K. Strebel, Virus???host interactions, AIDS, vol.17, issue.Supplement 4, pp.25-34, 2003.
DOI : 10.1097/00002030-200317004-00003

B. Cullen, Regulation of HIV-1 gene expression, FASEB J, vol.5, pp.2361-2368, 1991.

K. Jeang, H. Xiao, and E. Rich, Multifaceted Activities of the HIV-1 Transactivator of Transcription, Tat, Journal of Biological Chemistry, vol.274, issue.41, pp.28837-28840, 1999.
DOI : 10.1074/jbc.274.41.28837

A. Gatignol, Transcription of HIV: Tat and Cellular Chromatin, Adv Pharmacol, vol.55, pp.137-159, 2007.
DOI : 10.1016/S1054-3589(07)55004-0

V. Gautier, L. Gu, O. Donoghue, N. Pennington, S. Sheehy et al., In vitro nuclear interactome of the HIV-1 Tat protein, Retrovirology, vol.6, issue.1, p.47, 2009.
DOI : 10.1186/1742-4690-6-47

R. Chun and K. Jeang, Requirements for RNA Polymerase II Carboxyl-terminal Domain for Activated Transcription of Human Retroviruses Human T-Cell Lymphotropic Virus I and HIV-1, Journal of Biological Chemistry, vol.271, issue.44, pp.27888-27894, 1996.
DOI : 10.1074/jbc.271.44.27888

F. Kashanchi, G. Piras, M. Radonovich, J. Duvall, A. Fattaey et al., Direct interaction of human TFIID with the HIV-1 transactivator Tat, Nature, vol.367, issue.6460, pp.295-299, 1994.
DOI : 10.1038/367295a0

G. Marzio, M. Tyagi, M. Gutierrez, and M. Giacca, HIV-1 Tat transactivator recruits p300 and CREB-binding protein histone acetyltransferases to the viral promoter, Proceedings of the National Academy of Sciences, vol.95, issue.23, pp.13519-13524, 1998.
DOI : 10.1073/pnas.95.23.13519

H. Okamoto, C. Sheline, J. Corden, K. Jones, and B. Peterlin, Trans-activation by human immunodeficiency virus Tat protein requires the C-terminal domain of RNA polymerase II., Proceedings of the National Academy of Sciences, vol.93, issue.21, pp.11575-11579, 1996.
DOI : 10.1073/pnas.93.21.11575

C. Parada and R. Roeder, Enhanced processivity of RNA polymerase II triggered by Tat-induced phosphorylation of its carboxy-terminal domain, Nature, vol.384, issue.6607, pp.375-378, 1996.
DOI : 10.1038/384375a0

P. Veschambre, A. Roisin, and P. Jalinot, Biochemical and functional interaction of the human immunodeficiency virus type 1 Tat transactivator with the general transcription factor TFIIB., Journal of General Virology, vol.78, issue.9, pp.782235-2245, 1997.
DOI : 10.1099/0022-1317-78-9-2235

M. Braddock, A. Thorburn, A. Chambers, G. Elliott, G. Anderson et al., A nuclear translational block imposed by the HIV-1 U3 region is relieved by the Tat-TAR interaction, Cell, vol.62, issue.6, pp.1123-1133, 1990.
DOI : 10.1016/0092-8674(90)90389-V

D. Sengupta, B. Berkhout, A. Gatignol, A. Zhou, and R. Silverman, Direct evidence for translational regulation by leader RNA and Tat protein of human immunodeficiency virus type 1., Proceedings of the National Academy of Sciences, vol.87, issue.19, pp.7492-7496, 1990.
DOI : 10.1073/pnas.87.19.7492

M. Braddock, R. Powell, A. Blanchard, A. Kingsman, and S. Kingsman, HIV-1 TAR RNA-binding proteins control TAT activation of translation in Xenopus oocytes, FASEB J, vol.7, pp.214-222, 1993.

Y. Wu, HIV-1 gene expression: lessons from provirus and nonintegrated DNA, Retrovirology, vol.1, issue.1, p.13, 2004.
DOI : 10.1186/1742-4690-1-13

N. Sonenberg and A. Hinnebusch, New Modes of Translational Control in Development, Behavior, and Disease, Molecular Cell, vol.28, issue.5, pp.721-729, 2007.
DOI : 10.1016/j.molcel.2007.11.018

M. Holcik and N. Sonenberg, Translational control in stress and apoptosis, Nature Reviews Molecular Cell Biology, vol.8, issue.4, pp.318-327, 2005.
DOI : 10.1038/nrm1618

M. Bushell and P. Sarnow, Hijacking the translation apparatus by RNA viruses, The Journal of Cell Biology, vol.73, issue.3, pp.395-399, 2002.
DOI : 10.1128/MCB.20.14.4990-4999.2000

M. Clemens, Translational control in virus-infected cells: models for cellular stress responses, Seminars in Cell & Developmental Biology, vol.16, issue.1, pp.13-20, 2005.
DOI : 10.1016/j.semcdb.2004.11.011

R. Jackson and A. Kaminski, Internal initiation of translation in eukaryotes: the picornavirus paradigm and beyond, RNA, vol.1, pp.985-1000, 1995.

K. Kean, The role of mRNA 5'-noncoding and 3'-end sequences on 40S ribosomal subunit recruitment, and how

D. Peabody and P. Berg, Termination-reinitiation occurs in the translation of mammalian cell mRNAs., Molecular and Cellular Biology, vol.6, issue.7, pp.2695-2703, 1986.
DOI : 10.1128/MCB.6.7.2695

A. Geballe and M. Gray, Variable inhibition of cell-free translation by HIV???1 transcript leader sequences, Nucleic Acids Research, vol.20, issue.16, pp.4291-4297, 1992.
DOI : 10.1093/nar/20.16.4291

N. Parkin, E. Cohen, A. Darveau, C. Rosen, W. Haseltine et al., Mutational analysis of the 5' non-coding region of human immunodeficiency virus type 1: effects of secondary structure on translation, EMBO J, vol.7, pp.2831-2837, 1988.

M. Kuciak, C. Gabus, R. Ivanyi-nagy, K. Semrad, R. Storchak et al., The HIV-1 transcriptional activator Tat has potent nucleic acid chaperoning activities in vitro, Nucleic Acids Research, vol.36, issue.10, pp.3389-3400, 2008.
DOI : 10.1093/nar/gkn177

URL : https://hal.archives-ouvertes.fr/hal-00339529

C. Hetzer, W. Dormeyer, M. Schnolzer, and M. Ott, Decoding Tat: the biology of HIV Tat posttranslational modifications, Microbes and Infection, vol.7, issue.13, pp.1364-1369, 2005.
DOI : 10.1016/j.micinf.2005.06.003

E. Anderson and A. Lever, Human Immunodeficiency Virus Type 1 Gag Polyprotein Modulates Its Own Translation, Journal of Virology, vol.80, issue.21, pp.10478-10486, 2006.
DOI : 10.1128/JVI.02596-05

Y. Svitkin, A. Pause, and N. Sonenberg, La autoantigen alleviates translational repression by the 5' leader sequence of the human immunodeficiency virus type 1 mRNA, J Virol, vol.68, pp.7001-7007, 1994.

I. Hofacker, M. Fekete, and P. Stadler, Secondary Structure Prediction for Aligned RNA Sequences, Journal of Molecular Biology, vol.319, issue.5, pp.1059-1066, 2002.
DOI : 10.1016/S0022-2836(02)00308-X

J. Thompson, D. Higgins, and T. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Research, vol.22, issue.22, pp.4673-4680, 1994.
DOI : 10.1093/nar/22.22.4673

M. Zuker, Mfold web server for nucleic acid folding and hybridization prediction, Nucleic Acids Research, vol.31, issue.13, pp.3406-3415, 2003.
DOI : 10.1093/nar/gkg595

B. Berkhout and J. Van-wamel, The leader of the HIV-1 RNA genome forms a compactly folded tertiary structure, RNA, vol.6, issue.2, pp.282-95, 2000.
DOI : 10.1017/S1355838200991684

S. Pyronnet, J. Dostie, and N. Sonenberg, Suppression of cap-dependent translation in mitosis, Genes & Development, vol.15, issue.16, pp.2083-2093, 2001.
DOI : 10.1101/gad.889201

S. Thierry, V. Marechal, M. Rosenzwajg, M. Sabbah, G. Redeuilh et al., Cell cycle arrest in G2 induces human immunodeficiency virus type 1 transcriptional activation through histone acetylation and recruitment of CBP, NF-kappaB, and c- Jun to the long terminal repeat promoter, J Virol, issue.22, pp.7812198-12206, 2004.

S. Pyronnet, L. Pradayrol, and N. Sonenberg, A Cell Cycle???Dependent Internal Ribosome Entry Site, Molecular Cell, vol.5, issue.4, pp.607-616, 2000.
DOI : 10.1016/S1097-2765(00)80240-3

I. Choudhury, J. Wang, S. Stein, A. Rabson, and M. Leibowitz, Translational effects of peptide antagonists of Tat protein of human immunodeficiency virus type 1., Journal of General Virology, vol.80, issue.3, pp.777-782, 1999.
DOI : 10.1099/0022-1317-80-3-777