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Abstract

Background: DNA barcoding aims to assign individuals to given species according to their
sequence at a small locus, generally part of the CO1 mitochondrial gene. Amongst other issues, this
raises the question of how to deal with within-species genetic variability and potential transpecific
polymorphism. In this context, we examine several assignation methods belonging to two main
categories: (i) phylogenetic methods (neighbour-joining and PhyML) that attempt to account for the
genealogical framework of DNA evolution and (ii) supervised classification methods (k-nearest
neighbour, CART, random forest and kernel methods). These methods range from basic to
elaborate. We investigated the ability of each method to correctly classify query sequences drawn
from samples of related species using both simulated and real data. Simulated data sets were
generated using coalescent simulations in which we varied the genealogical history, mutation
parameter, sample size and number of species.

Results: No method was found to be the best in all cases. The simplest method of all, “one
nearest neighbour”, was found to be the most reliable with respect to changes in the parameters of
the data sets. The parameter most influencing the performance of the various methods was
molecular diversity of the data. Addition of genetically independent loci - nuclear genes - improved
the predictive performance of most methods.
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Conclusion: The study implies that taxonomists can influence the quality of their analyses either
by choosing a method best-adapted to the configuration of their sample, or, given a certain method,
increasing the sample size or altering the amount of molecular diversity. This can be achieved either
by sequencing more mtDNA or by sequencing additional nuclear genes. In the latter case, they may
also have to modify their data analysis method.

Introduction
Hebert et al. [1] defined the DNA barcode as a short
sequence used as a standard tool to identify the species
to which an organism belongs. Its purpose is to provide a
simple and automatic method to correctly identify
species, with little or no recourse to taxonomic expertise.
The 5’ half of the cytochrome c oxydase I (COI) mtDNA
gene has been chosen as the barcode locus for most
animals, and gene markers with similar barcoding
properties have been investigated in plants, fungi and
protists. The approach has been successfully applied to
various kinds of organisms [2-4], although problems
have arisen in some cases. For instance, barcoding can be
less successful in the case of paraphyly [5,6]. Moreover,
horizontal transfer of mitochondria together with
Wolbachia across species [7] can make the COI locus
ineffective.

Recently separated species will be the more difficult to
distinguish with barcoding techniques. Indeed, these
species may share many polymorphic sites that were
polymorphic in the ancestral species. Time will be
needed for these polymorphic sites to be fixed and for
specific mutations to appear in each species. The number
of mutations separating two individuals for the COI
locus increases with their coalescence time, but since this
locus is not itself the cause of speciation events, no clear-
cut change is expected to occur in its variation when
crossing the border leading from one species to another.
Hence, one important issue is to interpret data using
methods that will minimise the probability of an
incorrect conclusion.

In the simplest application of DNA barcoding, a
reference data set from a given group of organisms (a
genus or family) is constructed from the DNA barcode
sequences of a reference sample of individuals known
to belong to already described species. Then, query
sequences of individuals from this group, but of
unknown taxonomic status, are matched to this reference
data set and data analysis consists in assigning these
individuals to one of the given species [see e.g., the
Barcode Of Life Data system, BOLD, [8]]. Furthermore,
specific analyses are needed to detect potentially new
species using their barcode. We focus here on cases in
which the query individual is already characterized at a

given taxonomic level (e.g., family), for which a
reference sample is available. Usually this attribution at
high taxonomic level can be done either directly through
phenotyping methods or through an initial BLAST
procedure on the databases.

Figure 1 shows several cases that may occur in the
barcoding context. In the simplest case (Figure 1a), a
species differs from all others by a diagnostic mutation
(a), i.e., a mutation present only in all individuals of one
species, but in none of the other species. This is only
possible in cases of reciprocal monophyly, where the
most common recent ancestor (MRCA) of all individuals
in each species (individuals B and C in Figure 1a-c) is
more recent than the global MRCA (individual A).
Second, to be diagnostic for a given species, a mutation
must occur in the lineage leading to the MRCA of this
species, as for example mutation a in Figure 1a.

Thus, a new mutation may or may not, by chance, be
diagnostic. For instance, mutation a is diagnostic in
Figure 1a, whereas mutation b in Figure 1b is not, as it
occurred after the MRCA of species 2. Also, an apparently
diagnostic mutation may not remain so if a larger sample
is collected. In Figure 1c, a smaller sample may have
suggested mutation b to be diagnostic, but it is not when
considering the whole sample. A simple rule of
molecular population genetics states that in a sample
of n sequences, the probability that the genealogy of the
sample includes the last common ancestor of the whole
species is p ≈ (n-1)/(n+1). Thus, our confidence in having
obtained a representative sample of the species variation
increases with sample size, but will never reach the value
of one.

It should be noted that barcoding is possible even
without diagnostic mutations. In Fig. 1c, mutations g
and b together contribute to characterize species 2,
though neither of them is fixed. Even in absence of
reciprocal monophyly (incomplete lineage sorting,
Fig. 1d), barcoding remains possible. Here, mutations a
and b characterize species 1 whereas mutations g and δ
characterize species 2. All four mutations can thus be used
in the barcoding procedure, but not mutation ε which is
present in some individuals of both species. These last two
cases explain why different data analysis methods may

BMC Bioinformatics 2009, 10(Suppl 14):S10 http://www.biomedcentral.com/1471-2105/10/S14/S10

Page 2 of 13
(page number not for citation purposes)



perform differently on different data sets, as they are based
on different rationale to extract the best information from
the reference sample.

The routine data analysis procedure used by BOLD [8]
combines similarity methods with distance tree con-
struction. First, the query sequence is aligned to the
global alignment through a Hidden Markov Model
(HMM) profile of the COI protein [9], followed by a
linear search of the reference library. The 100 best hits
are selected as a pre-set of “closely related tagged-
specimens”. Second, a Neighbour-Joining tree using the
Kimura 2-parameter (K2P) distance is reconstructed on
both this set and the query sequence in order to assess
the relationship between the query sequence and its
neighbouring reference sequences [10].

Barcoding methods can be divided into four categories:
(i) similarity methods based on the match between the
query sequence and the reference sequences (e.g., BLAST
search); (ii) classical phylogenetic approaches like
neighbour-joining [11] or maximum likelihood/Baye-
sian algorithms [1][5]; (iii) k-nearest neighbour based
on the K2P distance and statistical approaches based on
classification algorithms with no underlying biological
models [e.g., CAOS, [12]]; and (iv) genealogical meth-
ods [13-15] based on coalescent theory using maximum
likelihood/Bayesian algorithms based on Monte Carlo
Markov Chains (MCMC). An important question is
whether a realistic biological, populational or phyloge-
netic model for DNA barcode sequence analysis is
necessary. For example, purely statistical approaches
may also be able to efficiently assign query sequences to
species names.

The performance of several methods belonging to the
first two categories were compared in another simulation
study [16]. This study focused on barcoding based on a
single mitochondrial locus as in the standard procedure
[8]. It showed that there was generally no best-perform-
ing method, i.e., a given method could perform better
than another for a given evolutionary scenario and the
reverse could be true in another. In the present paper, we
compare these methods with supervised statistical
classification methods. In order to consider a wide
range of methods, we retained six in total: two
phylogenetic methods (neighbour-joining NJ [11] and
PhyML [17]), one distance method (k-nearest neighbour,
k-NN), and three supervised statistical classification
methods: classification and regression trees (CART),
random forest (RF) and kernel methods. We ran them
on two kinds of data: simulated and real [4-6]. We did
not consider coalescent-based MCMC methods as they
were too computer intensive to be used in a simulation
process requiring many replications. Moreover they
require finely-tuned parameters (e.g., length of MCMC
chains) to work properly and therefore could not be run
comparatively on a large number of simulated samples.

We chose to put effort into varying conditions. This
included the amount of sequence information (θ ranging
from 3 to 30), time since the split between the species
(from T = 100 to 10,000), number of species (from 2 to
5) and sample size per species (from 3 to 25). For
practical reasons, barcode reference samples generally
include between 5 and 10 individuals. As noted above, a
sample of 10 individuals has a probability p ≈ (n-1)/
(n+1) = 0.87 of including the MRCA of a genealogy.
Thus, we could not exclude that the gain in information
brought about by a larger sample would influence
differently analysis methods based on very different
rationales. We therefore considered different sample
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Figure 1
Hypothetical representations of gene genealogies
between two species and of some hypothetical
mutation patterns between them. Individual A is the
global MRCA of all individuals; individuals B and C are
respectively the MRCA of the two derived species 1 and 2.
Cases a, b and c correspond to reciprocal monophyly and
case d to reciprocal paraphyly. In some cases of reciprocal
monophyly, one mutation is diagnostic (a), while no mutation
is diagnostic in other cases (b and c). A combination of
mutation can also be sufficient to perform barcoding (c).
Barcoding is also possible in the case of reciprocal paraphyly,
by also using combinations of mutations that are specific to a
given species (d).
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sizes, from 3 to 25 individuals per species. Finally, since
efficiency of DNA barcoding based on the mitochondrial
COI gene alone has been questioned in some cases [5,7],
we also tested the performance of the various methods
when including nuclear loci as additional information.

Materials and methods
Simulated data sets
In all simulations, we considered ns species consisting
each of a single panmictic population. Each population
was assumed to consist of Nf females and Nm males,
with Nf = Nm = 1000, amounting to a total population
size N = Nf+Nm = 2000. These species were assumed to
have split simultaneously T generations ago from a
single ancestral species of size N (see Figure 2 for a
schematic representation of the case nS = 2). An
“individual” is represented by its sequence at the
“barcode” locus (a mitochondrial locus, with mutation
rate μc) and a given number nl of nuclear loci (with
mutation rate μn), assuming full independence among
loci. Individuals were assumed to be diploids with
separated sexes, a sex ratio of 1:1 and a strictly maternal
transmission of mitochondria. Hence, the population
size was N diploid individuals for the nuclear loci (i.e.,
2N chromosomes) and Nf = N/2 haploid individuals
(i.e., N/2 chromosomes) for the cytoplasmic locus. The
population mutation parameter at each locus was thus

θc = Nμc for mitochondria and θn = 4Nμn for nuclear loci.
In all cases, we assumed μc = 4μn so that θ c = θn, which
we will simply denote θ hereafter.

For each set of parameter values, we simulated a sample
of n+1 individual sequences in each species using the
software Simcoal 2.1.2 [18]. As a first step, this software
simulates backwards in time the neutral coalescent
process of the different lineages relating sampled
sequences to their common ancestor. In the second
step, it simulates mutations occurring on the different
lineages. From the n+1 sequences of each species, n
sequences (hereafter referred to as the “reference
sample”) were used as the training data set (i.e.,
sequences for which the species was known) and the
last sequence (n+1th) was used as the “query” (the
sequence of an individual of unknown taxonomical
status). However, for the change in the effective
population size number, coalescent simulations were
carried out the same way in the mitochondrial locus (the
“barcode”) and in nuclear loci, meaning that no
intragenic recombination was assumed in the latter.
This refinement would not have added much to the
study, and the choice of some value for the non-zero
recombination rate would have been arbitrary.

Five variable parameters were used. The mutation
parameter had two possible values: θ = 3 and θ = 30;
the reference sample size (n) had four possible values: 3,
5, 10 and 25; the time T since the split of the species took
five values ranging from 100 generations (Nf/10) to
10000 generations (10Nf); the number of species (ns)
ranged from 2 to 5; the number of nuclear loci (nl) from
0 to 4. For the mutation process, we used a Kimura two-
parameter (K2P) mutation model [19] with a transition/
transversion ratio of 9:1 and a uniform mutation rate
over sites. A thousand simulations were run for each
condition.

Real-life data sets
We used three published data sets (Table 1) on the genus
Astraptes [4], the cowries family [6] and a subfamily of
Amazonian butterflies [5]. For cowries, we considered
both the species and subspecies levels, when subspecies
was known. The available locus data for Astraptes and
cowries was the barcode (COI gene). In Amazonian
butterflies, data included three loci: the COI barcode, a
larger mitochondrial fragment (CoI + CoII + Leucine-
tRNA) and a nuclear gene (Ef1a). We could not however
combine the mitochondrial and nuclear data since the
Ef1a sequences were available only for a subset of the
individuals. The three data sets differed in size, in
the number of species to classify and in the mutation
parameter estimate θ (see Table 1). Experimental data

T

n n

Figure 2
Schematic representation of simulations for two
species (nS = 2). It is assumed that the species split T
generations ago. The thin lines represent the coalescent
lineages and stars indicate the mutations that occurred along
these lineages. For each species, we simulated n reference
individuals and one additional individual, which was used to
test the methods.
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sets differed from simulated data sets as they included
missing data and involved many species, ranging from
12 to 180, thus leading to situations which were not all
met in simulations.

All six assignment methods were run on these real data
sets. A leave-one-out procedure was applied in each case,
which consisted in removing each individual in turn
from the reference sample. The assignment method was
then applied to this individual using the rest of the
reference sample as a training sample. The performance
of methods was evaluated as the rate at which the query
individuals were successfully assigned to their species or
subspecies. Individuals from species or subspecies
represented by a single specimen were not used as
queries in this procedure, but were retained in the
training data set. For all these methods, a majority rule
was used for assigning a species to query sequences. In
statistical learning, it corresponded to choose a Bayes
classifier associated with the 0-1 loss function [20].

Neighbour-joining (NJ)
Neighbour-joining is a phylogenetic method consisting in
constructing a tree from a distance matrix [11]. For each
data set, the trees were built using the reference sample and
the queries together, with the implementation provided by
the APE package [21] in R [22], assuming a K2P distance
between sequences. After completion of the tree, the query
was assigned to the most numerous species among the
members of its sister-group (Figure 3). When the two most
represented species were in equal number in this group, the
sister group at the upper level was used, and the same
majority rule was again applied, and so on whilst equality
remained. If no majority finally emerged, the result was
classified as ambiguous. This very occasionally occurred in

the simulated data sets and never occurred in the real data
sets.

PhyML
This alternative phylogenetic method [17] is based on
maximum likelihood. We used the function phyml_test
provided in APE that allows selection of the mutation
model with the lowest Akaike information criterion
(AIC) value. The tree was used as a decision criterion
using the same majority rule as described for neighbour-
joining.

k-nearest neighbour classification (k-NN)
We developed an R function to apply this method [23] to
DNA sequences. The method was used to rank the

Table 1: Characteristics of the data sets used in this study

Data set DNA marker N sample n taxa a θb Species determination

Astraptes COI
(barcode)

466 12 15.32 Phylogenetical

Cowries species COI
(barcode)

2036 180 36.36 Genetical and morphological

Cowries species and subspecies COI
(barcode)

2036 249 36.36

Amazonian Butterflies COI
(barcode)

424 61 46.13 Morphological

Amazonian Butterflies mt DNA
(CoI+ CoII Leu-t RNA)

424 61 146.09

Amazonian Butterflies nuclear (Ef1a) 191 52 57.32

aNumber of species or subspecies with at least two individuals.
bAverage θ value per species estimated with Watterson's [37] estimate.

BA

1_1 1_3 2_1 1_2 2_2 2_3X1_1 1_3 2_1 1_2 2_2 2_3X 1_1 1_3 2_1 1_2 2_2 2_3X2_41_1 1_3 2_1 1_2 2_2 2_3X2_4

Figure 3
Illustration of our assignment technique for the
phylogeny-based methods. X denotes the query
sequence to assign, and individuals 1_x or 2_x belong
respectively to species 1 or 2. In case A, the sister group
(1_1, 1_3, 2_1) of X contains a majority of individuals of
species 1, thus X is assigned to species 1. In case B, the sister
group (1_1, 1_3, 2_1, 2_4) of X contains an equal number of
individuals of species 1 and 2, thus we have to consider the
sister group at the upper level (one node above), this group
is (1_1, 1_3, 2_1, 2_4, 1_2) and contains a majority of species
1 individuals. X is thus assigned to species 1.
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sequences of the training set by their closeness to the
query sequence using the K2P distance computed using
the dist.dna function of APE. Following this, the query
was classified as belonging to the species including the
largest number of its k closest neighbours, where k = 1,
2, 3... represents a value chosen by the user. If two or
more sequences were located at the same distance from
the query, both of them were included in the set of
neighbours. When two species were in equal number
among the k-nearest neighbours, the sequence was
classified at random as belonging to one of these
species. Three values of k (k = 1, 2, 3) were initially
considered. However, as the method always performed
best with k = 1 (1-NN), results are provided here only for
this case.

Classification and regression trees (CART)
This method [24] constructs a binary tree based on a
learning sample (here the reference sequences). At the
root level, all DNA sequences are put in the same class.
At each step, a node is partitioned into two sub-nodes
following a splitting rule based on the allelic state of the
reference sequences at a given site. For each node t, if pj
denotes the proportion of sequences belonging to
species j, a measure of its impurity can be defined
using the Gini index i(t):

At each step, the algorithm computes the impurity
reduction provided by each site s with ΔIs = i(t) - i(t1s) -
i(t2s), where t1s and t2s are the sub-nodes created when
splitting with respect to s. The site s providing the largest
impurity reduction is selected and the sequences at node t
are split according to the different allelic states at this site.
The splitting process stops when no significant gain in
purity is obtained in adding more nodes.

According to their allelic state at the selected sites, each
query sequence is first assigned to a leaf of the tree. The
sequence is then assigned to the majority species in this
leaf [20]. We ran this method using the R package rpart
version 3 [25]. In this package, missing data are handled
as follows: when the nucleotide at a splitting site is
missing in a query sequence, the method finds the
alternative site (with no missing data) that correlates the
most with this site, and uses it instead as a splitting site.

Random forest (RF)
This algorithm [26] overcomes some potential limita-
tions of CART. Indeed, the first splitting site in CART
influences subsequent splits, which may result in
constraining the classification tree. To overcome this,

the RF method generates a large number of trees from
the learning sample by drawing subsets of m poly-
morphic site without replacement. Each subset is used to
create a classification tree as in CART, which leads to a
species assignment for a query sequence using the same
majority rule as the CART method. Finally, the query
sequence is assigned to the species indicated by the
majority of trees.

We used the R package randomForest [27] to implement
this method. We built 200 trees per data set. For real-life
data sets, the number m of randomly selected poly-
morphic sites was optimized with the function tuneRF of
randomForest. This procedure would have taken too long
for the simulated data sets. Thus, for them, we used the
same value of m for each set of simulations with given
parameters. We tried various values of m ranging
from to V/2, where V is the number of polymorphic
sites. We found that it was best to choose V/2 for small
values of V and for large values of V. Missing data
were handled with the function rfImpute of randomForest.
This method includes two steps: first, it replaces the
missing nucleotide at a given site with the most frequent
nucleotide at this site; second it performs randomForest
on the resulting data and calculates a proximity matrix
between individuals (based on the frequency at which
pairs of individuals are in the same terminal node) and
updates the value of the missing nucleotide of the
individual with the nucleotide having the largest average
proximity. This second step is iterated five times.

Kernel methods
A kernel method [28] is an algorithm that projects data
into a usually high-dimensional space and finds a
hyperplane that aims to separate, as well as possible,
data from each class (here the different species). The
mapping of the original data to this new space is
encoded by a kernel, here meaning a positive real-valued
measure of pairwise similarity between data points. The
effectiveness of kernel method algorithms is thus highly
dependent on the choice of kernel as this determines
separation of the classes in the new space. In the present
context, kernel methods are relevant as we can define
kernels to give pairwise comparisons between nucleotide
sequences.

In this work, we proceeded by first retaining the set of
polymorphic sites in the learning sample. We then used a
contiguous subsequence kernel [29] defining similarity
between sequences based on how many subsequences of
length 1,2,..., S (where S is the number of polymorphic
sites in the sequence) were not only shared between
sequences but also aligned to the same set of positions in
the global alignment. Intuitively, members of the same
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species should have more such common subsequences
than members of different species. The contiguous
subsequence kernel projects the learning set (nucleotide
sequences) into a new (high-dimensional Euclidean)
space and we then find a maximum-margin separating
hyperplane using the SVM (Support Vector Machine)
algorithm [28]. Query sequences are then projected into
this space and classified based on which side of the
hyperplane they fall on.

Combining nuclear and cytoplasmic data
When information was available for one or several
nuclear loci in addition to the cytoplasmic locus, the
analysis was performed at each locus separately. Since
nuclear loci are diploid, we assumed the two haplotypes
of individuals at each nuclear locus to be known
separately. The assignment of the query individual was
performed through a voting procedure, in which the vote
of each locus was weighted as follows. For NJ, PhyML
and kernel methods, it was based on its proportion of
correct assignment for the reference sample. For 1-NN,
CART and RF, the weights were the probability for each
locus of the query individual to belong to the various
species.

Results
Simulated data sets
The supplementary table (Additional file 1) shows the
success rate of the different methods (except kernel
methods) for all parameter values when barcoding is
performed with a single mitochondrial locus and no
nuclear loci. We can see first that the performances of all
methods were rather similar and some perform better
than others depending on the situation. We see that
among classification methods, 1-NN and RF generally
performed better than CART, but not in all cases. Among
phylogenetic methods, NJ performs slightly better than
PhyML in most cases. When comparing the best
phylogenetic method (NJ) and the best supervised
classification methods (1-NN or RF, depending on the
case), the difference was often slight, and sometimes not
significant. 1-NN appeared to be the most reliable
method, being always among the best performing ones.

This is seen more clearly in Tables 2 through 5 in which
we present the success rates of the different methods
when varying one parameter at a time, starting in all
cases from the same model. This model involves a pair of
species having diverged from each other Nf/2 genera-
tions ago, where Nf is the effective female population
size. It is worth noting that an Nf/2 separation time
corresponds to half the expected coalescence time of two
sequences in a standard Wright-Fisher model (selective
neutrality, constant population size, panmixia). In this

model, the size of the reference sample is 10. The results
were examined for two values of θ: 3 and 30.

The values obtained for this model are shown in each of
Tables 2, 3, 4, 5 below (see e.g., Table 2, for rows
“separation time = 500”). For this model, the perfor-
mance of the various assignment methods ranged from
an 86.30% to 87.25% success rate for θ = 3 and from a
93.50% to 96.20% success rate for θ = 30. The best
method was NJ in the first case and PhyML in the
second. It will be seen in the following that this result is
not stable when changing simulation conditions.

Varying speciation time
Results are shown in Table 2. For a speciation time of Nf/
10 (first line), all methods performed very poorly with a
success rate under 66% for a small mutation rate (θ = 3).
This separation time is very low and was designed as the
lower boundary of the observations. Note however that
all methods already reached a success rate of about 75%
for this low speciation time when polymorphism was
increased (θ = 30). Contrastingly, almost all methods
showed a 100% success rate for very long separation
times (T = 5Nf, T = 10Nf).

For intermediate conditions (T = Nf/2 or Nf), four
methods had rather similar performances: NJ, PhyML, RF
and 1-NN. CART and the kernel method also showed
good performances for low θ values but were relatively
less successful for high θ values. Overall, PhyML and NJ
appeared to be the best methods for high θ values, and 1-
NN the best method for low θ values.

Varying sample size
Results are shown in Table 3. First, the success rate of all
methods increased with sample size (n). This increase was
sometimes quite large. For instance, for the 1-NN method
with θ = 3, the success ratewas only 78.35% for n = 3 butwas
91.05% for n = 25. In general the best-performing method
for the low θ value was NJ, but it was 1-NN for the high
θ value. Overall, 1-NN appeared as the best method among
those which did not significantly depart from the best score,
as was already the case for varying speciation time.

Increasing the number of speciation events
Few speciation events occur simultaneously. Simulating the
simultaneous divergence of three to five species may thus
seem somewhat unrealistic. However, taxonomic groups
may undergo more or less extensive bursts of evolutionary
radiations and we took this condition as a simple and
replicable way to simulate this evolutionary context, which
corresponds to a “worst-case scenario” for barcode analysis,
as the lineages of all species may intermingle. Results
are shown in Table 4. Increasing the number of species
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decreased the success rate of all methods. The decrease of
the success rate was however much slower when θ was high
than when it was low. The kernel method and CART
appeared to be the methods most sensitive to an increased
number of species: the decrease in their success rate with an
increasing number of speciation events was the strongest.
Again the other four methods had similar results, the NJ
method performing slightly better than the others in a
majority of cases.

Adding nuclear loci
When a taxonomic case is difficult to resolve, a
researcher may choose to sequence nuclear loci, which
are genetically independent. We considered the effect of
adding these nuclear loci. Results are shown in Table 5.
The success of all assignment methods increased when
the number of loci was increased. This increase was

generally substantial, though not always. In particular,
the RF method appeared quite poor at incorporating the
information provided by the nuclear loci for the low θ
value. For the low θ value, 1-NN was always the best
method when at least one nuclear locus was included.
All other methods were highly significantly less success-
ful in almost all cases. For the high θ value, all methods
performed about the same except for a single case of a
significant difference for CART.

Real-life data sets
These data sets combine all parameter variations as
considered earlier, in a way which is difficult to system-
atically study with simulations. Thus, any of the
barcoding drawbacks previously presented might occur,
with the additional difficulties of the occurrence of
missing data and of species with different population

Table 2: Success rate (%) of data analysis methods with varying speciation time; mtDNA sequences were simulated for two species and
a sample size n = 10; the mutation parameter θ was either 3 (A) or 30 (B)

Speciation time NJ PhyML 1-NN CART RF Kernel P < 0.05 P < 0.01

(A) θ = 3
100 62.90 62.25¶ 65.45* 65.40 64.30 64.95 1
500† 87.25* 86.30 87.20 87.15 86.40 87.15
1000 95.90 96.00 96.75* 96.55 96.00 95.75
5000 100.00* 100.00* 100.00* 99.85 100.00* 99.80
10000 100.00* 100.00* 100.00* 100.00* 100.00* 99.90

(B) θ = 30
100 75.60 75.30 76.25* 75.50 77.75 73.45
500† 96.10 96.20* 95.55 93.50¶ 95.25 94.00¶ 2 2
1000 99.15* 99.15* 98.55 97.10¶ 98.35¶ 96.90¶ 3 3
5000 99.95 100.00* 100.00* 99.40¶ 100.00* 99.45¶ 1 2
10000 100.00* 100.00* 100.00* 99.40¶ 100.00* 99.55¶ 2 2

*Best score.
¶significantly below the best score. Columns 8 and 9 indicate the number of methods with p-values below 0.05 and 0.01 respectively.
†Focal set of parameters, for comparison across tables.

Table 3: Success rate (%) of data analysis methods when varying the reference sample size; mtDNA sequences were simulated for two
species and a speciation time of T = 500 (Nf/2); the mutation parameter θ was either 3 (A) or 30 (B)

Reference
sample size

NJ PhyML 1-NN CART RF Kernel P < 0.05 P < 0.01

(A) θ = 3
3 77.45 77.50 78.05* 77.15 77.35 76.15
5 84.20* 83.85 83.30 82.95 82.40 82.10
10† 87.25* 86.30 87.20 87.15 86.40 87.15
25 92.00* 91.70 91.10 90.80 89.40¶ 90.75 1 1

(B) θ = 30
3 82.80 82.95 83.55* 79.40¶ 81.95 80.45¶ 2 2
5 89.50 89.45 90.25* 86.20¶ 89.30 86.85¶ 2 2
10† 96.10 96.20* 95.55 93.50¶ 95.25 94.00¶ 1 1
25 98.95 98.95 99.15* 98.30¶ 99.00 98.20¶ 2 1

*Best score.
¶significantly below the best score. Columns 8 and 9 indicate the number of methods with p-values below 0.05 and 0.01 respectively.
†Focal set of parameters, for comparison across tables.
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sizes. For the Astraptes data set (Table 6), all methods
performed well with a success rate around 99%. For the
two cowries data sets, the CART method was the least
powerful. All other methods had a success rate above
90%, except PhyML and the kernel method for cowries at
the subspecies level. The performance of all methods
decreased for the cowries when subspecies were con-
sidered. The 1-NN and NJ methods performed the best
for the species data set, while the RF method performed
slightly better for the data set including subspecies.
Similarly, almost all methods had similar success rates of
above 90% for the three Amazonian butterfly data sets.
CART and RF performed poorly for Ef1a. CART also
performed poorly for the enlarged mtDNA sequence. The
best performing method depended on the gene con-
sidered, although the 1-NN and NJ methods were always
among the best, whilst the others did not perform well
for at least one of the data sets.

Discussion
Comparison between methods
We aimed to compare the efficiency of six methods
falling into two categories, which finally appear to
constitute three groups: phylogenetic methods (NJ and
PhyML), a simple distance-based method (1-NN) and
three supervised statistical classification methods (CART,
RF, kernel methods). In the simulation study, the success
rates of the various methods were generally very close.
The differences appeared significant in some cases
because we ran a large number of simulations. However,
these differences are often rather slight in magnitude. For
half of the conditions surveyed in this study, no method
significantly departed from the best performing one.
Another striking result emerging from the simulation
study is that best performing methods depended on the
conditions. This had already been shown when compar-
ing several distance and phylogenetic methods [16].

Table 4: Success rate (%) of data analysis methods for a number of species ranging from two to five; mtDNA sequences were simulated
for a reference sample size n = 10 and a separation time T = 500 (Nf/2); the mutation parameter θ was either 3 (A) or 30 (B)

Number of species NJ PhyML 1-NN CART RF Kernel P < 0.05 P < 0.01

(A) θ = 3
2† 87.25 86.30 87.30* 87.15 87.20 87.15
3 81.73* 80.77 80.67 80.40 80.97 81.10
4 75.80 75.00 75.40 75.68 75.95* 74.78¶ 1
5 73.26* 72.36 72.58 72.84 73.22 70.74¶ 1 1

(B) θ = 30
2† 96.10 96.20* 95.55 93.50¶ 95.25 94.00¶ 2 2
3 94.40* 94.23 94.00 90.93¶ 93.50 92.10¶ 2 2
4 93.78* 93.73 92.90 90.10¶ 92.53¶ 91.40¶ 3 2
5 92.46 92.38 92.70* 88.98¶ 92.08 90.46¶ 2 2

*Best score.
¶significantly below the best score. Columns 8 and 9 indicate the number of methods with p-values below 0.05 and 0.01 respectively.
†Focal set of parameters, for comparison across tables.

Table 5: Success rate (%) of data analysis methods for a number of additional nuclear loci; DNA sequences were simulated for two
species, for a sample size n = 10 and a speciation time T = 500 (N/2); the mutation parameter θ was either 3 (A) or 30 (B)

Number of
nuclear loci (nl)

NJ PhyML 1-NN CART RF Kernel P < 0.05 P < 0.01

(A) θ = 3
0† 87.25 86.30 87.30* 87.15 86.40 87.15
1 88.05¶ 87.10¶ 91.40* 89.70 83.55¶ 83.70¶ 4 4
2 90.60¶ 90.35¶ 95.00* 93.20¶ 86.25¶ 86.80¶ 5 4
3 92.80¶ 92.40¶ 96.20* 95.05 88.95¶ 89.75¶ 4 4
4 94.70¶ 94.60¶ 97.70* 96.55¶ 91.30¶ 91.90¶ 5 4

(B) θ = 30
0† 96.10 96.20* 95.55 93.50¶ 95.25 94.00¶ 1 1
1 96.00 96.20 96.80 95.95 97.00* 96.10
2 98.55* 98.55* 98.35 98.05 98.15 97.60
3 99.40 99.30 99.50* 98.95¶ 99.40 98.75 1 1
4 99.75* 99.70 99.75* 99.50 99.75* 99.50

*Best score.
¶significantly below the best score. Columns 8 and 9 indicate the number of methods with p-values below 0.05 and 0.01 respectively.
†Focal set of parameters, for comparison across tables.
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Here we show that it is still the case when comparing
these methods with statistical classification methods.

More specifically, the simulation study shows that at low
diversity (θ = 3), all methods perform approximately the
same. On the other hand, when genetic diversity is high
(θ = 30), distance methods (NJ, 1-NN) access best the
information provided, except for large sample sizes (n =
25). This was the case over a wide range of speciation
times and sample sizes and remained true when there
was radiation between more than two species (Table 4).
Under these conditions, CART and kernel methods
constantly performed poorer than the others. RF was
the only statistical classification method that had a
similar success as the distance method (1-NN) or the
phylogenetic methods (NJ, PhyML). The 1-NN method
was the only one which never significantly departed
from the best performing method, when it was not itself
the best one. It thus appears to be the most reliable.

Among phylogenetic methods, NJ outperforms the
maximum-likelihood method (PhyML) in most cases,
as already observed by Elias et al. [5]. While algorithms
like PhyML might be more efficient at resolving deep
roots in phylogenetic trees, they seem to be less able to
discriminate among recently separated taxa. The majority
rule that we have applied here for the phylogenetic
methods is quite rapid and allows us to perform
comparisons on large quantities of simulated data.
Note however that this method does not provide a
confidence level for assignments. Some methods are
available for providing such a confidence level [30-32].
These are all relatively time-intensive; we did not study
them in our extensive simulation scheme, but users
should consider them as they could provide an indica-
tion of the risk of false assignment of their sample.

Regarding the supervised statistical classification meth-
ods, while CART has some known limitations, we could
have expected that more elaborate methods like RF or
kernel methods would perform better than the simple 1-
NN method. This result deserves examination. 1-NN
merely states that the query belongs to the same species
as the closest sequence, using some specified genetic

distance. It should be noted that this principle applies
well to the most difficult cases, those of Figures 1c and
1d, where a mutation is found in only one species but
has not reached fixation. This case is related to the
process of allele fixation in young species: at this step,
some mutations are already “specific”, but are not yet
“diagnostic”. Classification methods like CART and RF
may be misled by mutations shared between species.
Phylogenetic methods can also be misled because they
will consider some closely related individuals belonging
to other species. By focusing on the closest neighbour,
1-NN is less likely to be misled by individuals of a wrong
species that would share many mutations with the query
sequence. In this way, it is a kind of “cheap coalescent
method”. This may also explain why the 1-NN method,
which considers only the closest neighbour, always
performs better than methods that also consider more
distant neighbours (2-NN, 3-NN, etc., unpublished
results).

The supervised classification methods assume indepen-
dence between the sequences being classified. Their
performance strongly relies on how well the learning
sample represents variability. These methods might be
misled by small sample sizes (especially for high values
of θ). In particular, kernel methods were relatively
ineffective in our simulations. It could be that they do
not deal easily with a number of simultaneous condi-
tions. In particular, supervised learning classification
methods such as kernel methods use the learning sample
to determine a classification rule. These algorithms
assume that the training set is representative of the
whole dataset, but this is not always the case when the
input space contains few observations from some species
if the dimension is high (a few hundred sites, for
instance). This may partially explain the lesser perfor-
mance of kernel methods on simulated data. Further-
more, the performance of kernel methods is strongly
conditioned by the choice of the kernel, and the purpose
of this study was not to improve each method
individually. Here, we used a standard kernel [29], so
this method has a large potential for improvement, given
a potentially better choice of kernel. A future develop-
ment in this context could also be to combine different

Table 6: Success rate (%) of the methods on real data sets

Data set NJ PhyML 1-NN CART RF Kernel

Astraptes 99.36 99.36* 99.36 98.22 99.36 99.57*
Cowries (species) 95.45* 93.40 95.45* 78.40 94.65 94.45
Cowries (species and subspecies) 91.10 86.37 91.31 72.38 91.41* 89.20
Amazonian Butterflies (barcode) 91.73 91.20 90.40 75.47 92.00 92.80*
Amazonian Butterflies (mtDNA) 91.47 91.2 91.73 71.20 92.00 93.60*
Amazonian Butterflies (nuclear gene) 87.74 90.32* 90.32* 52.90 80.64 89.03

*Best score.
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methods through an appropriate weighting procedure or
aggregation method [33-35]. The kernel methods how-
ever performed well on most real data sets (giving
the best result in 3 out of 6). As for the simulated data,
the real data sets where the kernel method performed
worse seem to be the cases where many classes are
represented by few members, as for the cowries
subspecies dataset.

Results on experimental data sets confirmed also that
there is no best method on all data sets, even though the
1-NN method still seemed the most reliable. Real data
sets are complex, due to an unknown history that may
include gene flow between closely related species and
demographic events like population expansions. This
may explain why the methods performed differently.
Choosing the best method for barcoding is thus a
difficult problem. Estimating the θ value of the different
species, for instance with [37] estimate, may provide
some indication on the method that is likely to be the
best for the data set in question. Nevertheless, since no
method outperformed the others in all cases, a strategy
when dealing with complex data sets may be to assess
the performance of different methods on the reference
sample set, using a leave-one-out procedure. The method
performing the best may then be applied to the query
dataset.

Amount of data required
Besides the need to choose an appropriate method
depending on the circumstances, our results clearly show
that the performance of all methods clearly depends on
the amount of available data. Barcode users can increase
either i) the sample size, ii) the amount of information
in the sequences by increasing their length or iii) the
number of independent loci. For instance, for highly
polymorphic species (θ = 30), with a sample size of 10,
the success rate of most methods was above 95%
provided that the species were separated for at least
0.5Nf generations, where Nf denotes the effective
number of females in the species. For less polymorphic
species (θ = 3), the same level of success was reached
only when the separation time between species was
above or equal to Nf generations. This need for a high
level of polymorphism increases strongly with the
number of species considered (Table 4). If the COI
sequences show too little polymorphism, extending their
length might be useful.

Increasing the reference sample size had a strong positive
effect on the success of methods: it increased from as
much as 78% to 91% in certain cases (Table 2).
Moreover, we considered species with no geographical
structuring. For species with genetic structuring across

their geographic distribution, increasing again the
reference sample size with sampling in several locations
would probably be of great help. Finally, for species
for which increasing the sample size is not feasible,
adding nuclear loci is an alternative possibility (Table 5).
This has however a cost, since all individuals of the
reference sample need to be genotyped for these
additional loci. Nuclear loci also allow us to perform
barcoding in cases where the COI locus is useless due
to biological peculiarities, such as horizontal transfer
and hitchhiking of mitochondria by Wolbachias [see
e.g., [7]].

These patterns are confirmed by the study on real data
sets. The good performance of all methods with the
Astraptes data set can be explained by high separation
and large sample sizes of these species, as is apparent on
the phylogenetic tree from Hebert et al. [4], while in the
cowries data set [6], the low level of separation and the
lower sample sizes per species make the methods less
efficient. The success rate is even lower for the cowries
when considering the subspecies level since the separa-
tion times and the sample sizes are even smaller. For the
Amazonian butterflies, we could not combine nuclear
and cytoplasmic data sets as many individuals were not
typed for both genes. Nevertheless, as noted by Elias et
al. [5], we were also able to confirm that a nuclear gene
EF1a can be used as additional information to the
barcode.

Conclusion
No one method used in this study appears to be the
unique and universally best one for barcode data
analysis. This is probably due to a variety of historical
factors, such as history of speciation events, coalescent
properties of the sample and stochasticity of mutation
events, resulting in unpredictable data. This is reminis-
cent of what occurs in phylogenetics, for which no single
method has been established as the best one for all cases,
ever since Zuckerkandl and Pauling [36] discovered
evolutionary clock scores. This suggests that choosing the
best method for barcode interpretation must involve at
least two steps. The first consists of an assessment of the
methods conditional on the structure of the data. For
instance, the efficiency of different methods can be
evaluated on the reference sample set, which is generally
well-characterized, and comprehensively sampled. In the
context of this study, the 1-NN method appeared to be a
very reliable method. The second step is to choose a
method to apply to the query sequences. An alternative
may involve further sequencing, either to sequence more
mtDNA or to sequence loci from nuclear DNA. However,
this choice is costly and contradicts the wishful
universality of the standard barcode.
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Finally, we note that for methodological purposes, we
assumed that queries belonged to one of the species of
the reference sample and used methods relevant to this
assumption. However, only a fraction of all existing
species have been identified by taxonomists. In more
sophisticated applications of barcoding, the range of
eligible species should not be bounded by the reference
sample and DNA barcoding should aim to partition a
collection of unresolved query sequences belonging to
an unknown number of species.
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