Additional file 1 - Calculation of the parameters of the different censoring mechanisms.

The censoring mechanism was assumed to be independent uniform $C_{i} \sim \mathcal{U}\{0, r\}$ or exponential $C_{i} \sim \mathcal{E}(\gamma)$.

- For a Cox proportional hazards model, the survival function was exponential with parameters $\lambda=\lambda_{0} e^{\beta Z}$.

In order to determine r and γ for a given value of the expected overall percentage p_{c} of censoring, we solved iteratively for r_{p} and γ_{p} (value of r and γ for a given percentage of censoring p_{c}, respectively) in the following equations.

Under the null hypothesis $(\beta=0)$, the equations to solve were

$$
p_{c}=\frac{1}{\lambda_{0} r_{p}}\left(1-e^{-\lambda_{0} r_{p}}\right), \text { for a uniform censoring }
$$

and

$$
p_{c}=\frac{\gamma_{p}}{\lambda_{0}+\gamma_{p}}, \text { for an exponential censoring }
$$

Under the alternative hypothesis (i.e. with covariate, $\beta \neq 0$), the equations to solve were

$$
p_{c}=\int_{\mathcal{R}}\left\{\frac{1}{r_{p} \lambda_{0} \exp (\beta z)}\left(1-e^{-\lambda_{0} r_{p} \exp (\beta z)}\right) f_{Z}(z)\right\} d z
$$

for a uniform censoring, and

$$
p_{c}=\int_{\mathcal{R}}\left\{\frac{\gamma_{p}}{\gamma_{p}+\lambda_{0} \exp (\beta z)} f_{Z}(z)\right\} d z
$$

for an exponential censoring. The function $f_{Z}(z)$ denote the density of the covariate Z.

- Under a proportional odds model, T had a log-logistic distribution with density
$f(t)=\lambda_{0} e^{-\beta z} /\left(1+t e^{-\beta z}\right)^{2}$. In this case, the equations to solve under the null hypothesis were

$$
p_{c}=\frac{\ln (r)}{r}, \text { for a uniform censoring }
$$

and

$$
p_{c}=\int_{0}^{\infty} \frac{\gamma e^{-\gamma c}}{1+c} d c, \text { for an exponential censoring }
$$

Under the alternative hypothesis, the equations were

$$
p_{c}=\int_{\mathcal{R}}\left\{\frac{\ln \left(1+r e^{-\beta z}\right)}{r} f_{Z}(z)\right\} d z
$$

for a uniform censoring, and

$$
p_{c}=\int_{\mathcal{R}}\left\{\int_{0}^{\infty}\left(\frac{\gamma e^{-\gamma c}}{1+c e^{-\beta z}}\right) d c\right\} f_{Z}(z) d z
$$

for an exponential censoring.

- For both models, for one subject i and for a uniform censoring, two independent uniform variates $U_{0.25}^{i}$ and $U_{0.5}^{i}$ on $\left\{0, r_{0.25}^{i}\right\}$ and $\left\{0, r_{0.5}^{i}\right\}$ were generated, respectively. For an exponential censoring, two independent exponential variates $\mathcal{E}_{0.25}^{i}$ and $\mathcal{E}_{0.5}^{i}$ with parameters $\gamma_{0.25}^{i}$ and $\gamma_{0.5}^{i}$ were generated, respectively. In both cases, the three variates $T^{i}, \min \left(T^{i}, C_{0.25}^{i}\right)$ and $\min \left(T^{i}, C_{0.5}^{i}\right)$, with $C^{i}=U^{i}$ or \mathcal{E}^{i}, represent the observed times for the subject i in three situations with an expected percentage of censoring equal to 0,25 and 50%, respectively.

