D. Cox, Regression Models and Life-Tables, Journal of the Royal Statistical Society, Series B, vol.34, pp.187-220, 1972.
DOI : 10.1007/978-1-4612-4380-9_37

D. Altman, D. Stavola, B. Love, S. Stepniewska, and K. , Review of survival analyses published in cancer journals, British Journal of Cancer, vol.72, issue.2, pp.511-519, 1995.
DOI : 10.1038/bjc.1995.364

S. Mathoulin-pelissier, S. Gourgou-bourgade, F. Bonnetain, and A. Kramar, Survival End Point Reporting in Randomized Cancer Clinical Trials: A Review of Major Journals, Journal of Clinical Oncology, vol.26, issue.22, pp.3721-3727, 2008.
DOI : 10.1200/JCO.2007.14.1192

I. Web and . Knowledge, Web of Science Accessed Dec 1st, 2008.

T. Clark, M. Bradburn, S. Love, and D. Altman, Survival Analysis Part I: Basic concepts and first analyses, British Journal of Cancer, vol.89, issue.2, pp.232-240, 2003.
DOI : 10.1038/sj.bjc.6601118

M. Bradburn, T. Clark, S. Love, and D. Altman, Survival Analysis Part II: Multivariate data analysis ??? an introduction to concepts and methods, British Journal of Cancer, vol.89, issue.3, pp.431-437, 2003.
DOI : 10.1038/sj.bjc.6601119

M. Bradburn, T. Clark, S. Love, and D. Altman, Survival Analysis Part III: Multivariate data analysis ??? choosing a model and assessing its adequacy and fit, British Journal of Cancer, vol.89, issue.4, pp.605-616, 2003.
DOI : 10.1038/sj.bjc.6601120

T. Clark, M. Bradburn, S. Love, and D. Altman, Survival Analysis Part IV: Further concepts and methods in survival analysis, British Journal of Cancer, vol.89, issue.5, pp.781-787, 2003.
DOI : 10.1038/sj.bjc.6601117

C. Punt, M. Buyse, C. Kohne, P. Hohenberger, R. Labianca et al., Endpoints in Adjuvant Treatment Trials: A Systematic Review of the Literature in Colon Cancer and Proposed Definitions for Future Trials, JNCI Journal of the National Cancer Institute, vol.99, issue.13, pp.998-1003, 2007.
DOI : 10.1093/jnci/djm024

T. Therneau and P. Grambsch, Modelling Survival Data: Extending the Cox Model, 2000.

J. Klein and M. Moeschberger, Survival analysis. Techniques for censored and truncated data, 2003.

J. Kalbfleisch and R. Prentice, The statistical analysis of failure time data, 2002.
DOI : 10.1002/9781118032985

J. Lawless, Statistical models and methods for lifetime data, 1982.
DOI : 10.1002/9781118033005

T. Scheike and T. Martinussen, On Estimation and Tests of Time-Varying Effects in the Proportional Hazards Model, Scandinavian Journal of Statistics, vol.88, issue.1, pp.51-62, 2004.
DOI : 10.1023/A:1015849821021

P. Grambsch and T. Therneau, Proportional hazards tests and diagnostics based on weighted residuals, Biometrika, vol.81, issue.3, pp.515-541, 1994.
DOI : 10.1093/biomet/81.3.515

H. Putter, M. Sasako, H. Hartgrink, V. Van-d, and J. Van-houwelingen, Long-term survival with non-proportional hazards: results from the Dutch Gastric Cancer Trial, Statistics in Medicine, vol.88, issue.18, pp.2807-2828, 2005.
DOI : 10.1002/sim.2143

N. Ng-'andu, An empirical comparison of statistical tests for assessing the proportional hazards assumption of Cox's model, pp.611-637, 1997.

G. Cortese, T. Scheike, and T. Martinussen, Flexible survival regression modelling, Statistical Methods in Medical Research, vol.19, issue.1, pp.1-24, 2009.
DOI : 10.1177/0962280209105022

E. Kaplan and P. Meier, Nonparametric Estimation from Incomplete Observations, Journal of the American Statistical Association, vol.37, issue.282, pp.457-81, 1958.
DOI : 10.1214/aoms/1177731566

G. Ea, A generalized Wilcoxon test for comparing arbitrarily singlycensored samples, Biometrika, vol.52, pp.203-226, 1965.

N. Mantel, Evaluation of survival data and two new rank order statistics arising in its consideration, Cancer Chemother Rep, vol.50, pp.163-70, 1966.

O. Quigley, J. Pessione, and F. , The Problem of a Covariate-Time Qualitative Interaction in a Survival Study, Biometrics, vol.47, issue.1, pp.101-116, 1991.
DOI : 10.2307/2532499

T. Saphner, D. Tormey, and R. Gray, Annual hazard rates of recurrence for breast cancer after primary therapy., Journal of Clinical Oncology, vol.14, issue.10, pp.2738-2784, 1996.
DOI : 10.1200/JCO.1996.14.10.2738

M. Hery, T. Delozier, A. Ramaioli, J. Julien, L. De et al., Natural history of node-negative breast cancer: are conventional prognostic factors predictors of time to relapse?, The Breast, vol.11, issue.5, pp.442-450, 2002.
DOI : 10.1054/brst.2002.0462

R. Arriagada, M. Le, A. Dunant, M. Tubiana, and G. Contesso, Twenty-five years of follow-up in patients with operable breast carcinoma, Cancer, vol.365, issue.4, pp.743-50, 2006.
DOI : 10.1002/cncr.21659

S. Hilsenbeck, P. Ravdin, C. De-moor, G. Chamness, C. Osborne et al., Time-dependence of hazard ratios for prognostic factors in primary breast cancer, Breast Cancer Research and Treatment, vol.32, issue.S, pp.227-264, 1998.
DOI : 10.1023/A:1006133418245

M. Schemper, Cox Analysis of Survival Data with Non-Proportional Hazard Functions. The Statistician, pp.455-65, 1992.

T. Martinussen and H. Thomas, Dynamic Regression Models for Survival Data, 2006.

D. Lin, L. Wei, and Z. Ying, Checking the Cox model with cumulative sums of martingale-based residuals, Biometrika, vol.80, issue.3, pp.557-72, 1993.
DOI : 10.1093/biomet/80.3.557

T. Moreau, O. Quigley, J. Mesbah, and J. , A Global Goodness-of-Fit Statistic for the Proportional Hazards Model, Applied Statistics, vol.34, issue.3, pp.212-220, 1985.
DOI : 10.2307/2347465

C. Quantin, M. Abrahamowicz, T. Moreau, G. Bartlett, T. Mackenzie et al., Variation Over Time of the Effects of Prognostic Factors in a Population-based Study of Colon Cancer: Comparison of Statistical Models, American Journal of Epidemiology, vol.150, issue.11, pp.1188-200, 1999.
DOI : 10.1093/oxfordjournals.aje.a009945

M. Abrahamowicz, T. Mackenzie, and J. Esdaile, Time-Dependent Hazard Ratio: Modeling and Hypothesis Testing with Application in Lupus Nephritis, Journal of the American Statistical Association, vol.18, issue.436, pp.1432-1441, 1996.
DOI : 10.1080/01621459.1984.10478092

W. Anderson, B. Chen, I. Jatoi, and P. Rosenberg, Effects of Estrogen Receptor Expression and Histopathology on Annual Hazard Rates of Death from Breast Cancer, Breast Cancer Research and Treatment, vol.406, issue.1, pp.121-127, 2006.
DOI : 10.1007/s10549-006-9231-y

W. Sauerbrei, P. Royston, and M. Look, A New Proposal for Multivariable Modelling of Time-Varying Effects in Survival Data Based on Fractional Polynomial Time-Transformation, Biometrical Journal, vol.18, issue.3, pp.453-73, 2007.
DOI : 10.1002/bimj.200610328

S. Lagakos and D. Schoenfeld, Properties of Proportional-Hazards Score Tests under Misspecified Regression Models, Biometrics, vol.40, issue.4, pp.1037-1085, 1984.
DOI : 10.2307/2531154

B. Shepherd, The cost of checking proportional hazards, Statistics in Medicine, vol.57, issue.8, pp.1248-60, 2008.
DOI : 10.1002/sim.3020

M. Yoshimoto, G. Sakamoto, and Y. Ohashi, Time dependency of the influence of prognostic factors on relapse in breast cancer, Cancer, vol.71, issue.10, pp.2993-3001, 1993.
DOI : 10.1002/1097-0142(19931115)72:10<2993::AID-CNCR2820721022>3.0.CO;2-6

K. Gilchrist, R. Gray, B. Fowble, D. Tormey, and S. Taylor, Tumor necrosis is a prognostic predictor for early recurrence and death in lymph node-positive breast cancer: a 10-year follow-up study of 728 Eastern Cooperative Oncology Group patients., Journal of Clinical Oncology, vol.11, issue.10, pp.1929-1964, 1993.
DOI : 10.1200/JCO.1993.11.10.1929

S. Gore, S. Pocock, and G. Kerr, Regression Models and Non-Proportional Hazards in the Analysis of Breast Cancer Survival, Applied Statistics, vol.33, issue.2, pp.176-95, 1984.
DOI : 10.2307/2347444

P. Bolard, C. Quantin, J. Esteve, J. Faivre, and M. Abrahamowicz, Modelling time-dependent hazard ratios in relative survival, Journal of Clinical Epidemiology, vol.54, issue.10, pp.986-96, 2001.
DOI : 10.1016/S0895-4356(01)00363-8