Q. Jin, L. Agrawal, Z. Vanhorn-ali, and G. Alkhatib, Infection of CD4+ T lymphocytes by the human T cell leukemia virus type 1 is mediated by the glucose transporter GLUT-1: Evidence using antibodies specific to the receptor's large extracellular domain, Virology, vol.349, issue.1, pp.184-196, 2006.
DOI : 10.1016/j.virol.2006.01.045

N. Manel, F. Kim, S. Kinet, N. Taylor, M. Sitbon et al., The Ubiquitous Glucose Transporter GLUT-1 Is a Receptor for HTLV, Cell, vol.115, issue.4, pp.449-459, 2003.
DOI : 10.1016/S0092-8674(03)00881-X

Q. Jin, B. Alkhatib, K. Cornetta, and G. Alkhatib, Alternate receptor usage of neuropilin-1 and glucose transporter protein 1 by the human T cell leukemia virus type 1, Virology, vol.396, issue.2, pp.203-212, 2009.
DOI : 10.1016/j.virol.2009.10.015

S. Lambert, M. Bouttier, R. Vassy, M. Seigneuret, C. Petrow-sadowski et al., HTLV-1 uses HSPG and neuropilin-1 for entry by molecular mimicry of VEGF165, Blood, vol.113, issue.21, pp.5176-5185, 2009.
DOI : 10.1182/blood-2008-04-150342

D. Ghez, Y. Lepelletier, S. Lambert, J. Fourneau, V. Blot et al., Neuropilin-1 Is Involved in Human T-Cell Lymphotropic Virus Type 1 Entry, Journal of Virology, vol.80, issue.14, pp.6844-6854, 2006.
DOI : 10.1128/JVI.02719-05

K. Jones, C. Petrow-sadowski, D. Bertolette, Y. Huang, and F. Ruscetti, Heparan Sulfate Proteoglycans Mediate Attachment and Entry of Human T-Cell Leukemia Virus Type 1 Virions into CD4+ T Cells, Journal of Virology, vol.79, issue.20, pp.12692-12702, 2005.
DOI : 10.1128/JVI.79.20.12692-12702.2005

J. Pinon, P. Klasse, S. Jassal, S. Welson, J. Weber et al., Human T-Cell Leukemia Virus Type 1 Envelope Glycoprotein gp46 Interacts with Cell Surface Heparan Sulfate Proteoglycans, Journal of Virology, vol.77, issue.18, pp.9922-9930, 2003.
DOI : 10.1128/JVI.77.18.9922-9930.2003

L. Delamarre, A. Rosenberg, C. Pique, D. Pham, I. Callebaut et al., The HTLV-I Envelope Glycoproteins: Structure and Functions, Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology, vol.13, issue.1, pp.85-91, 1996.
DOI : 10.1097/00042560-199600001-00015

R. Wyatt and J. Sodroski, The HIV-1 Envelope Glycoproteins: Fusogens, Antigens, and Immunogens, Science, vol.280, issue.5371, pp.1884-1888, 1998.
DOI : 10.1126/science.280.5371.1884

B. Kobe, R. Center, B. Kemp, and P. Poumbourios, Crystal structure of human T cell leukemia virus type 1 gp21 ectodomain crystallized as a maltose-binding protein chimera reveals structural evolution of retroviral transmembrane proteins, Proceedings of the National Academy of Sciences, vol.96, issue.8, pp.4319-4324, 1999.
DOI : 10.1073/pnas.96.8.4319

A. Maerz, R. Center, B. Kemp, B. Kobe, and P. Poumbourios, Functional Implications of the Human T-Lymphotropic Virus Type 1 Transmembrane Glycoprotein Helical Hairpin Structure, Journal of Virology, vol.74, issue.14, pp.6614-6621, 2000.
DOI : 10.1128/JVI.74.14.6614-6621.2000

L. Delamarre, C. Pique, D. Pham, T. Tursz, and M. Dokhelar, Identification of functional regions in the human T-cell leukemia virus type I SU glycoprotein, J Virol, vol.68, pp.3544-3549, 1994.

C. Pique, T. Tursz, and M. Dokhelar, Mutations introduced along the HTLV-I envelope gene result in a non-functional protein: a basis for envelope conservation, Embo J, vol.9, pp.4243-4248, 1990.

S. Jassal, M. Lairmore, A. Leigh-brown, and D. Brighty, Soluble recombinant HTLV-1 surface glycoprotein competitively inhibits syncytia formation and viral infection of cells, Virus Research, vol.78, issue.1-2, pp.17-34, 2001.
DOI : 10.1016/S0168-1702(01)00279-9

K. Li, S. Zhang, M. Kronqvist, M. Wallin, M. Ekstrom et al., Intersubunit Disulfide Isomerization Controls Membrane Fusion of Human T-Cell Leukemia Virus Env, Journal of Virology, vol.82, issue.14, pp.7135-7143, 2008.
DOI : 10.1128/JVI.00448-08

M. Sommerfelt, Retrovirus receptors, Journal of General Virology, vol.80, issue.12, pp.3049-3064, 1999.
DOI : 10.1099/0022-1317-80-12-3049

N. Fan, J. Gavalchin, B. Paul, K. Wells, M. Lane et al., Infection of peripheral blood mononuclear cells and cell lines by cell-free human Tcell lymphoma/leukemia virus type I, J Clin Microbiol, vol.30, pp.905-910, 1992.

D. Derse, S. Hill, P. Lloyd, H. Chung, and B. Morse, Examining Human T-Lymphotropic Virus Type 1 Infection and Replication by Cell-Free Infection with Recombinant Virus Vectors, Journal of Virology, vol.75, issue.18, pp.8461-8468, 2001.
DOI : 10.1128/JVI.75.18.8461-8468.2001

J. Richardson, A. Edwards, J. Cruickshank, P. Rudge, and A. Dalgleish, In vivo cellular tropism of human T-cell leukemia virus type 1, J Virol, vol.64, pp.5682-5687, 1990.

E. Hanon, J. Stinchcombe, M. Saito, B. Asquith, G. Taylor et al., Fratricide among CD8+ T Lymphocytes Naturally Infected with Human T Cell Lymphotropic Virus Type I, Immunity, vol.13, issue.5, pp.657-664, 2000.
DOI : 10.1016/S1074-7613(00)00065-0

Y. Koyanagi, Y. Itoyama, N. Nakamura, K. Takamatsu, J. Kira et al., In Vivo Infection of Human T-Cell Leukemia Virus Type I in Non-T Cells, Virology, vol.196, issue.1, pp.25-33, 1993.
DOI : 10.1006/viro.1993.1451

M. Nath, F. Ruscetti, C. Petrow-sadowski, and K. Jones, Regulation of the cell-surface expression of an HTLV-I binding protein in human T cells during immune activation, Blood, vol.101, issue.8, pp.3085-3092, 2003.
DOI : 10.1182/blood-2002-07-2277

S. Knight, S. Macatonia, K. Cruickshank, P. Rudge, and S. Patterson, Dendritic Cells in HIV-1 and HTLV-1 Infection, Adv Exp Med Biol, vol.329, pp.545-549, 1993.
DOI : 10.1007/978-1-4615-2930-9_91

S. Macatonia, J. Cruickshank, P. Rudge, and S. Knight, Dendritic Cells from Patients with Tropical Spastic Paraparesis Are Infected with HTLV-1 and Stimulate Autologous Lymphocyte Proliferation, AIDS Research and Human Retroviruses, vol.8, issue.9, pp.1699-1706, 1992.
DOI : 10.1089/aid.1992.8.1699

M. Setoyama, F. Kerdel, G. Elgart, T. Kanzaki, and J. Byrnes, Detection of HTLV-1 by polymerase chain reaction in situ hybridization in adult T-cell leukemia/lymphoma, Am J Pathol, vol.152, pp.683-689, 1998.

M. Suzuki, H. Matsuoka, K. Yamashita, K. Maeda, K. Kawano et al., CD45RO Expression on Peripheral Lymphocytes As a Prognostic Marker for Adult T-Cell Leukemia, Leukemia & Lymphoma, vol.8, issue.1, pp.583-590, 1998.
DOI : 10.3109/10428199509049770

S. Ruben, H. Poteat, T. Tan, K. Kawakami, R. Roeder et al., Cellular transcription factors and regulation of IL-2 receptor gene expression by HTLV-I tax gene product, Science, vol.241, issue.4861, pp.89-92, 1988.
DOI : 10.1126/science.2838905

Y. Yamano, N. Takenouchi, H. Li, U. Tomaru, K. Yao et al., Virus-induced dysfunction of CD4+CD25+ T cells in patients with HTLV-I???associated neuroimmunological disease, Journal of Clinical Investigation, vol.115, issue.5, pp.1361-1368, 2005.
DOI : 10.1172/JCI23913DS1

J. Lohr, B. Knoechel, and A. Abbas, Regulatory T cells in the periphery, Immunological Reviews, vol.171, issue.1, pp.149-162, 2006.
DOI : 10.1016/j.immuni.2004.07.009

F. Toulza, K. Nosaka, M. Takiguchi, T. Pagliuca, H. Mitsuya et al., regulatory T cells are distinct from leukemia cells in HTLV-1-associated adult T-cell leukemia, International Journal of Cancer, vol.64, issue.10, pp.2375-2382, 2009.
DOI : 10.1002/ijc.24664

M. Abe, K. Uchihashi, T. Kazuto, A. Osaka, K. Yanagihara et al., T cells implicated in human T-cell leukemia virus type-1 is inconsistent with Treg cells, European Journal of Haematology, vol.96, issue.3, pp.209-217, 2008.
DOI : 10.1111/j.1600-0609.2008.01105.x

H. Yano, T. Ishida, A. Inagaki, T. Ishii, S. Kusumoto et al., Regulatory T-cell function of adult T-cell leukemia/lymphoma cells, International Journal of Cancer, vol.20, issue.9, pp.2052-2057, 2007.
DOI : 10.1002/ijc.22536

S. Chen, N. Ishii, S. Ine, S. Ikeda, T. Fujimura et al., Regulatory T cell-like activity of Foxp3+ adult T cell leukemia cells, International Immunology, vol.18, issue.2, pp.269-277, 2006.
DOI : 10.1093/intimm/dxh366

C. Grant, U. Oh, K. Yao, Y. Yamano, and S. Jacobson, Dysregulation of TGF-?? signaling and regulatory and effector T-cell function in virus-induced neuroinflammatory disease, Blood, vol.111, issue.12, pp.5601-5609, 2008.
DOI : 10.1182/blood-2007-11-123430

F. Toulza, A. Heaps, Y. Tanaka, G. Taylor, and C. Bangham, High frequency of CD4+FoxP3+ cells in HTLV-1 infection: inverse correlation with HTLV-1-specific CTL response, Blood, vol.111, issue.10, pp.5047-5053, 2008.
DOI : 10.1182/blood-2007-10-118539

S. Trejo and L. Ratner, The HTLV Receptor Is a Widely Expressed Protein, Virology, vol.268, issue.1, pp.41-48, 2000.
DOI : 10.1006/viro.2000.0143

K. Okuma, M. Nakamura, S. Nakano, Y. Niho, and Y. Matsuura, Host Range of Human T-Cell Leukemia Virus Type I Analyzed by a Cell Fusion-Dependent Reporter Gene Activation Assay, Virology, vol.254, issue.2, pp.235-244, 1999.
DOI : 10.1006/viro.1998.9530

R. Sutton and D. Littman, Broad host range of human T-cell leukemia virus type 1 demonstrated with an improved pseudotyping system, J Virol, vol.70, pp.7322-7326, 1996.

S. Jassal, R. Pohler, and D. Brighty, Human T-cell leukemia virus type 1 receptor expression among syncytium-resistant cell lines revealed by a novel surface glycoprotein-immunoadhesin. JV i r o l2001, pp.8317-8328

N. Manel, S. Kinet, J. Battini, F. Kim, N. Taylor et al., The HTLV receptor is an early T-cell activation marker whose expression requires de novo protein synthesis, Blood, vol.101, issue.5, pp.1913-1918, 2003.
DOI : 10.1182/blood-2002-09-2681

K. Jones, S. Akel, C. Petrow-sadowski, Y. Huang, D. Bertolette et al., Induction of Human T Cell Leukemia Virus Type I Receptors on Quiescent Naive T Lymphocytes by TGF-??, The Journal of Immunology, vol.174, issue.7, pp.4262-4270, 2005.
DOI : 10.4049/jimmunol.174.7.4262

M. Moriuchi and H. Moriuchi, Transforming growth factor-? enhances human T-cell leukemia virus type I infection, Journal of Medical Virology, vol.343, issue.3, pp.427-430, 2002.
DOI : 10.1002/jmv.10074

M. Sommerfelt, B. Williams, P. Clapham, E. Solomon, P. Goodfellow et al., Human T cell leukemia viruses use a receptor determined by human chromosome 17, Science, vol.242, issue.4885, pp.1557-1559, 1988.
DOI : 10.1126/science.3201246

M. Agadjanyan, M. Chattergoon, I. Petrushina, M. Bennett, J. Kim et al., Monoclonal Antibodies Define a Cellular Antigen Involved in HTLV-I Infection, Hybridoma, vol.17, issue.1, pp.9-19, 1998.
DOI : 10.1089/hyb.1998.17.9

T. Imai, K. Fukudome, S. Takagi, M. Nagira, M. Furuse et al., C33 antigen recognized by monoclonal antibodies inhibitory to human T cell leukemia virus type 1-induced syncytium formation is a member of a new family of transmembrane proteins including CD9, CD37, CD53, and CD63, J Immunol, vol.149, pp.2879-2886, 1992.

T. Imai and Y. O. , C33 antigen and M38 antigen recognized by monoclonal antibodies inhibitory to syncytium formation by human T cell leukemia virus type 1 are both members of the transmembrane 4 superfamily and associate with each other and with CD4 or CD8 in T cells, J Immunol, vol.151, pp.6470-6481, 1993.

J. Hildreth, Syncytium-inhibiting monoclonal antibodies produced against human T-cell lymphotropic virus type 1-infected cells recognize class II major histocompatibility complex molecules and block by protein crowding, J Virol, vol.72, pp.9544-9552, 1998.

S. Daenke, S. Mccracken, and S. Booth, Human T-cell leukaemia/lymphoma virus type 1 syncytium formation is regulated in a cell-specific manner by ICAM-1, ICAM-3 and VCAM-1 and can be inhibited by antibodies to integrin beta2 or beta7., Journal of General Virology, vol.80, issue.6, pp.801429-1436, 1999.
DOI : 10.1099/0022-1317-80-6-1429

Y. Sagara, C. Ishida, Y. Inoue, H. Shiraki, and Y. Maeda, 71-kilodalton heat shock cognate protein acts as a cellular receptor for syncytium formation induced by human T-cell lymphotropic virus type 1, J Virol, vol.72, pp.535-541, 1998.

D. Fang, Y. Haraguchi, A. Jinno, Y. Soda, N. Shimizu et al., Heat Shock Cognate Protein 70 Is a Cell Fusion-Enhancing Factor but Not an Entry Factor for Human T-Cell Lymphotropic Virus Type I, Biochemical and Biophysical Research Communications, vol.261, issue.2, pp.357-363, 1999.
DOI : 10.1006/bbrc.1999.1028

F. Kim, N. Manel, E. Garrido, C. Valle, M. Sitbon et al., HTLV-1 and -2 envelope SU subdomains and critical determinants in receptor binding, Retrovirology, vol.1, issue.1, p.41, 2004.
DOI : 10.1186/1742-4690-1-41

F. Kim, I. Seiliez, C. Denesvre, D. Lavillette, F. Cosset et al., Definition of an Amino-terminal Domain of the Human T-cell Leukemia Virus Type 1 Envelope Surface Unit That Extends the Fusogenic Range of an Ecotropic Murine Leukemia Virus, Journal of Biological Chemistry, vol.275, issue.31, pp.23417-23420, 2000.
DOI : 10.1074/jbc.C901002199

N. Manel, J. Battini, and M. Sitbon, Human T Cell Leukemia Virus Envelope Binding and Virus Entry Are Mediated by Distinct Domains of the Glucose Transporter GLUT1, Journal of Biological Chemistry, vol.280, issue.32, pp.29025-29029, 2005.
DOI : 10.1074/jbc.M504549200

A. Coskun and R. Sutton, Expression of Glucose Transporter 1 Confers Susceptibility to Human T-Cell Leukemia Virus Envelope-Mediated Fusion, Journal of Virology, vol.79, issue.7, pp.4150-4158, 2005.
DOI : 10.1128/JVI.79.7.4150-4158.2005

Q. Jin, L. Agrawal, Z. Vanhorn-ali, and G. Alkhatib, GLUT-1-independent infection of the glioblastoma/astroglioma U87 cells by the human T cell leukemia virus type 1, Virology, vol.353, issue.1, pp.99-110, 2006.
DOI : 10.1016/j.virol.2006.05.003

N. Takenouchi, K. Jones, I. Lisinski, K. Fugo, K. Yao et al., GLUT1 Is Not the Primary Binding Receptor but Is Associated with Cell-to-Cell Transmission of Human T-Cell Leukemia Virus Type 1, Journal of Virology, vol.81, issue.3, pp.1506-1510, 2007.
DOI : 10.1128/JVI.01522-06

K. Jones, Y. Huang, S. Chevalier, P. Afonso, C. Petrow-sadowski et al., The Receptor Complex Associated with Human T-Cell Lymphotropic Virus Type 3 (HTLV-3) Env-Mediated Binding and Entry Is Distinct from, but Overlaps with, the Receptor Complexes of HTLV-1 and HTLV-2, Journal of Virology, vol.83, issue.10, pp.5244-5255, 2009.
DOI : 10.1128/JVI.02285-08

URL : https://hal.archives-ouvertes.fr/pasteur-00384548

J. Bishop, M. Schuksz, and J. Esko, Heparan sulphate proteoglycans fine-tune mammalian physiology, Nature, vol.81, issue.7139, pp.1030-1037, 2007.
DOI : 10.1038/nature05817

R. Vives, H. Lortat-jacob, and P. Fender, Heparan sulphate proteoglycans and viral vectors: ally or foe? Curr Gene Ther, pp.35-44, 2006.
DOI : 10.2174/156652306775515565

I. Mondor, S. Ugolini, and Q. Sattentau, Human immunodeficiency virus type 1 attachment to HeLa CD4 cells is CD4 independent and gp120 dependent and requires cell surface heparans, J Virol, vol.72, pp.3623-3634, 1998.

D. Shukla, J. Liu, P. Blaiklock, N. Shworak, X. Bai et al., A Novel Role for 3-O-Sulfated Heparan Sulfate in Herpes Simplex Virus 1 Entry, Cell, vol.99, issue.1, pp.13-22, 1999.
DOI : 10.1016/S0092-8674(00)80058-6

J. Ibrahim, P. Griffin, D. Coombe, C. Rider, and W. James, Cell-surface heparan sulfate facilitates human immunodeficiency virus Type 1 entry into some cell lines but not primary lymphocytes, Virus Research, vol.60, issue.2, pp.159-169, 1999.
DOI : 10.1016/S0168-1702(99)00018-0

A. Pais-correia, M. Sachse, S. Guadagnini, V. Robbiati, R. Lasserre et al., Biofilm-like extracellular viral assemblies mediate HTLV-1 cell-to-cell transmission at virological synapses, Nature Medicine, vol.113, issue.1, pp.83-89, 2009.
DOI : 10.1038/nm.2065

URL : https://hal.archives-ouvertes.fr/pasteur-00460124

S. Gauthier, I. Pelletier, M. Ouellet, A. Vargas, M. Tremblay et al., Induction of galectin-1 expression by HTLV-I Tax and its impact on HTLV-I infectivity, Retrovirology, vol.5, issue.1, p.105, 2008.
DOI : 10.1186/1742-4690-5-105

K. Jones, K. Fugo, C. Petrow-sadowski, Y. Huang, D. Bertolette et al., Human T-Cell Leukemia Virus Type 1 (HTLV-1) and HTLV-2 Use Different Receptor Complexes To Enter T Cells, Journal of Virology, vol.80, issue.17, pp.8291-8302, 2006.
DOI : 10.1128/JVI.00389-06

M. Sommerfelt and R. Weiss, Receptor interference groups of 20 retroviruses plating on human cells, Virology, vol.176, issue.1, pp.58-69, 1990.
DOI : 10.1016/0042-6822(90)90230-O

L. Xie and P. Green, Envelope Is a Major Viral Determinant of the Distinct In Vitro Cellular Transformation Tropism of Human T-Cell Leukemia Virus Type 1 (HTLV-1) and HTLV-2, Journal of Virology, vol.79, issue.23, pp.14536-14545, 2005.
DOI : 10.1128/JVI.79.23.14536-14545.2005

J. Reeves, S. Hibbitts, G. Simmons, A. Mcknight, J. Azevedo-pereira et al., Primary human immunodeficiency virus type 2 (HIV-2) isolates infect CD4-negative cells via CCR5 and CXCR4: comparison with HIV-1 and simian immunodeficiency virus and relevance to cell tropism in vivo, J Virol, vol.73, pp.7795-7804, 1999.

R. Tordjman, Y. Lepelletier, V. Lemarchandel, M. Cambot, P. Gaulard et al., A neuronal receptor, neuropilin-1, is essential for the initiation of the primary immune response, Nature Immunology, vol.3, pp.477-482, 2002.
DOI : 10.1038/ni789

L. Ellis, The role of neuropilins in cancer, Molecular Cancer Therapeutics, vol.5, issue.5, pp.1099-1107, 2006.
DOI : 10.1158/1535-7163.MCT-05-0538

K. Jones, C. Petrow-sadowski, Y. Huang, D. Bertolette, and F. Ruscetti, Cell-free HTLV-1 infects dendritic cells leading to transmission and transformation of CD4+ T cells, Nature Medicine, vol.174, issue.4, pp.429-436, 2008.
DOI : 10.1182/blood.V99.1.88

S. Soker, S. Takashima, H. Miao, G. Neufeld, and M. Klagsbrun, Neuropilin-1 Is Expressed by Endothelial and Tumor Cells as an Isoform-Specific Receptor for Vascular Endothelial Growth Factor, Cell, vol.92, issue.6, pp.735-745, 1998.
DOI : 10.1016/S0092-8674(00)81402-6

Y. Lepelletier, I. Moura, R. Hadj-slimane, A. Renand, S. Fiorentino et al., Immunosuppressive role of semaphorin-3A on T cell proliferation is mediated by inhibition of actin cytoskeleton reorganization, European Journal of Immunology, vol.103, issue.7, pp.1782-1793, 2006.
DOI : 10.1002/eji.200535601

T. Igakura, J. Stinchcombe, P. Goon, G. Taylor, J. Weber et al., Spread of HTLV-I Between Lymphocytes by Virus-Induced Polarization of the Cytoskeleton, Science, vol.299, issue.5613, pp.1713-1716, 2003.
DOI : 10.1126/science.1080115

E. Crublet, J. Andrieu, R. Vives, and H. Lortat-jacob, The HIV-1 envelope glycoprotein gp120 features four heparan sulfate binding domains http://www.retrovirology.com/content/7/1/99 including the co-receptor binding site, J Biol Chem, vol.7, issue.283, pp.9915193-15200, 2008.

V. Kooi, C. Jusino, M. Perman, B. Neau, D. Bellamy et al., Structural basis for ligand and heparin binding to neuropilin B domains, Proceedings of the National Academy of Sciences, vol.104, issue.15, pp.6152-6157, 2007.
DOI : 10.1073/pnas.0700043104

T. Palker, E. Riggs, D. Spragion, A. Muir, R. Scearce et al., Mapping of homologous, amino-terminal neutralizing regions of human T-cell lymphotropic virus type I and II gp46 envelope glycoproteins, J Virol, vol.66, pp.5879-5889, 1992.

C. Chanel, I. Staropoli, F. Baleux, A. A. Valenzuela-fernandez, A. Virelizier et al., Low levels of co-receptor CCR5 are sufficient to permit HIV envelope-mediated fusion with resting CD4 T cells, AIDS, vol.16, issue.17, pp.2337-2340, 2002.
DOI : 10.1097/00002030-200211220-00016

URL : https://hal.archives-ouvertes.fr/pasteur-00166869

R. Bunn, M. Jensen, and B. Reed, Protein Interactions with the Glucose Transporter Binding Protein That Provide a Link between GLUT1 and the Cytoskeleton, Molecular Biology of the Cell, vol.10, issue.4, pp.819-832, 1999.
DOI : 10.1091/mbc.10.4.819

H. Cai and R. Reed, Cloning and characterization of neuropilin-1-interacting protein: a PSD-95/Dlg/ZO-1 domain-containing protein that interacts with the cytoplasmic domain of neuropilin-1, J Neurosci, vol.19, pp.6519-6527, 1999.

J. Grootjans, P. Zimmermann, G. Reekmans, A. Smets, G. Degeest et al., Syntenin, a PDZ protein that binds syndecan cytoplasmic domains, Proceedings of the National Academy of Sciences, vol.94, issue.25, pp.13683-13688, 1997.
DOI : 10.1073/pnas.94.25.13683

S. Yoshida, M. Higuchi, T. Shoji, M. Yoshita, K. Ishioka et al., Knockdown of synapse-associated protein Dlg1 reduces syncytium formation induced by human T-cell leukemia virus type 1, Virus Genes, vol.77, issue.1, pp.9-15, 2008.
DOI : 10.1007/s11262-008-0234-0

K. Azakami, T. Sato, N. Araya, A. Utsunomiya, R. Kubota et al., Severe loss of invariant NKT cells exhibiting anti-HTLV-1 activity in patients with HTLV-1-associated disorders, Blood, vol.114, issue.15, pp.3208-3223, 2009.
DOI : 10.1182/blood-2009-02-203042

M. Hishizawa, K. Imada, T. Kitawaki, M. Ueda, N. Kadowaki et al., Depletion and impaired interferon-alpha-producing capacity of blood plasmacytoid dendritic cells in human T-cell leukaemia virus type I-infected individuals, British Journal of Haematology, vol.56, issue.5, pp.568-575, 2004.
DOI : 10.1016/S1074-7613(00)80564-6

R. Colisson, L. Barblu, C. Gras, F. Raynaud, R. Hadj-slimane et al., Free HTLV-1 induces TLR7-dependent innate immune response and TRAIL relocalization in killer plasmacytoid dendritic cells, Blood, vol.115, issue.11, pp.2177-2185, 2009.
DOI : 10.1182/blood-2009-06-224741

URL : https://hal.archives-ouvertes.fr/hal-00456470

M. El-sabban, R. Merhi, H. Haidar, B. Arnulf, H. Khoury et al., Human T-cell lymphotropic virus type 1-transformed cells induce angiogenesis and establish functional gap junctions with endothelial cells, Blood, vol.99, issue.9, pp.3383-3389, 2002.
DOI : 10.1182/blood.V99.9.3383

H. Oh, H. Takagi, A. Otani, S. Koyama, S. Kemmochi et al., Selective induction of neuropilin-1 by vascular endothelial growth factor (VEGF): A mechanism contributing to VEGF-induced angiogenesis, Proceedings of the National Academy of Sciences, vol.99, issue.1, pp.383-388, 2002.
DOI : 10.1073/pnas.012074399

N. Sherer, M. Lehmann, L. Jimenez-soto, C. Horensavitz, M. Pypaert et al., Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission, Nature Cell Biology, vol.177, issue.3, pp.310-315, 2007.
DOI : 10.1073/pnas.63.3.753

C. Ruhrberg, H. Gerhardt, M. Golding, R. Watson, S. Ioannidou et al., Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis, Genes & Development, vol.16, issue.20, pp.2684-2698, 2002.
DOI : 10.1101/gad.242002

A. Bazarbachi, A. Merhi, R. Gessain, A. Talhouk, R. El-khoury et al., El-Sabban ME: Human T-cell lymphotropic virus type I-infected cells extravasate through the endothelial barrier by a local angiogenesis-like mechanism, Cancer Res, vol.15, pp.2039-2085, 2004.

M. El-sabban, R. Merhi, H. Haidar, B. Arnulf, H. Khoury et al., Human T-cell lymphotropic virus type 1-transformed cells induce angiogenesis and establish functional gap junctions with endothelial cells, Blood, vol.99, issue.9, pp.3383-3392, 2002.
DOI : 10.1182/blood.V99.9.3383

F. Nakamura, M. Tanaka, T. Takahashi, R. Kalb, and S. Strittmatter, Neuropilin-1 Extracellular Domains Mediate Semaphorin D/III-Induced Growth Cone Collapse, Neuron, vol.21, issue.5, pp.1093-1100, 1998.
DOI : 10.1016/S0896-6273(00)80626-1

URL : http://doi.org/10.1016/s0896-6273(00)80626-1