan, Y. Sun, N. Sullivan, B. Rollins et al., The ??-Chemokine Receptors CCR3 and CCR5 Facilitate Infection by Primary HIV-1 Isolates, Cell, vol.85, issue.7, pp.1135-1148, 1996.
DOI : 10.1016/S0092-8674(00)81313-6

H. Deng, R. Liu, W. Ellmeier, S. Choe, D. Unutmaz et al., Identification of a major co-receptor for primary isolates of HIV-1, Nature, vol.381, issue.6584, pp.661-666, 1996.
DOI : 10.1038/381661a0

Y. Liu, W. Hao, M. Letiembre, S. Walter, M. Kulanga et al., Suppression of Microglial Inflammatory Activity by Myelin Phagocytosis: Role of p47-PHOX-Mediated Generation of Reactive Oxygen Species, Journal of Neuroscience, vol.26, issue.50, pp.12904-12913, 2006.
DOI : 10.1523/JNEUROSCI.2531-06.2006

B. Doranz, J. Rucker, Y. Yi, R. Smyth, M. Samson et al., A Dual-Tropic Primary HIV-1 Isolate That Uses Fusin and the ??-Chemokine Receptors CKR-5, CKR-3, and CKR-2b as Fusion Cofactors, Cell, vol.85, issue.7, pp.1149-1158, 1996.
DOI : 10.1016/S0092-8674(00)81314-8

H. Schmidtmayerova, B. Sherry, and M. Bukrinsky, Chemokines and HIV replication, Nature, vol.382, issue.6594, p.767, 1996.
DOI : 10.1038/382767a0

J. Wang, G. Roderiquez, T. Oravecz, and M. Norcross, Cytokine regulation of human immunodeficiency virus type 1 entry and replication in human monocytes/macrophages through modulation of CCR5 expression, J Virol, vol.72, pp.7642-7647, 1998.

A. Verani, G. Gras, and G. Pancino, Macrophages and HIV-1: dangerous liaisons, Molecular Immunology, vol.42, issue.2, pp.195-212, 2005.
DOI : 10.1016/j.molimm.2004.06.020

URL : https://hal.archives-ouvertes.fr/pasteur-00142859

G. Melikyan, Common principles and intermediates of viral protein-mediated fusion: the HIV-1 paradigm, Retrovirology, vol.5, issue.1, p.111, 2008.
DOI : 10.1186/1742-4690-5-111

A. Bergamini, E. Faggioli, F. Bolacchi, S. Gessani, L. Cappannoli et al., Enhanced Production of Tumor Necrosis Factor????? and Interleukin???6 Due to Prolonged Response to Lipopolysaccharide in Human Macrophages Infected In Vitro with Human Immunodeficiency Virus Type 1, The Journal of Infectious Diseases, vol.179, issue.4, pp.832-842, 1999.
DOI : 10.1086/314662

K. Clouse, L. Cosentino, K. Weih, S. Pyle, P. Robbins et al., The HIV-1 gp120 envelope protein has the intrinsic capacity to stimulate monokine secretion, J Immunol, vol.147, pp.2892-2901, 1991.

V. Karsten, S. Gordon, A. Kirn, and G. Herbein, HIV-1 envelope glycoprotein gp120 down-regulates CD4 expression in primary human macrophages through induction of endogenous tumour necrosis factor-??, Immunology, vol.88, issue.1, pp.55-60, 1996.
DOI : 10.1046/j.1365-2567.1996.d01-648.x

J. Merrill, Y. Koyanagi, and I. Chen, Interleukin-1 and tumor necrosis factor alpha can be induced from mononuclear phagocytes by human immunodeficiency virus type 1 binding to the CD4 receptor, J Virol, vol.63, pp.4404-4408, 1989.

W. Choe, D. Volsky, and M. Potash, Induction of Rapid and Extensive beta -Chemokine Synthesis in Macrophages by Human Immunodeficiency Virus Type 1 and gp120, Independently of Their Coreceptor Phenotype, Journal of Virology, vol.75, issue.22, pp.10738-10745, 2001.
DOI : 10.1128/JVI.75.22.10738-10745.2001

R. Bailer, B. Lee, and L. Montaner, IL-13 and TNF-?? inhibit dual-tropic HIV-1 in primary macrophages by reduction of surface expression of CD4, chemokine receptors CCR5, CXCR4 and post-entry viral gene expression, European Journal of Immunology, vol.30, issue.5, pp.1340-1349, 2000.
DOI : 10.1002/(SICI)1521-4141(200005)30:5<1340::AID-IMMU1340>3.0.CO;2-L

C. Faltynek, L. Finch, P. Miller, and W. Overton, Treatment with recombinant IFN-gamma decreases cell surface CD4 levels on peripheral blood monocytes and on myelomonocyte cell lines, J Immunol, vol.142, pp.500-508, 1989.

L. Montaner, G. Herbein, and S. Gordon, Regulation of Macrophage Activation and HIV Replication, Adv Exp Med Biol, vol.374, pp.47-56, 1995.
DOI : 10.1007/978-1-4615-1995-9_5

R. Cotter, J. Zheng, C. M. Niemann, D. Liu, Y. He et al., Regulation of Human Immunodeficiency Virus Type 1 Infection, ??-Chemokine Production, and CCR5 Expression in CD40L-Stimulated Macrophages: Immune Control of Viral Entry, Journal of Virology, vol.75, issue.9, pp.4308-4320, 2001.
DOI : 10.1128/JVI.75.9.4308-4320.2001

G. Herbein, L. Montaner, and S. Gordon, Tumor necrosis factor alpha inhibits entry of human immunodeficiency virus type 1 into primary human macrophages: a selective role for the 75-kilodalton receptor, J Virol, vol.70, pp.7388-7397, 1996.

G. Herbein and S. Gordon, 55-and 75-kilodalton tumor necrosis factor receptors mediate distinct actions in regard to human immunodeficiency virus type 1 replication in primary human macrophages, J Virol, vol.71, pp.4150-4156, 1997.

P. Meylan, J. Guatelli, J. Munis, D. Richman, and R. Kornbluth, Mechanisms for the Inhibition of HIV Replication by Interferons-??, -??, and -??, in Primary Human Macrophages, Virology, vol.193, issue.1, pp.138-148, 1993.
DOI : 10.1006/viro.1993.1110

M. Zaitseva, S. Lee, C. Lapham, R. Taffs, L. King et al., Interferon gamma and interleukin 6 modulate the susceptibility of macrophages to human immunodeficiency virus type 1 infection, Blood, vol.96, pp.3109-3117, 2000.

I. Cremer, V. Vieillard, D. Maeyer, and E. , Retrovirally Mediated IFN-?? Transduction of Macrophages Induces Resistance to HIV, Correlated with Up-Regulation of RANTES Production and Down-Regulation of C-C Chemokine Receptor-5 Expression, The Journal of Immunology, vol.164, issue.3, pp.1582-1587, 2000.
DOI : 10.4049/jimmunol.164.3.1582

T. Hewson, J. Logie, P. Simmonds, and S. Howie, A CCR5-Dependent Novel Mechanism for Type 1 HIV gp120 Induced Loss of Macrophage Cell Surface CD4, The Journal of Immunology, vol.166, issue.8, pp.4835-4842, 2001.
DOI : 10.4049/jimmunol.166.8.4835

B. Lane, D. Markovitz, N. Woodford, R. Rochford, R. Strieter et al., TNF-alpha inhibits HIV-1 replication in peripheral blood monocytes and alveolar macrophages by inducing the production of RANTES and decreasing C-C chemokine receptor 5 (CCR5) expression, J Immunol, vol.163, pp.3653-3661, 1999.

M. Coffey, C. Woffendin, S. Phare, R. Strieter, and D. Markovitz, RANTES inhibits HIV-1 replication in human peripheral blood monocytes and alveolar macrophages, Am J Physiol, vol.272, pp.1025-1029, 1997.

Y. Jiang and P. Jolly, Effect of beta-chemokines on human immunodeficiency virus type 1 replication, binding, uncoating, and CCR5 receptor expression in human monocyte-derived macrophages, J Hum Virol, vol.2, pp.123-132, 1999.

M. Capobianchi, I. Abbate, G. Antonelli, O. Turriziani, A. Dolei et al., Inhibition of HIV Type 1 BaL Replication by MIP-l??, MIP-1??, and RANTES in Macrophages, AIDS Research and Human Retroviruses, vol.14, issue.3, pp.233-240, 1998.
DOI : 10.1089/aid.1998.14.233

L. Ylisastigui, S. Amzazi, Y. Bakri, J. Vizzavona, C. Vita et al., Effect of RANTES on the infection of monocyte-derived primary macrophages by human immunodeficiency virus type 1 and type 2, Biomedicine & Pharmacotherapy, vol.52, issue.10, pp.447-453, 1998.
DOI : 10.1016/S0753-3322(99)80023-7

T. Stantchev and C. Broder, Consistent and Significant Inhibition of Human Immunodeficiency Virus Type 1 Envelope???Mediated Membrane Fusion by ?????Chemokines (RANTES) in Primary Human Macrophages, The Journal of Infectious Diseases, vol.182, issue.1, pp.68-78, 2000.
DOI : 10.1086/315700

H. Moriuchi, M. Moriuchi, and A. Fauci, Nuclear factor-kappa B potently upregulates the promoter activity of RANTES, a chemokine that blocks HIV infection, J Immunol, vol.158, pp.3483-3491, 1997.

L. Wahl, M. Corcoran, S. Pyle, L. Arthur, A. Harel-bellan et al., Human immunodeficiency virus glycoprotein (gp120) induction of monocyte arachidonic acid metabolites and interleukin 1., Proceedings of the National Academy of Sciences, vol.86, issue.2, pp.621-625, 1989.
DOI : 10.1073/pnas.86.2.621

P. Klasse and J. Moore, Is there enough gp120 in the body fluids of HIV-1- infected individuals to have biologically significant effects? Virology, pp.1-8, 2004.

Y. Yi, C. Lee, Q. Liu, B. Freedman, and R. Collman, Chemokine receptor utilization and macrophage signaling by human immunodeficiency virus type 1 gp120: Implications for neuropathogenesis, Journal of Neurovirology, vol.10, issue.1, pp.91-96, 2004.
DOI : 10.1080/753312758

Q. Liu, D. Williams, C. Mcmanus, F. Baribaud, R. Doms et al., HIV-1 gp120 and chemokines activate ion channels in primary macrophages through CCR5 and CXCR4 stimulation, Proceedings of the National Academy of Sciences, vol.97, issue.9, pp.4832-4837, 2000.
DOI : 10.1073/pnas.090521697

G. Herbein, U. Mahlknecht, F. Batliwalla, P. Gregersen, T. Pappas et al., Apoptosis of CD8+ T cells is mediated by macrophages through interaction of HIV gp120 with chemokine receptor CXCR4, Nature, vol.395, pp.189-194, 1998.

A. Decrion, A. Varin, J. Estavoyer, and G. Herbein, CXCR4-mediated T cell apoptosis in human immunodeficiency virus infection, Journal of General Virology, vol.85, issue.6, pp.1471-1479, 2004.
DOI : 10.1099/vir.0.79933-0

T. Kenakin, Ligand-selective receptor conformations revisited: the promise and the problem, Trends in Pharmacological Sciences, vol.24, issue.7, pp.346-354, 2003.
DOI : 10.1016/S0165-6147(03)00167-6

D. Corno, M. Liu, Q. Schols, D. De-clercq, E. Gessani et al., HIV-1 gp120 and chemokine activation of Pyk2 and mitogen-activated protein kinases in primary macrophages mediated by calcium-dependent, pertussis toxin-insensitive chemokine receptor signaling, Blood, vol.98, issue.10, pp.2909-2916, 2001.
DOI : 10.1182/blood.V98.10.2909

B. Tomkowicz, C. Lee, V. Ravyn, R. Cheung, A. Ptasznik et al., The Src kinase Lyn is required for CCR5 signaling in response to MIP-1beta and R5 HIV-1 gp120 in human macrophages, Blood, vol.108, issue.4, pp.1145-1150, 2006.
DOI : 10.1182/blood-2005-12-012815

G. Lynch, S. Turville, B. Carter, A. Sloane, A. Chan et al., Marked differences in the structures and protein associations of lymphocyte and monocyte CD4: Resolution of a novel CD4 isoform, Immunology and Cell Biology, vol.72, issue.2, pp.154-165, 2006.
DOI : 10.1038/385650a0

P. Chugh, B. Bradel-tretheway, C. Monteiro-filho, V. Planelles, S. Maggirwar et al., Akt inhibitors as an HIV-1 infected macrophage-specific anti-viral therapy, Retrovirology, vol.5, issue.1, p.11, 2008.
DOI : 10.1186/1742-4690-5-11

M. Benkirane, K. Jeang, and C. Devaux, The cytoplasmic domain of CD4 plays a critical role during the early stages of HIV infection in T-cells, Embo J, vol.13, pp.5559-5569, 1994.

L. Briant, N. Coudronniere, V. Robert-hebmann, M. Benkirane, and C. Devaux, Binding of HIV-1 virions or gp120-anti-gp120 immune complexes to HIV-1-infected quiescent peripheral blood mononuclear cells reveals latent infection, J Immunol, vol.156, pp.3994-4004, 1996.

L. Briant, V. Robert-hebmann, C. Acquaviva, A. Pelchen-matthews, M. Marsh et al., The protein tyrosine kinase p56lck is required for triggering NF-kappaB activation upon interaction of human immunodeficiency virus type 1 envelope glycoprotein gp120 with cell surface CD4, J Virol, vol.72, pp.6207-6214, 1998.

N. Chirmule, V. Kalyanaraman, and S. Pahwa, Signals Transduced through the CD4 Molecule on T-Lymphocytes Activate NF-??B, Biochemical and Biophysical Research Communications, vol.203, issue.1, pp.498-505, 1994.
DOI : 10.1006/bbrc.1994.2210

W. Popik and P. Pitha, Binding of human immunodeficiency virus type 1 to CD4 induces association of Lck and Raf-1 and activates Raf-1 by a Ras-independent pathway., Molecular and Cellular Biology, vol.16, issue.11, pp.6532-6541, 1996.
DOI : 10.1128/MCB.16.11.6532

W. Popik, J. Hesselgesser, and P. Pitha, Binding of human immunodeficiency virus type 1 to CD4 and CXCR4 receptors differentially regulates expression of inflammatory genes and activates the MEK/ERK signaling pathway, J Virol, vol.72, pp.6406-6413, 1998.

H. Schmid-antomarchi, M. Benkirane, V. Breittmayer, H. Husson, M. Ticchioni et al., HIV induces activation of phosphatidylinositol 4-kinase and mitogen-activated protein kinase by interacting with T cell CD4 surface molecules, European Journal of Immunology, vol.6, issue.3, pp.717-720, 1996.
DOI : 10.1002/eji.1830260331

M. Biard-piechaczyk, V. Robert-hebmann, V. Richard, R. J. Hipskind, R. Devaux et al., Caspase-Dependent Apoptosis of Cells Expressing the Chemokine Receptor CXCR4 Is Induced by Cell Membrane-Associated Human Immunodeficiency Virus Type 1 Envelope Glycoprotein (gp120), Virology, vol.268, issue.2, pp.329-344, 2000.
DOI : 10.1006/viro.1999.0151

L. Duong and G. Rodan, PYK2 is an adhesion kinase in macrophages, localized in podosomes and activated by ?2-integrin ligation, Cell Motility and the Cytoskeleton, vol.158, issue.3, pp.174-188, 2000.
DOI : 10.1002/1097-0169(200011)47:3<174::AID-CM2>3.0.CO;2-N

C. Davis, I. Dikic, D. Unutmaz, C. Hill, J. Arthos et al., Signal Transduction Due to HIV-1 Envelope Interactions with Chemokine Receptors CXCR4 or CCR5, The Journal of Experimental Medicine, vol.67, issue.10, pp.1793-1798, 1997.
DOI : 10.1126/science.274.5288.792

M. Okigaki, C. Davis, M. Falasca, S. Harroch, D. Felsenfeld et al., Pyk2 regulates multiple signaling events crucial for macrophage morphology and migration, Proceedings of the National Academy of Sciences, vol.100, issue.19, pp.10740-10745, 2003.
DOI : 10.1073/pnas.1834348100

G. Herbein, A. Coaquette, D. Perez-bercoff, and G. Pancino, Macrophage Activation and HIV Infection: Can the Trojan Horse Turn into a Fortress?, Current Molecular Medicine, vol.2, issue.8, pp.723-738, 2002.
DOI : 10.2174/1566524023361844

T. Finkel, G. Tudor-williams, N. Banda, M. Cotton, T. Curiel et al., Apoptosis occurs predominantly in bystander cells and not in productively infected cells of HIV- and SIV-infected lymph nodes, Nature Medicine, vol.84, issue.2, pp.129-134, 1995.
DOI : 10.1016/0092-8674(88)90078-5

P. Katsikis, M. Garcia-ojeda, J. Torres-roca, D. Greenwald, and L. Herzenberg, HIV type 1 Tat protein enhances activation-but not Fas (CD95)-induced peripheral blood T cell apoptosis in healthy individuals, International Immunology, vol.9, issue.6, pp.835-841, 1997.
DOI : 10.1093/intimm/9.6.835

H. Groux, G. Torpier, M. D. Mouton, Y. Capron, A. Ameisen et al., Activation-induced death by apoptosis in CD4+ T cells from human immunodeficiency virus-infected asymptomatic individuals, Journal of Experimental Medicine, vol.175, issue.2, pp.331-340, 1992.
DOI : 10.1084/jem.175.2.331

N. Oyaizu, T. Mccloskey, M. Coronesi, N. Chirmule, V. Kalyanaraman et al., Accelerated apoptosis in peripheral blood mononuclear cells (PBMCs) from human immunodeficiency virus type-1 infected patients and in CD4 cross-linked PBMCs from normal individuals, Blood, vol.82, pp.3392-3400, 1993.

R. Geleziunas, W. Xu, K. Takeda, H. Ichijo, and W. Greene, HIV-1 Nef inhibits ASK1-dependent death signalling providing a potential mechanism for protecting the infected host cell, Nature, vol.410, issue.6830, pp.834-838, 2001.
DOI : 10.1038/35071111

K. Yoon, J. Jeong, and S. Kim, : Stable Expression of Human Immunodeficiency Virus Type 1 Nef Confers Resistance against Fas-Mediated Apoptosis, AIDS Research and Human Retroviruses, vol.17, issue.2, pp.99-104, 2001.
DOI : 10.1089/08892220150217184

U. Mahlknecht and G. Herbein, Macrophages and T-cell apoptosis in HIV infection: a leading role for accessory cells?, Trends in Immunology, vol.22, issue.5, pp.256-260, 2001.
DOI : 10.1016/S1471-4906(01)01898-1

U. Mahlknecht, C. Deng, M. Lu, T. Greenough, J. Sullivan et al., Resistance to Apoptosis in HIV-Infected CD4+ T Lymphocytes Is Mediated by Macrophages: Role for Nef and Immune Activation in Viral Persistence, The Journal of Immunology, vol.165, issue.11, pp.6437-6446, 2000.
DOI : 10.4049/jimmunol.165.11.6437

A. Badley, J. Mcelhinny, P. Leibson, D. Lynch, M. Alderson et al., Upregulation of Fas ligand expression by human immunodeficiency virus in human macrophages mediates apoptosis of uninfected T lymphocytes, J Virol, vol.70, pp.199-206, 1996.

A. Badley, D. Dockrell, M. Simpson, R. Schut, D. Lynch et al., T Lymphocytes from HIV-infected Individuals Is Mediated by FasL and Tumor Necrosis Factor, The Journal of Experimental Medicine, vol.10, issue.1, pp.55-64, 1997.
DOI : 10.1074/jbc.271.22.12687

H. Gendelman, J. Orenstein, L. Baca, B. Weiser, H. Burger et al., The macrophage in the persistence and pathogenesis of HIV infection, AIDS, vol.3, issue.8, pp.475-495, 1989.
DOI : 10.1097/00002030-198908000-00001

L. Zheng, G. Fisher, R. Miller, J. Peschon, D. Lynch et al., Induction of apoptosis in mature T cells by tumour necrosis factor, Nature, vol.377, issue.6547, pp.348-351, 1995.
DOI : 10.1038/377348a0

M. Grell, E. Douni, H. Wajant, M. Lohden, M. Clauss et al., The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor, Cell, vol.83, issue.5, pp.793-802, 1995.
DOI : 10.1016/0092-8674(95)90192-2

J. Lahdevirta, C. Maury, A. Teppo, and H. Repo, Elevated levels of circulating cachectin/tumor necrosis factor in patients with acquired immunodeficiency syndrome, The American Journal of Medicine, vol.85, issue.3, pp.289-291, 1988.
DOI : 10.1016/0002-9343(88)90576-1

B. Poonia, C. Pauza, and M. Salvato, Role of the Fas/FasL pathway in HIV or SIV disease, Retrovirology, vol.6, issue.1, p.91, 2009.
DOI : 10.1186/1742-4690-6-91

I. Galea, K. Palin, T. Newman, N. Van-rooijen, V. Perry et al., Mannose receptor expression specifically reveals perivascular macrophages in normal, injured, and diseased mouse brain, Glia, vol.277, issue.3, pp.375-384, 2005.
DOI : 10.1002/glia.20124

P. Blair, L. Boise, S. Perfetto, B. Levine, G. Mccrary et al., Impaired induction of the apoptosis-protective protein Bcl-xL in activated PBMC from asymptomatic HIV-infected individuals, Journal of Clinical Immunology, vol.17, issue.3, pp.234-246, 1997.
DOI : 10.1023/A:1027310612323

M. Kaul and S. Lipton, Chemokines and activated macrophages in HIV gp120-induced neuronal apoptosis, Proceedings of the National Academy of Sciences, vol.96, issue.14, pp.8212-8216, 1999.
DOI : 10.1073/pnas.96.14.8212

D. Wu, S. Woodman, J. Weiss, C. Mcmanus, D. Aversa et al., Mechanisms of leukocyte trafficking into the CNS, J Neurovirol, vol.6, issue.1, pp.82-85, 2000.

S. Swingler, A. Mann, J. J. Brichacek, B. Sasseville, V. Williams et al., HIV-1 Nef mediates lymphocyte chemotaxis and activation by infected macrophages, Nat Med, vol.5, pp.997-103, 1999.

T. Smit, B. Wang, T. Ng, R. Osborne, B. Brew et al., Varied Tropism of HIV-1 Isolates Derived from Different Regions of Adult Brain Cortex Discriminate between Patients with and without AIDS Dementia Complex (ADC): Evidence for Neurotropic HIV Variants, Virology, vol.279, issue.2, pp.509-526, 2001.
DOI : 10.1006/viro.2000.0681

E. Duh, W. Maury, T. Folks, A. Fauci, and A. Rabson, Tumor necrosis factor alpha activates human immunodeficiency virus type 1 through Page 13 of 13

B. Antoni, P. Sabbatini, A. Rabson, and E. White, Inhibition of apoptosis in human immunodeficiency virus-infected cells enhances virus production and facilitates persistent infection, J Virol, vol.69, pp.2384-2392, 1995.