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1 Prior distributions for the number of changepoints and the number of parents
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Figure 1: Prior distributions for the number of CPs (left) and the number of parents (right). The number of
CPs (k) (respectively the number of parents (s)) is sampled from a truncated Poisson with mean λ (resp. Λ),
which is drawn from an Inverse Gamma distribution : λ,Λ ∼ Ga(α, β). Here we set the maximal number of
CPs k = 10 and the maximal number of Parents s = 5. We choose the hyperparameters α = 1 and β = 0.5
in order to limit the dimension and to preserve the network sparsity.
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2 Move acceptation based on the network structure only
Following Andrieu and Doucet in their RJ-MCMC approach for model selection [1], we integrate out the
joint posterior distribution for parameters (ki, ξi, si,Pai, θi, σi, xi),

Pr(ki, ξi, si,Pai, θi, σi, xi) = Pr(ki) Pr(ξi|ki)

×
ki∏
h=1

Pr(xih|ξih−1, ξ
i
h, s

i
h,Paih, θ

i
h, σ

i
h) Pr(sih,Paih, θ

i
h|σih) Pr(σih) (1)

over the parameters (θi, σi) to obtain an expression of the posterior density Pr(ki, ξi, si,Pai, xi). The
regression model parameters (θi, σi) are not related to the network topology which is our main interest
here. The integration over θih (normal distribution) and over σih (inverse gamma distribution) yields,

Pr(ki, ξi, si,Pai, xi) =
∫ ∫

Pr(ki, ξi, si,Pai, θi, σi, xi)dθidσi

=
exp(−λ)
normλ

λk
i (n− 2− ki)!

(n− 2)!

(
exp(−Λ)
normΛ

(
γ0
2

)υ0/2

Γ(υ0
2 )

)ki+1

ki+1∏
h=1

 (p− sih)! Λs
i
h

p! (δ2 + 1)(sih+1)/2
Γ

(
υ0 +mi(ξih − ξih−1)

2

)(
γ0 + (xih)†P ihx

i
h

2

)− υ0+mi(ξih−ξ
i
h−1)

2

 (2)

where normλ and normΛ are the normalization constants required by the truncation of the Poisson
distributions with mean λ and Λ respectively, and matrices P ih, M i

h and vector dih are defined as follows,
with I referring to the identity matrix of size mi(ξih − ξih−1),

P ih = I −D(xτ ih)M i
hD
†(xτ ih), (3)

M i
h =

δ2

δ2 + 1

(
D†(xτ ih)D(xτ ih)

)−1

, (4)

dih = M i
hD
†(xτ ih)yih (5)

where the symbol † denotes matrix transposition, ΣPaih
= δ−2D†

Paih
(x)DPaih

(x) and DPaih
(x) is a matrix of

size mi(ξih − ξih−1)× (sih + 1) whose first column is a vector of 1s when the regression model includes a
constant and the j + 1th column contains the observed (eventually repeated) value
(xjtl)(ξih−1−1)≤t<(ξih−1);1≤l≤m for all parent gene j in Paih.
We use this posterior distribution for the proposals related to the changepoint structure (CP birth or CP
death). The generation of the regression model parameters (θ?h, σ

?
h) is only optional, and only used when an

estimation of their posterior distribution is wished for. Also, a changepoint birth or death acceptance is
performed without generating the regression model parameters for the modified phase. Thus the
acceptance probability of the move does not depend on the regression model parameters (θh, σh) but only
on the network topology in the phases delimited by the changepoint involved in the move.
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3 Details of the ARTIVA algorithm
The technical details of the implementation of ARTIVA herafter. The RJ-MCMC acceptance probability
for a changepoint ‘birth’ can be written as min(1, rk,k+1) where

rk,k+1 = (posterior distribution ratio)× (proposal ratio)× (Jacobian). (6)

The changepoint ‘death’ is accepted with probability min(1, rk,k−1). We outline below the computation of
the proposal ratio and the Jacobian in (6). The four different moves are defined using heuristic
considerations; our only consideration is that the correct invariant distribution of the Markov chain is
maintained. As pointed out in [2], a particular choice of move proposal will only influence the convergence
rate of the algorithm but not the properties of the stationary distribution.

3.1 Birth of a changepoint
Let ξi be the current changepoint vector containing ki changepoints. When considering the birth of a new
changepoint, we first draw a new changepoint position ξ? uniformly among those that do not currently
contain changepoints,

ξ?|ξi ∼ U {3,...,n}\{ξi}. (7)

The new changepoint is within current phase h? of the target gene i, i.e. ξih?−1 < ξ? < ξih? . This phase
starts at changepoint ξih?−1 and ends at ξih? − 1, where ξi0 = 2 and ξiki+1 = n+ 1 as previously defined. The
proposed new changepoint vector is ξ+ = ξi ∪ {ξ?}.
The proposal ratio is given by

dk+1

bk

q( ξ, Γ |ξ+,Γ+)
q(ξ+,Γ+|ξ, Γ)

, (8)

with
dk+1

bk
=
k + 1
λ

and
q(ξ+,Γ+|ξ,Γ) = q(ξ+|ξ)q(Γ+|Γ, ξ, ξ+) (9)

where
q(ξ+|ξ) =

1
((n− 1)p− k)

is the probability of drawing new changepoint ξ+ when adding an extra changepoint to vector ξ, and q(Γ+)
is the probability of drawing new topology Γ+ when adding changepoint ξ? to the current network with
topology defined by (ξ,Γ) and

1
2
p(|Γ?| = s?|Λ)p(Γ?|s?) if Γ+

h?L
6= Γ+

h?R
,

q(Γ+|Γ, ξ, ξ+) = or
p(|Γ?| = s?|Λ)p(Γ?|s?) if Γ+

h?L
= Γ+

h?R
,

where p(s?|Λ) = exp(−Λ)
normΛ

Λs
?

s?! is a truncated Poisson distribution with parameter Λ (defined in Equation
(???in the main text of the paper), normΛ is the normalization for the truncated Poisson distribution),
p(Γ?|s?) = 1

(s?q )
= s?!(q−s?)!

q! and Γ+
h?L
,Γ+

h?R
are respectively the segments to the left and to the right of the

new changepoint ξ?.
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Furthermore q(ξ,Γ|ξ+,Γ+) = q(ξ|ξ+)q(Γ|ξ,Γ+, ξ+) is the probability of removing changepoint ξ? = ξ+\ξ
when removing a changepoint from the changepoint vector ξ+ where

q(ξ|ξ+) =
1

(k + 1)

and

1
2

if Γ?L 6= Γ?R,

q(Γ|ξ,Γ+, ξ+) = or
1 if Γ?L = Γ?R,

as the topology of the new segment is the topology of one of the two merged segments.
Finally, the proposal ratio writes,

dk+1

bk

q( ξ, Γ |ξ+,Γ+)
q(ξ+,Γ+|ξ, Γ)

=
(n− 1)p− k

λ

q!
s?!(q − s?)!

normΛ

exp(−Λ)
s?!
Λs?

(10)

The Jacobian equals 1. Let s+ = s ∪ {s?} and τ+ = τ ∪ {τ?} define the sets of predictors of the phases
delimited by the proposed new changepoints vector ξ+. We compute the posterior distribution ratio
Pr(k+1,ξ+,s+,τ+|y)

Pr(k,ξ,s,τ |y) from equation (2). Then from proposal ratio (8), we compute,

rk,k+1(ξ, ξ+) =
1

(δ2 + 1)(s?+1)/2

(
γ0
2

)υ0/2

Γ(υ0
2 )

Γh?LΓh?R
Γh?

(
υ0 + (yih?)†P ih?y

i
h?

2

) 1
2 (υ0+mi(ξih?−ξ

i
h?−1))

(
υ0 + (yih?L)†P ih?Ly

i
h?L

2

)− 1
2 (υ0+mi(ξih?

L
−ξih?

L
−1))(

υ0 + (yih?R)†P ih?Ry
i
h?R

2

)− 1
2 (υ0+mi(ξih?

R
−ξih?

R
−1))

. (11)

where, for all h in {1, .., ki+ 1}, Γh = Γ
(
υ0+mi(ξih−ξ

i
h−1)

2

)
. The birth of the proposed changepoint is

accepted with probability,

αk,k+1(ξ, ξ+) = min{1, rk,k+1(ξ, ξ+)}. (12)

If a birth is accepted then the sample of new parameters (a?, σ?) from (21,22) for the new phase whose set
of predictors is defined by (s?, τ?) and the state of the Markov chain becomes (k + 1, ξ+, s+, τ+, a+, σ+),
where a+ = a ∪ {a?} and σ+ = σ ∪ {σ?}. Otherwise the Markov chain remains unchanged.

3.2 Death of a changepoint
When considering the death of an existing changepoint, we first draw an existing changepoint ξih uniformly
from {ξih}1≤h≤ki and collapse the neighbouring phases of changepoint ξih into a single phase. The proposed
new changepoint vector is ξ− = ξi\{ξih}, and the set of parents for the new phase is the set Paih of parents
of gene i in phase h with probability 1/2; the set Paih+1 of parents in phase h+ 1 otherwise. The
acceptance probability is then given by,

αk,k−1(ξi, ξ−) = min{1, r−1
ki−1,ki(ξ

−, ξi)}. (13)

If accepted, the neighbouring phases are collapsed into one and the state of the Markov chain becomes
(ki − 1, ξ−, s−,Pa−, θ−, σ−) where the parameters with superscript ”−” are the reduced parameter set
after deletion of one phase.
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3.3 Shift of a changepoint position
Moves of changepoint positions are implemented via a Metropolis update. We first choose an existing
changepoint ξih uniformly from {ξih}1≤h≤ki . Then we propose to update changepoint ξih by drawing a new
position ξi?h uniformly from [max{ξih −W/2, ξih−1 + 1}, ξih − 1]∪ [ξih + 1,min{ξih +W/2, ξih+1 − 1}], where W
is a tunable window size. For short time-series, we choose W = 2. The new changepoint vector ξ?,
obtained by replacing ξih with ξi?h , is accepted with probability αk(ξi, ξ?) = min{1, rk(ξi, ξ?)} where,

rk(ξi, ξ?) =
Pr(ki, ξ?, si,Pai|x) q(ξi|ξ?)
Pr(ki, ξi, si,Pai|x) q(ξ?|ξi)

, (14)

and q(ξ?|ξi) is the probability of drawing new changepoint ξ? given ξi. The number of new changepoint
vectors that can be proposed by changing the position of one element of vector ξi is equal to kiW − e
where e is the number of impossible position changes because the gap between two successive changepoints
is smaller than W/2.
We thus have

rk(ξi, ξ?) =

 (
γ0 + (xi?h )†P i?h x

i?
h

)υ0+mi(ξi?h −ξ
i
h−1) (

γ0 + (xi?h+1)†P i?h+1x
i?
h+1

)υ0+mi(ξih+1−ξ
i?
h )(

γ0 + (xih)†P ihx
i
h

)υ0+mi(ξih−ξ
i
h−1) (

γ0 + (xih+1)†P ih+1x
i
h+1

)υ0+mi(ξih+1−ξ
i
h)

1/2

Γ
(
υ0+mi(ξi?h −ξ

i
h−1)

2

)
Γ
(
υ0+mi(ξih+1−ξ

i?
h )

2

)
Γ
(
υ0+mi(ξih−ξ

i
h−1)

2

)
Γ
(
υ0+mi(ξih+1−ξ

i
h)

2

) kW − e
kW − e?

, (15)

where xi?h refers to the gene i expression levels observed in phase h of the changepoint vector ξ? and P i?h is
the projection matrix build from xi?h as defined in (3).

3.4 Phase Update (Updating the network topology within phases)
For regression model change moves we use a second level of RJ-MCMC computations based on the model
selection procedure by Andrieu and Doucet [1, 2]. When such a move is chosen, we consider regression
model changes within all current phases. So for all phases h of target gene i, we successively propose three
different moves: birth of a new parent, death of an existing parent or update of the regression model
parameters (θPaih

, σih). The parent birth and death moves represent changes from sih to sih + 1 or sih − 1
parents in the regression model. The probability for choosing theses moves are, respectively, bsih , dsih and
vsih , and satisfy bsih + dsih + vsih = 1. They are defined as follows,

bsih = cR min
{

1,
Prs(sih + 1)

Prs(sih)

}
and dsih = cR min

{
1,

Prs(sih − 1)
Prs(sih)

}
. (16)

We take cR = 0.5 so that parent birth or death moves are often proposed. This allows us to range over the
set of all possible model structures. When considering a parent birth, a new parent is uniformly drawn
from {1, ..., p}\{Paih} and we set the new parents subset Pai+h = Paih ∪ {j?}. A parent birth move, that is a
change from Paih to Pai+h , is accepted with acceptance probability
αsih,sih+1(Paih,Pai+h ) = min{1, rsih,sih+1(Paih,Pai+h )} where,

rsih,sih+1(Paih,Pai+h ) =
1

(1 + δ2)1/2

(
γ0 + (xih)†PPaih

xih

γ0 + (xih)†PPai+h
xih

)(mi(ξih−ξ
i
h−1)+υ0)/2

. (17)

The computation of rsih,sih+1(Paih,Pai+h ) is carried out by following Andrieu and Doucet [1]. In the same
manner, a parent death move is accepted with probability αsih,sih−1(Paih,Pai−h ) =
min{1, r−1

sih−1,s
i
h

(Pai−h ,Paih)}. The update of regression model parameters is computed from equations (21)

and (22) in Algorithm 1.
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Algorithm 1: Phase update move

Edge birth
Choose a new parent j? ∼ U{1,...,p}\{Paih} and set Pai+h = Paih ∪ {j?}.
Compute αsih,sih+1(Paih,Pai+h ) = min{1, rsih,sih+1(Paih,Pai+h )} from (17).
Sample u ∼ U{0,1}.
if u ≤ αsih,sih+1(Paih,Pai+h ) then

the model in phase h becomes (sih + 1,Pai+h ),
else the model remains unchanged: update parameters (aih, σ

i
h) according to equations (21, 22).

Edge death
Choose one existing parent, j? ∼ U{Paih}, and set Pai−h = Paih\{j?}
Compute αsih,sih−1(Paih,Pai−h ) = min{1, rsih,sih−1(Paih,Pai−h )} from (17).
Sample u ∼ U{0,1}.
if u ≤ αsih,sih−1(Paih,Pai−h ) then

the state i becomes (s− 1,Pai−h ),
else the model remains unchanged: update parameters (aih, σ

i
h) according to equations (21, 22).

Update regression parameters

(σi
h)2|yi

h,Pai
h ∼ IG

„
υ0 +mi(ξi

h+1 − ξi
h)

2
,
γ0

2
+

1

2
(xi

h)†PPai
h
xi

h

«
(21)

aPai
h
|xi

h,Pai
h, σ

i
h ∼ N

„
δ2

δ2 + 1

“
D†

Pai
h

(x)DPai
h
(x)

”−1

D†
Pai
h

(x) xi
h,

δ2(σi
h)2

δ2 + 1

“
D†

Pai
h

(x)DPai
h
(x)

”−1
«

(22)

3.5 Updating hyperparameters
The parameter λ is updated at each iteration of this 2-step RJ-MCMC procedure and the parameters
(δ2,Λ) are updated whenever the fourth move ’Phase update’ for the network models within phases is
performed. The updating of the hyperparameters is carried out as follows,

λ | ki ∼ Ga(
1
2

+ ki + ε1, 1 + ε2), (18)

Λ | sih ∼ Ga(
1
2

+ sih + ε1, 1 + ε2), (19)

δ | sih,Paih, θPaih
∼ IG

sih + αδ2 ,
θPaih

D†
Paih

(x)DPaih
(x)θPaih

2(σih)2
+ βδ2

 . (20)

7



4 Convergence of the algorithm
The 4th move ’Phase update’ (for updating the network topology within phases) has been adapted from
the RJ-MCMC procedure for model selection developed by Andrieu and Doucet [1], in which it has been
established that the Markov chain generated by the iterations converges to the posterior distribution of the
model parameters. This convergence occurs at a uniform geometric rate (see proof in [1]).
The three other moves for changepoint detection (‘CP birth’, ‘CP death’ and ‘CP shift’) are based on the
same approach, performing model selection for the changepoint position vector. In practice, the number of
50,000 iterations — used in all our analyses — seems sufficient: the posterior probability p(k|x) is
stabilized as shown in Figure 2.

Figure 2: Instantaneous estimation of the posterior distribution of the number of changepoint k for gene
anarchist (CG5785) in the ’Drosophila life cycle’ data by Arbeitman et al. [3].
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5 Bayes factor (BF) computation
The Bayes factor [4] is a summary of the evidence provided by the data in favour of one scientific theory
(H1), represented by a statistical model, over another H0. Often the null model is the complementary
model to the assumption to be tested H0 = H1.
The idea is to begin with data D assumed to have arisen under one of the two hypotheses H1 and H0

drawn from probability densities P (D|H1) or P (D|H0), respectively. Given a priori model probabilities
P (H1) and P (H0) = 1− P (H1), the data allow us to construct a posteriori probabilities P (H1|D) and
P (H0|D) = 1− P (H1|D).
These posterior probabilities are obtained through an estimation procedure. The Bayes Factor is defined as
follows,

BF =
P (D|H1)
P (D|H0)

.

From Bayes’s Theorem, this Bayes can be written as

BF =
P (H1|D)
P (H0|D)

P (H0)
P (H1)

.

Following Kass and Raftery [4], a model will (i) not be supported with a Bayes factor below 3, (ii) be
positively supported with a Bayes factor comprised between 3 and 20 and (iii) be strongly supported with
a Bayes factor over 20.
We detail below the computation of the Bayes factor used in the main text. For each case, we first define
the Bayes factor for the hypothesis to be tested, then we describe the computation process.

5.1 BF for the number of changepoints
Definition

Let n be the number of time points measurements, k be the maximum number of changepoints for each
gene ( k < n) and ki be the number of changepoints for gene i (1 ≤ i ≤ p).
For each gene i, for all 0 ≤ k ≤ k, we computed the Bayes factor related to the following assumptions:

H0: ’there are k changepoints for gene i in the network model’ (i.e. ki = k)
H1: H0

BF =
P (H1|D)
P (H0|D)

P (H0)
P (H1)

=
1− P (ki = k|D)
P (ki = k|D)

P (ki = k)
1− P (ki = k)

.

Using the marginalization over the network structures and parameters,

P (ki = k|D) =
∑

ki,ξi,si,Pai,θi,σi

P (ki, ξi, si,Pai, θi, σi|D)1lki=k,

the posterior probability P (ki = k|D) is given by:

P̂ (ki = k|D) =
Number of iterations where the current model contains 1 changepoint exactly

Total number of iterations

where the number of iterations refers to the number of iteration after the burn-in period.
Given that the distribution of ki is a truncated Poisson with mean λ (truncated to the maximal number of
changepoints k), i. e.

∀k ≤ k, P (ki = k) = C(λ)
λk

k!
exp(−λ)
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where C(λ) =
(

exp(−λ)
∑k
l=0

λl

l!

)−1

is a normalization constant and λ ∼ Ga(α, β), the probability of
observing k changepoints for gene i writes,

P (ki = k) =
∫

R+

P (k|λ)f(λ)dλ

=
∫

R+

C(λ)
λk

k!
exp(−λ)

βα

Γ(α)
λα−1 exp(−βλ) dλ

Computation of P (ki = k)
(a) If the truncation threshold k is large (approximately starting from k ≥ 20), then C(λ) ≈ 1 and we

have,

P (ki = k) =
∫

R+

λk

k!
exp(−λ)

βα

Γ(α)
λα−1 exp(−βλ) dλ

=
βα Γ(α+ k)

k! (β + 1)α+k Γ(α)

∫
R+

(β + 1)α+k

Γ(α+ k)
λ(α+k)−1 exp (−(β + 1)λ) dλ

=
βα Γ(α+ k)

k! (β + 1)α+k Γ(α)

(∫
R+

fGa(α+k,β+1) = 1

)
.

(b) If the truncation threshold k is small (as in our case), then C(λ) 6= 1. Therefore the computation of
P (ki = k) was performed numerically. Using Mathematica we computed numerically the values of the
probabilities P (k) for k = 0 to k = k.

For example, for k = 10, α = 1 and β = 0.5, we obtained the distribution below.

k 0 1 2 3 4 5 ... 10
P (ki = k) 0.3335 0.2223 0.1484 0.0992 0.0666 0.0450 ... 0.0079

5.2 BF for the changepoints position
Definition

Let ξi ⊆ {2, ..., n} be the changepoints position vector for gene i and t ∈ {2, ..., n} be a possible
changepoint position, we computed the Bayes factor related to the following assumptions:

H0: ‘There is a changepoint in position t for gene i’ (i.e. t ∈ ξi).
H1: H0

BF =
P (t ∈ ξi|D)
P (t /∈ ξi|D)

P (t /∈ ξi)
P (t ∈ ξi)

=
P (t ∈ ξi|D)

1− P (t ∈ ξi|D)
1− P (t ∈ ξi)
P (t ∈ ξi)
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Computation of P (t ∈ ξi|k)
Let t ∈ {2, ..., n} be a possible changepoint position. We obtain an estimation of P (t ∈ ξi|D) with the
ARTIVA procedure using the marginalization over the network structures and parameters,

P̂ (t ∈ ξi|D) =
∑

ki,ξi,si,Pai,θi,σi

P̂ (ki, ξi, si,Pai, θi, σi|D)1lt∈ξi ,

and the prior probability P (t ∈ ξi) is,

P (t ∈ ξi) =
k∑
k=0

P (t ∈ ξi|k)P (k)

where P (k) was computed as in Section 5.1. There are n− 1 possible positions for a changepoint
(changepoint position t and n-2 other positions) then,

P (t ∈ ξi|k) =
(1
1) (n−2

k−1)

(n−1
k )

=
(n− 2)!

(k − 1)!(n− k − 1)!

(
(n− 1)!

k!(n− k − 1)!

)−1

=
k

n− 1
.

5.3 BF for the edges (conditional on a chosen phase of the network)
Definition

Let p be the number of genes. For all gene i in {1, ..., p}, let ξi?h−1, ξ
i?
h be the changepoints delimiting a

selected phase and Pai[ξi?h−1,ξ
i?
h ] be the set of parent genes in the phase delimited by these changepoints. For

all j in {1, ..., p}, we want to evaluate the evidence in favour of hypothesis H0 where,

H0: ‘Gene j is a parent of gene i in phase delimited by [ξi?h−1, ξ
i?
h ]’ (i.e. j ∈ Pai[ξi?h−1,ξ

i?
h ]).

H1: H0

BF =
P (j ∈ Pai[ξi?h−1,ξ

i?
h ]|D)

P (j /∈ Pai[ξi?h−1,ξ
i?
h ]|D)

P (j /∈ Pai[ξi?h−1,ξ
i?
h ])

P (j ∈ Pai[ξi?h−1,ξ
i?
h ])

Computation

Let j ∈ {1, ..., p} be a possible parent for gene i. We obtain an estimate of P (j ∈ Pai[ξi?h−1,ξ
i?
h ]|D) with the

ARTIVA procedure,

P̂ (j ∈ Pai[ξi?h−1,ξ
i?
h ]|D) =

∑
ki,ξi,Pai,si,θi,σi

P̂ (ki, ξi,Pai, si, θi, σi|D)1lCondition1.

where Condition1 is true when ξi?h−1 and ξi?h are two successive changepoints in ξi and j is a parent gene in
the phase delimited by these changepoints.

The prior probability P (j ∈ Pai[ξi?h−1,ξ
i?
h ]) is,

P (j ∈ Pai[ξi?h−1,ξ
i?
h ]) =

q∑
s=1

P (j ∈ Pai[ξi?h−1,ξ
i?
h ]| | |Pai[ξi?h−1,ξ

i?
h ]| = s)P (|Pai[ξi?h−1,ξ

i?
h ]| = s)

where P (|Pai[ξi?h−1,ξ
i?
h ]| = s) for the number of edges is computed as P (ki = k) in Section 5.1, .
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