A computational framework for gene regulatory network inference that combines multiple methods and datasets. - Archive ouverte HAL Access content directly
Journal Articles BMC Systems Biology Year : 2011

A computational framework for gene regulatory network inference that combines multiple methods and datasets.

(1) , (1) , (1) , (2) , (2) , (3) , (1)
1
2
3
Rita Gupta
  • Function : Author
  • PersonId : 919062
Anna Stincone
  • Function : Author
  • PersonId : 919063
Philipp Antczak
  • Function : Author
  • PersonId : 919064
Sarah Durant
  • Function : Author
  • PersonId : 919065
Roy Bicknell
  • Function : Author
  • PersonId : 919066
Andreas Bikfalvi
  • Function : Author
  • PersonId : 862474
Francesco Falciani
  • Function : Correspondent author
  • PersonId : 919068

Connectez-vous pour contacter l'auteur

Abstract

BACKGROUND: Reverse engineering in systems biology entails inference of gene regulatory networks from observational data. This data typically include gene expression measurements of wild type and mutant cells in response to a given stimulus. It has been shown that when more than one type of experiment is used in the network inference process the accuracy is higher. Therefore the development of generally applicable and effective methodologies that embed multiple sources of information in a single computational framework is a worthwhile objective. RESULTS: This paper presents a new method for network inference, which uses multi-objective optimisation (MOO) to integrate multiple inference methods and experiments. We illustrate the potential of the methodology by combining ODE and correlation-based network inference procedures as well as time course and gene inactivation experiments. Here we show that our methodology is effective for a wide spectrum of data sets and method integration strategies. CONCLUSIONS: The approach we present in this paper is flexible and can be used in any scenario that benefits from integration of multiple sources of information and modelling procedures in the inference process. Moreover, the application of this method to two case studies representative of bacteria and vertebrate systems has shown potential in identifying key regulators of important biological processes.
Fichier principal
Vignette du fichier
1752-0509-5-52.pdf (1.48 Mo) Télécharger le fichier
Vignette du fichier
1752-0509-5-52-S1.PDF (231.94 Ko) Télécharger le fichier
Vignette du fichier
1752-0509-5-52.xml (80.63 Ko) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Format : Other
Format : Other
Loading...

Dates and versions

inserm-00663853 , version 1 (27-01-2012)

Identifiers

Cite

Rita Gupta, Anna Stincone, Philipp Antczak, Sarah Durant, Roy Bicknell, et al.. A computational framework for gene regulatory network inference that combines multiple methods and datasets.. BMC Systems Biology, 2011, 5 (1), pp.52. ⟨10.1186/1752-0509-5-52⟩. ⟨inserm-00663853⟩

Collections

INSERM
84 View
402 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More