Additional file 1 — Calculation of the parameters of the different censoring mechanisms.

The censoring mechanism was assumed to be independent uniform $C_i \sim \mathcal{U}\{0, r\}$ or exponential $C_i \sim \mathcal{E}(\gamma)$. • For a Cox proportional hazards model, the survival function was exponential with parameters $\lambda = \lambda_0 e^{\beta Z}$. In order to determine r and γ for a given value of the expected overall percentage p_c of censoring, we solved iteratively for r_p and γ_p (value of r and γ for a given percentage of censoring p_c , respectively) in the following equations.

Under the null hypothesis ($\beta = 0$), the equations to solve were

$$p_c = \frac{1}{\lambda_0 r_p} \left(1 - e^{-\lambda_0 r_p} \right)$$
, for a uniform censoring

and

$$p_c = \frac{\gamma_p}{\lambda_0 + \gamma_p}$$
 , for an exponential censoring

Under the alternative hypothesis (i.e. with covariate, $\beta \neq 0$), the equations to solve were

$$p_c = \int_{\mathcal{R}} \left\{ \frac{1}{r_p \lambda_0 \exp(\beta z)} \left(1 - e^{-\lambda_0 r_p \exp(\beta z)} \right) f_Z(z) \right\} dz$$

for a uniform censoring, and

$$p_c = \int_{\mathcal{R}} \left\{ \frac{\gamma_p}{\gamma_p + \lambda_0 \exp(\beta z)} f_Z(z) \right\} dz$$

for an exponential censoring. The function $f_Z(z)$ denote the density of the covariate Z.

• Under a proportional odds model, T had a log-logistic distribution with density

 $f(t) = \lambda_0 e^{-\beta z} / (1 + t e^{-\beta z})^2$. In this case, the equations to solve under the null hypothesis were

$$p_c = \frac{\ln(r)}{r}$$
, for a uniform censoring

and

$$p_c = \int_0^\infty \frac{\gamma e^{-\gamma c}}{1+c} dc$$
 , for an exponential censoring

Under the alternative hypothesis, the equations were

$$p_c = \int_{\mathcal{R}} \left\{ \frac{\ln(1 + re^{-\beta z})}{r} f_Z(z) \right\} dz$$

for a uniform censoring, and

$$p_c = \int_{\mathcal{R}} \left\{ \int_0^\infty \left(\frac{\gamma e^{-\gamma c}}{1 + c e^{-\beta z}} \right) dc \right\} f_Z(z) dz$$

for an exponential censoring.

• For both models, for one subject *i* and for a uniform censoring, two independent uniform variates $U_{0.25}^i$ and $U_{0.5}^i$ on $\{0, r_{0.25}^i\}$ and $\{0, r_{0.5}^i\}$ were generated, respectively. For an exponential censoring, two independent exponential variates $\mathcal{E}_{0.25}^i$ and $\mathcal{E}_{0.5}^i$ with parameters $\gamma_{0.25}^i$ and $\gamma_{0.5}^i$ were generated, respectively. In both cases, the three variates T^i , min $(T^i, C_{0.25}^i)$ and min $(T^i, C_{0.5}^i)$, with $C^i = U^i$ or \mathcal{E}^i , represent the observed times for the subject *i* in three situations with an expected percentage of censoring equal to 0, 25 and 50%, respectively.