Additional file 4 — Representation of the simulated example.

n = 50 or 150 patients

		Low risk patients group $(n/2)$	High risk patients group $(n/2)$
Survival time distribution		$S(t) = t$ or $S(t) = [1 + t]^{-1}$	$S(t) = te^{-\xi}$ or $S(t) = [1 + t \cdot e^{\xi}]^{-1}$
Genes G	g = 1 - 50	$\operatorname{Log-}\mathcal{N}(4, 1.5)$	$\operatorname{Log-}\mathcal{N}(0, 1.5)$
	g = 51 - 100	$\operatorname{Log-}\mathcal{N}(3,1.5)$	$\operatorname{Log-}\mathcal{N}(0, 1.5)$
	g = 101 - 150	60% Log- $\mathcal{N}(0, 1.5) + 40\%$ Log- $\mathcal{N}(1, 1.5)$	
	g = 151 - 250	$50\% \text{ Log-}\mathcal{N}(0, 1.5) + 50\% \text{ Log-}\mathcal{N}(0.5, 1.5)$	
	g = 251 - 350	30% Log- $\mathcal{N}(0, 1.5) + 70\%$ Log- $\mathcal{N}(0.1, 1.5)$	
	g = 301 - 1000	$\operatorname{Log-}\mathcal{N}(0, 1.5)$	

To complete this simulation scheme, correlations were added for each group of 10 genes ($\rho = 0.25; 0.5$ or 0.75). A quantile normalization was finally applied.