C. J. Elferink, J. P. Whitlock, and . Jr, -Tetrachlorodibenzo-p-dioxin-inducible, Ah receptor-mediated bending of enhancer DNA, J. Biol. Chem, vol.27, issue.265, pp.5718-5721, 1990.
URL : https://hal.archives-ouvertes.fr/hal-00654144

A. M. Nardulli, D. J. Shapiro, X. P. Lu, N. L. Eberhardt, and M. Pfahl, Binding of the estrogen receptor DNA-binding domain to the estrogen response element induces DNA bending., Molecular and Cellular Biology, vol.12, issue.5, pp.2037-2042, 1992.
DOI : 10.1128/MCB.12.5.2037

L. D. Mcbroom, G. Flock, and V. Giguere, The nonconserved hinge region and distinct amino-terminal domains of the ROR alpha orphan nuclear receptor isoforms are required for proper DNA bending and ROR alpha-DNA interactions., Molecular and Cellular Biology, vol.15, issue.2, pp.796-808, 1995.
DOI : 10.1128/MCB.15.2.796

Q. Li and O. Wrange, Translational positioning of a nucleosomal glucocorticoid response element modulates glucocorticoid receptor affinity., Genes & Development, vol.7, issue.12a, pp.2471-2482, 1993.
DOI : 10.1101/gad.7.12a.2471

P. Lefebvre, A. Mouchon, B. Lefebvre, and P. Formstecher, Binding of Retinoic Acid Receptor Heterodimers to DNA: A ROLE FOR HISTONES NH2 TERMINI, Journal of Biological Chemistry, vol.273, issue.20, pp.12288-12295, 1998.
DOI : 10.1074/jbc.273.20.12288

F. J. Dilworth, C. Fromental-ramain, E. Remboutsika, A. Benecke, C. et al., Ligand-dependent activation of transcription in vitro by retinoic acid receptor alpha/retinoid X receptor alpha heterodimers that mimics transactivation by retinoids in vivo, Proc. Natl

F. J. Dilworth, C. Fromental-ramain, K. Yamamoto, C. , and P. , ATP-Driven Chromatin Remodeling Activity and Histone Acetyltransferases Act Sequentially during Transactivation by RAR/RXR In Vitro, Molecular Cell, vol.6, issue.5, pp.1049-1058, 2000.
DOI : 10.1016/S1097-2765(00)00103-9

B. Lefebvre, C. Brand, P. Lefebvre, and K. Ozato, Chromosomal Integration of Retinoic Acid Response Elements Prevents Cooperative Transcriptional Activation by Retinoic Acid Receptor and Retinoid X Receptor, Molecular and Cellular Biology, vol.22, issue.5, pp.1446-1459, 2002.
DOI : 10.1128/MCB.22.5.1446-1459.2002

K. A. Ohgi, J. Wang, L. Escoubet-lozach, D. W. Rose, C. K. Glass et al., Histone methylation-dependent mechanisms impose ligand dependency for gene activation by nuclear receptors Phosphorylation of a conserved serine in the deoxyribonucleic acid binding domain of nuclear receptors alters intracellular localization Protein kinase A-dependent phosphorylation modulates DNA-binding activity of hepatocyte nuclear factor 4 Phosphorylation of thyroid hormone receptors by protein kinase A regulates DNA recognition by specific inhibition of receptor monomer binding Phosphorylation of human estrogen receptor alpha by protein kinase A regulates dimerization, Cell Mol. Endocrinol. Mol. Cell Biol. J. Biol. Chem. Mol. Cell Biol, vol.12867, issue.19, pp.505-518, 1997.

L. A. Ponguta, C. W. Gregory, F. S. French, W. , and E. M. , Site-specific Androgen Receptor Serine Phosphorylation Linked to Epidermal Growth Factor-dependent Growth of Castration-recurrent Prostate Cancer, Journal of Biological Chemistry, vol.283, issue.30, pp.20989-21001, 2008.
DOI : 10.1074/jbc.M802392200

F. Iwamoto, T. Umemoto, K. Motojima, Y. Fujiki, S. A. Khan et al., Nuclear transport of peroxisome-proliferator activated receptor alpha Ligand-independent orphan receptor TR2 activation by phosphorylation at the DNA-binding domain, J. Biochem. Proteomics, vol.149, issue.6, pp.311-319, 2006.

R. Gineste, A. Sirvent, R. Paumelle, S. Helleboid, A. Aquilina et al., Phosphorylation of Farnesoid X Receptor by Protein Kinase C Promotes Its Transcriptional Activity, Molecular Endocrinology, vol.22, issue.11, pp.2433-2447, 2008.
DOI : 10.1210/me.2008-0092

M. D. Huq, S. G. Ha, W. , L. N. Kim, H. J. Kim et al., Modulation of Retinoic Acid Receptor Alpha Activity by Lysine Methylation in the DNA Binding Domain, Journal of Proteome Research, vol.7, issue.10, pp.4538-4545, 2007.
DOI : 10.1021/pr800375z

K. A. Burns, Y. Li, Y. Arao, R. M. Petrovich, and K. S. Korach, Selective Mutations in Estrogen Receptor ?? D-domain Alters Nuclear Translocation and Non-estrogen Response Element Gene Regulatory Mechanisms, Journal of Biological Chemistry, vol.286, issue.14, pp.12640-12649, 2011.
DOI : 10.1074/jbc.M110.187773

V. Dubois, A. B. Houtsmuller, F. Claessens, and A. Haelens, A 629RKLKK633 motif in the hinge region controls the androgen receptor at multiple levels Characterization of transcriptional activation and DNA-binding functions in the hinge region of the vitamin D receptor, Cell Mol. Life Sci. Biochemistry, vol.67, issue.44, pp.1919-1927, 2005.

P. Bernard, L. Ludbrook, G. Queipo, M. B. Dinulos, G. B. Kletter et al., A familial missense mutation in the hinge region of DAX1 associated with late-onset AHC in a prepubertal female, Molecular Genetics and Metabolism, vol.88, issue.3, pp.272-279, 2006.
DOI : 10.1016/j.ymgme.2005.12.004

W. Hong, A. Baniahmad, Y. Liu, L. , H. Yoshikawa et al., Bag-1M is a component of the in vivo DNAglucocorticoid receptor complex at hormone-regulated promoter Role of the hinge region of glucocorticoid receptor for HEXIM1- mediated transcriptional repression, J. Mol. Biol. Biochem. Biophys. Res. Commun, vol.384, issue.371, pp.22-30, 2008.

M. H. Liu, J. Li, P. Shen, B. Husna, E. S. Tai et al., A natural polymorphism in peroxisome proliferator-activated receptor-alpha hinge region attenuates transcription due

J. D. Safer, R. N. Cohen, A. N. Hollenberg, and F. E. Wondisford, Defective Release of Corepressor by Hinge Mutants of the Thyroid Hormone Receptor Found in Patients with Resistance to Thyroid Hormone, Journal of Biological Chemistry, vol.273, issue.46, pp.1078-1092, 1998.
DOI : 10.1074/jbc.273.46.30175

W. Zwart, L. R. De, M. Rondaij, J. Neefjes, M. A. Mancini et al., The hinge region of the human estrogen receptor determines functional synergy between AF-1 and AF- 2 in the quantitative response to estradiol and tamoxifen Natural structural variants of the nuclear receptor farnesoid X receptor affect transcriptional activation, J. Cell Sci. J. Biol. Chem, vol.123, issue.278, pp.1253-1261, 2003.

S. M. Holmbeck, H. J. Dyson, W. , and P. E. , DNA-induced conformational changes are the basis for cooperative dimerization by the DNA binding domain of the retinoid X receptor, Journal of Molecular Biology, vol.284, issue.3, pp.533-539, 1998.
DOI : 10.1006/jmbi.1998.2207

M. S. Lee, S. A. Kliewer, J. Provencal, P. E. Wright, R. M. Evans et al., Structure of the retinoid X receptor alpha DNA binding domain: a helix required for homodimeric DNA binding, Transcriptional regulation of the adrenal steroidogenic enzymes, pp.1117-1121, 1993.
DOI : 10.1126/science.8388124

M. H. Hsu, C. N. Palmer, W. Song, K. J. Griffin, J. et al., A Carboxyl-terminal Extension of the Zinc Finger Domain Contributes to the Specificity and Polarity of Peroxisome Proliferator-activated Receptor DNA Binding, Journal of Biological Chemistry, vol.273, issue.43, pp.27988-27997, 1998.
DOI : 10.1074/jbc.273.43.27988

J. C. Hsieh, G. K. Whitfield, A. K. Oza, H. T. Dang, J. N. Price et al., Characterization of unique DNA-binding

S. C. Roemer, D. C. Donham, L. Sherman, V. H. Pon, D. P. Edwards et al., Structure of the Progesterone Receptor-Deoxyribonucleic Acid Complex: Novel Interactions Required for Binding to Half-Site Response Elements, Structure of the RXR-RAR DNA-binding complex on the retinoic acid response element DR1, pp.16347-16358, 1999.
DOI : 10.1210/me.2005-0511

Q. Zhao, S. A. Chasse, S. Devarakonda, M. L. Sierk, B. Ahvazi et al., Structural basis of RXR-DNA interactions, Journal of Molecular Biology, vol.296, issue.2, pp.509-520, 2000.
DOI : 10.1006/jmbi.1999.3457

D. S. Sem, D. R. Casimiro, S. A. Kliewer, J. Provencal, R. M. Evans et al., NMR Spectroscopic Studies of the DNA-binding Domain of the Monomer-binding Nuclear Orphan Receptor, Human Estrogen Related Receptor-2: THE CARBOXYL-TERMINAL EXTENSION TO THE ZINC-FINGER REGION IS UNSTRUCTURED IN THE FREE FORM OF THE PROTEIN, Journal of Biological Chemistry, vol.272, issue.29, pp.18038-18043, 1997.
DOI : 10.1074/jbc.272.29.18038

T. E. Wilson, R. E. Paulsen, K. A. Padgett, J. Milbrandt, M. D. Gearhart et al., Participation of non-zinc finger residues in DNA binding by two nuclear orphan receptors Monomeric complex of human orphan estrogen related receptor-2 with DNA: a pseudo-dimer interface mediates extended half-site recognition, Science J. Mol. Biol, vol.256, issue.327, pp.107-110, 1992.

Q. Zhao, S. Khorasanizadeh, Y. Miyoshi, M. A. Lazar, R. et al., Structural Elements of an Orphan Nuclear Receptor???DNA Complex, Molecular Cell, vol.1, issue.6, pp.849-861, 1998.
DOI : 10.1016/S1097-2765(00)80084-2

A. Ijpenberg, E. Jeannin, W. Wahli, and B. Desvergne, Polarity and Specific Sequence Requirements of Peroxisome Proliferator-activated Receptor (PPAR)/Retinoid X Receptor Heterodimer Binding to DNA: A FUNCTIONAL ANALYSIS OF THE MALIC ENZYME GENE PPAR RESPONSE ELEMENT, Journal of Biological Chemistry, vol.272, issue.32, pp.20108-20117, 1997.
DOI : 10.1074/jbc.272.32.20108

R. G. Pestell, Direct acetylation of the estrogen receptor alpha hinge region by p300 regulates transactivation and hormone sensitivity, J. Biol. Chem, vol.276, pp.18375-18383, 2001.

K. I. Kim, SUMOylation of RORalpha potentiates transcriptional activation function

S. Sentis, R. M. Le, C. Bianchin, M. C. Rostan, C. et al., Sumoylation of the Estrogen Receptor ?? Hinge Region Regulates Its Transcriptional Activity, Molecular Endocrinology, vol.19, issue.11, pp.2671-2684, 2005.
DOI : 10.1210/me.2005-0042

B. Pourcet, I. Pineda-torra, B. Derudas, B. Staels, and C. Glineur, SUMOylation of Human Peroxisome Proliferator-activated Receptor ?? Inhibits Its Trans-activity through the Recruitment of the Nuclear Corepressor NCoR, Journal of Biological Chemistry, vol.285, issue.9, pp.5983-5992, 2010.
DOI : 10.1074/jbc.M109.078311

URL : https://hal.archives-ouvertes.fr/inserm-00439808

M. H. Delmotte, A. Tahayato, P. Formstecher, and P. Lefebvre, Serine 157, a Retinoic Acid Receptor ?? Residue Phosphorylated by Protein Kinase C in Vitro, Is Involved in RXR{middle dot}RAR?? Heterodimerization and Transcriptional Activity, Journal of Biological Chemistry, vol.274, issue.53, pp.38225-38231, 1999.
DOI : 10.1074/jbc.274.53.38225

C. Blanquart, R. Mansouri, J. C. Fruchart, R. Paumelle, B. Staels et al., The Protein Kinase C Signaling Pathway Regulates a Molecular Switch Between Transactivation and Transrepression Activity of the Peroxisome Proliferator-Activated Receptor Alpha, pp.663-670, 2004.

W. Bourguet, M. Ruff, P. Chambon, H. Gronemeyer, and D. Moras, Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-??, Nature, vol.375, issue.6530, pp.377-382, 1995.
DOI : 10.1038/375377a0

P. Huang, V. Chandra, R. , and F. , Structural Overview of the Nuclear Receptor Superfamily: Insights into Physiology and Therapeutics, Annual Review of Physiology, vol.72, issue.1, pp.247-272, 2010.
DOI : 10.1146/annurev-physiol-021909-135917

P. Lapointe, J. P. Daris, A. Marinier, A. R. De-lera, N. Rochel et al., Rational design of RAR-selective ligands revealed by RARbeta crystal stucture, EMBO Rep, vol.5, pp.877-882, 2004.

A. R. De-lera, W. Bourguet, L. Altucci, and H. Gronemeyer, Design of selective nuclear receptor modulators: RAR and RXR as a case study, Nature Reviews Drug Discovery, vol.10, issue.10, pp.811-820, 2007.
DOI : 10.1038/nrd2398

URL : https://hal.archives-ouvertes.fr/hal-00188872

D. M. Heery, E. Kalkhoven, S. Hoare, and M. G. Parker, A signature motif in transcriptional co-activators mediates binding to nuclear receptors, Nature, vol.387, pp.733-736, 1997.

V. Perissi, L. M. Staszewski, E. M. Mcinerney, R. Kurokawa, A. Krones et al., Molecular determinants of nuclear receptor-corepressor interaction, Genes & Development, vol.13, issue.24, pp.3198-3208, 1999.
DOI : 10.1101/gad.13.24.3198

T. G. Consler, D. J. Parks, E. L. Stewart, T. M. Willson, M. H. Lambert et al., Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition, Cell, vol.110, pp.93-105, 2002.

Y. Wu, W. W. Chin, Y. Wang, and T. P. Burris, Ligand and Coactivator Identity Determines the Requirement of the Charge Clamp for Coactivation of the Peroxisome Proliferator-activated Receptor gamma, Journal of Biological Chemistry, vol.278, issue.10, pp.8637-8644, 2003.
DOI : 10.1074/jbc.M210910200

A. K. Shiau, D. Barstad, P. M. Loria, L. Cheng, P. J. Kushner et al., The Structural Basis of Estrogen Receptor/Coactivator Recognition and the Antagonism of This Interaction by Tamoxifen, Cell, vol.95, issue.7, pp.927-937, 1998.
DOI : 10.1016/S0092-8674(00)81717-1

A. M. Brzozowski, A. C. Pike, Z. Dauter, R. E. Hubbard, T. Bonn et al., Molecular basis of agonism and antagonism in the oestrogen receptor, Nature, vol.389, issue.6652, pp.753-758, 1997.
DOI : 10.1038/39645

J. D. Baxter, J. W. Funder, J. W. Apriletti, W. , and P. , Towards selectively modulating mineralocorticoid receptor function: lessons from other systems, Molecular and Cellular Endocrinology, vol.217, issue.1-2, pp.151-165, 2004.
DOI : 10.1016/j.mce.2003.10.044

N. Heldring, T. Pawson, D. Mcdonnell, E. Treuter, J. A. Gustafsson et al., Structural Insights into Corepressor Recognition by Antagonist-bound Estrogen Receptors, Journal of Biological Chemistry, vol.282, issue.14
DOI : 10.1074/jbc.M611424200

J. D. Graham, D. L. Bain, J. K. Richer, T. A. Jackson, L. Tung et al., Nuclear receptor conformation, coregulators, and tamoxifen-resistant breast cancer, Steroids, vol.65, issue.10-11, pp.579-584, 2000.
DOI : 10.1016/S0039-128X(00)00116-1

M. A. Le, C. Teyssier, C. Erb, M. Grimaldi, S. Alvarez et al., A unique secondary-structure switch controls constitutive gene repression by retinoic acid receptor, Nat. Struct. Mol. Biol, vol.17, pp.801-807, 2010.

T. M. Broderick, X. Hu, S. P. Williams, R. T. Nolte, and M. A. Lazar, Structure of Rev-erbalpha bound to N-CoR reveals a unique mechanism of nuclear receptor-co-repressor interaction, Nat. Struct. Mol. Biol, vol.17, pp.808-814, 2010.

S. E. Fawell, J. A. Lees, R. White, and M. G. Parker, Characterization and colocalization of steroid binding and dimerization activities in the mouse estrogen receptor, Cell, vol.60, issue.6, pp.953-962, 1990.
DOI : 10.1016/0092-8674(90)90343-D

C. Depoix, M. H. Delmotte, P. Formstecher, and P. Lefebvre, Control of retinoic acid receptor heterodimerization by ligand-induced structural transitions. A novel mechanism of action for retinoid antagonists, J. Biol. Chem, vol.276, pp.9452-9459, 2001.

C. Carlberg, Ligand-triggered stabilization of vitamin D receptor/retinoid X receptor heterodimer conformations on DR4-type response elements, J

B. Cheskis and L. P. Freedman, Ligand modulates the conversion of DNA-bound vitamin D3 receptor (VDR) homodimers into VDR-retinoid X receptor heterodimers., Molecular and Cellular Biology, vol.14, issue.5, pp.3329-3338, 1994.
DOI : 10.1128/MCB.14.5.3329

J. Zhang, M. J. Chalmers, K. R. Stayrook, L. L. Burris, Y. Wang et al., DNA binding alters coactivator interaction surfaces of the intact VDR???RXR complex, DNA binding alters coactivator interaction surfaces of the intact VDR-RXR complex, pp.556-563, 2011.
DOI : 10.2174/0929867054546564

W. Berrabah, P. Aumercier, P. Lefebvre, and B. Staels, Control of nuclear receptor activities in metabolism by post-translational modifications, FEBS Letters, vol.11, issue.2, pp.1640-1650, 2011.
DOI : 10.1016/j.febslet.2011.03.066

URL : https://hal.archives-ouvertes.fr/inserm-00587038

G. Pascual, A. L. Fong, S. Ogawa, A. Gamliel, A. C. Li et al., A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-??, Nature, vol.28, issue.7059, pp.759-763, 2005.
DOI : 10.1038/35056591

L. M. Nilsson, P. Parini, O. A. Janne, J. A. Gustafsson, K. R. Steffensen et al., GPS2- dependent corepressor/SUMO pathways govern anti-inflammatory actions of LRH-1 and LXRbeta in the hepatic acute phase response, Genes Dev, vol.24, pp.381-395, 2010.

T. Frankenberg, T. Miloh, F. Y. Chen, M. Ananthanarayanan, A. Q. Sun et al., The Membrane Protein ATPase Class I Type, pp.1896-1905, 2008.

N. Bruck, D. Vitoux, C. Ferry, V. Duong, A. Bauer et al., A coordinated phosphorylation cascade initiated by p38MAPK/MSK1 directs RAR?? to target promoters, The EMBO Journal, vol.29, issue.1, pp.34-47, 2009.
DOI : 10.1038/emboj.2008.256

V. Kumar, S. Green, G. Stack, M. Berry, J. R. Jin et al., Functional domains of the human estrogen receptor, Cell, vol.51, issue.6, pp.941-951, 1987.
DOI : 10.1016/0092-8674(87)90581-2

S. P. Williams and P. B. Sigler, Atomic structure of progesterone complexed with its receptor, Nature, vol.393, pp.392-396, 1998.

B. Farboud and M. L. Privalsky, Retinoic Acid Receptor-?? Is Stabilized in a Repressive State by Its C-Terminal, Isotype-Specific F Domain, Molecular Endocrinology, vol.18, issue.12, pp.2839-2853, 2004.
DOI : 10.1210/me.2004-0236

J. A. Schwartz, L. Zhong, S. Ighton-collins, C. Zhao, and D. F. Skafar, Mutations Targeted to a Predicted Helix in the Extreme Carboxyl-terminal Region of the Human Estrogen Receptor-?? Alter Its Response to Estradiol and 4-Hydroxytamoxifen, Journal of Biological Chemistry, vol.277, issue.15, pp.13202-13209, 2002.
DOI : 10.1074/jbc.M112215200

K. Kim, N. Thu, B. Saville, and S. Safe, Domains of Estrogen Receptor ?? (ER??) Required for ER??/Sp1-Mediated Activation of GC-Rich Promoters by Estrogens and Antiestrogens in Breast Cancer Cells, Molecular Endocrinology, vol.17, issue.5, pp.804-817, 2003.
DOI : 10.1210/me.2002-0406

F. M. Sladek, M. D. Ruse, . Jr, L. Nepomuceno, S. M. Huang et al., Modulation of Transcriptional Activation and Coactivator Interaction by a Splicing Variation in the F Domain of Nuclear Receptor Hepatocyte Nuclear Factor 4??1, Molecular and Cellular Biology, vol.19, issue.10, pp.6509-6522, 1999.
DOI : 10.1128/MCB.19.10.6509

M. D. Ruse, . Jr, M. L. Privalsky, and F. M. Sladek, Competitive Cofactor Recruitment by Orphan Receptor Hepatocyte Nuclear Factor 4??1: Modulation by the F Domain, Molecular and Cellular Biology, vol.22, issue.6, pp.1626-1638, 2002.
DOI : 10.1128/MCB.22.6.1626-1638.2002

A. Warnmark, T. Almlof, J. Leers, J. A. Gustafsson, and E. Treuter, Differential Recruitment of the Mammalian Mediator Subunit TRAP220 by Estrogen Receptors ER?? and ER??, Journal of Biological Chemistry, vol.276, issue.26, pp.23397-23404, 2001.
DOI : 10.1074/jbc.M011651200

R. V. Weatherman and T. S. Scanlan, Unique protein determinants of the

M. S. Jiang and G. W. Hart, A subpopulation of estrogen receptors are modified by Olinked N-acetylglucosamine, J. Biol. Chem, vol.272, pp.2421-2428, 1997.

G. Meinke and P. B. Sigler, DNA-binding mechanism of the monomeric orphan nuclear receptor NGFI-B, Nat. Struct. Biol, vol.6, pp.471-477, 1999.

F. Q. Pirih, A. Tang, I. C. Ozkurt, J. M. Nervina, and S. Tetradis, Nuclear Orphan Receptor Nurr1 Directly Transactivates the Osteocalcin Gene in Osteoblasts, Journal of Biological Chemistry, vol.279, issue.51, pp.53167-53174, 2004.
DOI : 10.1074/jbc.M405677200

T. E. Wilson, T. J. Fahrner, and J. Milbrandt, The orphan receptors NGFI-B and steroidogenic factor 1 establish monomer binding as a third paradigm of nuclear receptor-DNA interaction., Molecular and Cellular Biology, vol.13, issue.9, pp.5794-5804, 1993.
DOI : 10.1128/MCB.13.9.5794

P. Sacchetti, H. Dwornik, P. Formstecher, C. Rachez, and P. Lefebvre, Requirements for Heterodimerization between the Orphan Nuclear Receptor Nurr1 and Retinoid X Receptors, Journal of Biological Chemistry, vol.277, issue.38, pp.35088-35096, 2002.
DOI : 10.1074/jbc.M205816200

V. Giguere, L. D. Mcbroom, and G. Flock, Determinants of target gene specificity for ROR alpha 1: monomeric DNA binding by an orphan nuclear receptor., Molecular and Cellular Biology, vol.15, issue.5, pp.2517-2526, 1995.
DOI : 10.1128/MCB.15.5.2517

H. P. Harding and M. A. Lazar, The monomer-binding orphan receptor Rev-Erb represses transcription as a dimer on a novel direct repeat., Molecular and Cellular Biology, vol.15, issue.9, pp.4791-4802, 1995.
DOI : 10.1128/MCB.15.9.4791

J. W. Schwabe, L. Chapman, J. T. Finch, and D. Rhodes, The crystal structure of the estrogen receptor DNA-binding domain bound to DNA: How receptors discriminate between their response elements, Cell, vol.75, issue.3, pp.567-578, 1993.
DOI : 10.1016/0092-8674(93)90390-C

K. Umesono, K. K. Murakami, C. C. Thompson, and R. M. Evans, Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors, Cell, vol.65, issue.7, pp.1255-1266, 1991.
DOI : 10.1016/0092-8674(91)90020-Y

A. M. Naar, J. M. Boutin, S. M. Lipkin, V. C. Yu, J. M. Holloway et al., The orientation and spacing of core DNA-binding motifs dictate selective transcriptional responses to three nuclear receptors, Cell, vol.65, issue.7, pp.1267-1279, 1991.
DOI : 10.1016/0092-8674(91)90021-P

S. A. Kliewer, K. Umesono, D. J. Noonan, R. A. Heyman, and R. M. Evans, Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors, Nature, vol.358, issue.6389, pp.771-774, 1992.
DOI : 10.1038/358771a0

C. A. Ihunnah, M. Jiang, and W. Xie, Nuclear receptor PXR, transcriptional circuits and metabolic relevance, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1812, issue.8, pp.1812-956, 2011.
DOI : 10.1016/j.bbadis.2011.01.014

URL : https://hal.archives-ouvertes.fr/hal-00706537

J. Orans, D. G. Teotico, and M. R. Redinbo, The Nuclear Xenobiotic Receptor Pregnane X Receptor: Recent Insights and New Challenges, Molecular Endocrinology, vol.19, issue.12, pp.2891-2900, 2005.
DOI : 10.1210/me.2005-0156

T. F. Osborne, Genome-wide interrogation of hepatic FXR reveals an asymmetric IR-1 motif and synergy with LRH-1, Nucleic Acids Res, vol.38, pp.6007-6017, 2010.

B. Renga, A. Mencarelli, S. Cipriani, C. D-'amore, A. Zampella et al., The nuclear receptor FXR regulates hepatic transport and metabolism of glutamine and glutamate, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1812, issue.11, pp.1812-1522, 2011.
DOI : 10.1016/j.bbadis.2011.06.009

A. M. Anisfeld, H. R. Kast-woelbern, M. E. Meyer, S. A. Jones, Y. Zhang et al., Syndecan-1 Expression Is Regulated in an Isoform-specific Manner by the Farnesoid-X Receptor, Journal of Biological Chemistry, vol.278, issue.22, pp.20420-20428, 2003.
DOI : 10.1074/jbc.M302505200

R. Kurokawa, M. Soderstrom, A. Horlein, S. Halachmi, M. Brown et al., Polarity-specific activities of retinoic acid receptors determined by a co-repressor, Nature, vol.377, issue.6548, pp.451-454, 1995.
DOI : 10.1038/377451a0

V. Vivat, C. Zechel, J. M. Wurtz, W. Bourguet, H. Kagechika et al., A mutation mimicking ligand-induced conformational change yields a constitutive RXR that senses allosteric effects in heterodimers, The EMBO Journal, vol.16, issue.18, pp.5697-5709, 1997.
DOI : 10.1093/emboj/16.18.5697

S. Westin, R. Kurokawa, R. T. Nolte, G. B. Wisely, E. M. Mcinerney et al., Interactions controlling the assembly of nuclear-receptor heterodimers and co-activators, Nature, vol.395, pp.199-202, 1998.

R. Kurokawa, J. Direnzo, M. Boehm, J. Sugarman, B. Gloss et al., Regulation of retinoid signalling by receptor polarity and allosteric control of ligand binding, Nature, vol.371, issue.6497, pp.528-531, 1994.
DOI : 10.1038/371528a0

A. Mouchon, M. H. Delmotte, P. Formstecher, and P. Lefebvre, Allosteric Regulation of the Discriminative Responsiveness of Retinoic Acid Receptor to Natural and Synthetic Ligands by Retinoid X Receptor and DNA, Molecular and Cellular Biology, vol.19, issue.4, pp.3073-3085, 1999.
DOI : 10.1128/MCB.19.4.3073

S. H. Meijsing, M. A. Pufall, A. Y. So, D. L. Bates, L. Chen et al., DNA Binding Site Sequence Directs Glucocorticoid Receptor Structure and Activity, Science, vol.324, issue.5925, pp.407-410, 2009.
DOI : 10.1126/science.1164265

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2777810

S. Svensson, T. Ostberg, M. Jacobsson, C. Norstrom, K. Stefansson et al., Crystal structure of the heterodimeric complex of LXR?? and RXR?? ligand-binding domains in a fully agonistic conformation, The EMBO Journal, vol.22, issue.18, pp.4625-4633, 2003.
DOI : 10.1093/emboj/cdg456

J. S. Carroll, C. A. Meyer, J. Song, W. Li, T. R. Geistlinger et al., Genome-wide analysis of estrogen receptor binding sites, Nature Genetics, vol.8, issue.11, pp.1289-1297, 2006.
DOI : 10.1038/ng1901

V. B. Vega, Y. Luo, P. Y. Tan, P. Y. Choy, K. D. Wansa et al., An oestrogen-receptor-alpha-bound human chromatin interactome, Nature, vol.462, pp.58-64, 2009.

R. Nielsen, T. A. Pedersen, D. Hagenbeek, P. Moulos, R. Siersbaek et al., Genome-wide profiling of PPAR??:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis, Genes & Development, vol.22, issue.21, pp.2953-2967, 2008.
DOI : 10.1101/gad.501108

M. I. Lefterova, Y. Zhang, D. J. Steger, M. Schupp, J. Schug et al., PPAR?? and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale, Genes & Development, vol.22, issue.21, pp.2941-2952, 2008.
DOI : 10.1101/gad.1709008

G. Li, A. M. Thomas, S. N. Hart, X. Zhong, D. Wu et al., Gene Encoding Small Heterodimer Partner, Molecular Endocrinology, vol.24, issue.7, pp.1404-1412, 2010.
DOI : 10.1210/me.2010-0014

K. P. Nephew and T. H. Huang, Estrogen-mediated epigenetic repression of large chromosomal regions through DNA looping, Genome Res, vol.20, pp.733-744, 2010.

D. Wang, I. Garcia-bassets, C. Benner, W. Li, X. Su et al., Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA, Nature, vol.18, issue.7351, pp.390-394, 2011.
DOI : 10.1038/nature10006

P. F. Worley, G. Kreiman, and M. E. Greenberg, Widespread transcription at neuronal activityregulated enhancers, Nature, vol.465, pp.182-187, 2010.

M. Lupien, J. Eeckhoute, C. A. Meyer, Q. Wang, Y. Zhang et al., FoxA1 Translates Epigenetic Signatures into Enhancer-Driven Lineage-Specific Transcription, Cell, vol.132, issue.6, pp.958-970, 2008.
DOI : 10.1016/j.cell.2008.01.018

URL : http://doi.org/10.1016/j.cell.2008.01.018

J. Eeckhoute, J. S. Carroll, T. R. Geistlinger, M. I. Torres-arzayus, and M. Brown, A cell-type-specific transcriptional network required for estrogen regulation of cyclin D1 and cell cycle progression in breast cancer, Genes & Development, vol.20, issue.18, pp.2513-2526, 2006.
DOI : 10.1101/gad.1446006

C. H. Lee, C. Chinpaisal, W. , and L. N. , Cloning and Characterization of Mouse RIP140, a Corepressor for Nuclear Orphan Receptor TR2, Molecular and Cellular Biology, vol.18, issue.11, pp.6745-6755, 1998.
DOI : 10.1128/MCB.18.11.6745

I. Fernandes, Y. Bastien, T. Wai, K. Nygard, R. Lin et al., Ligand-Dependent Nuclear Receptor Corepressor LCoR Functions by Histone Deacetylase-Dependent and -Independent Mechanisms, Molecular Cell, vol.11, issue.1, pp.139-150, 2003.
DOI : 10.1016/S1097-2765(03)00014-5

URL : http://doi.org/10.1016/s1097-2765(03)00014-5

X. Hu, Y. Li, and M. A. Lazar, Determinants of CoRNR-Dependent Repression Complex Assembly on Nuclear Hormone Receptors, Molecular and Cellular Biology, vol.21, issue.5, pp.1747-1758, 2001.
DOI : 10.1128/MCB.21.5.1747-1758.2001

X. Hu and M. A. Lazar, The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors, Nature, vol.402, pp.93-96, 1999.

N. Varlakhanova, C. Snyder, S. Jose, J. B. Hahm, and M. L. Privalsky, Estrogen receptors recruit SMRT and N-CoR corepressors through newly recognized contacts between the

J. Oberoi, L. Fairall, P. J. Watson, J. C. Yang, Z. Czimmerer et al., Structural basis for the assembly of the SMRT/NCoR core transcriptional repression machinery, Nature Structural & Molecular Biology, vol.53, issue.2, pp.177-184, 2011.
DOI : 10.1038/nsmb.1983

V. Perissi, A. Aggarwal, C. K. Glass, D. W. Rose, and M. G. Rosenfeld, A Corepressor/Coactivator Exchange Complex Required for Transcriptional Activation by Nuclear Receptors and Other Regulated Transcription Factors, Cell, vol.116, issue.4, pp.511-526, 2004.
DOI : 10.1016/S0092-8674(04)00133-3

S. A. Onate, S. Y. Tsai, M. J. Tsai, O. Malley, and B. W. , Sequence and characterization of a coactivator for the steroid hormone receptor superfamily, Science, vol.270, pp.1354-1357, 1995.

S. J. Han, D. M. Lonard, O. Malley, and B. W. , Multi-modulation of nuclear receptor coactivators through posttranslational modifications, Trends in Endocrinology & Metabolism, vol.20, issue.1, pp.8-15, 2009.
DOI : 10.1016/j.tem.2008.10.001

D. M. Lonard, R. Kumar, O. Malley, and B. W. , Minireview: The SRC Family of Coactivators: An Entr??e to Understanding a Subset of Polygenic Diseases?, Molecular Endocrinology, vol.24, issue.2, pp.279-285, 2010.
DOI : 10.1210/me.2009-0276

R. Metivier, G. Penot, M. R. Hubner, G. Reid, H. Brand et al., Estrogen Receptor-?? Directs Ordered, Cyclical, and Combinatorial Recruitment of Cofactors on a Natural Target Promoter, Cell, vol.115, issue.6, pp.751-763, 2003.
DOI : 10.1016/S0092-8674(03)00934-6

D. Chen, S. M. Huang, and M. R. Stallcup, Synergistic, p160 Coactivator-dependent Enhancement of Estrogen Receptor Function by CARM1 and p300, Journal of Biological Chemistry, vol.275, issue.52, pp.40810-40816, 2000.
DOI : 10.1074/jbc.M005459200

N. J. Mckenna, O. Malley, and B. W. , Combinatorial Control of Gene Expression by Nuclear Receptors and Coregulators, Cell, vol.108, issue.4, pp.465-474, 2002.
DOI : 10.1016/S0092-8674(02)00641-4

S. Y. Roth, J. M. Denu, A. , and C. D. , Histone Acetyltransferases, Annual Review of Biochemistry, vol.70, issue.1, pp.81-120, 2001.
DOI : 10.1146/annurev.biochem.70.1.81

B. York, O. Malley, and B. W. , Steroid Receptor Coactivator (SRC) Family: Masters of Systems Biology, Journal of Biological Chemistry, vol.285, issue.50, pp.38743-38750, 2010.
DOI : 10.1074/jbc.R110.193367

D. C. Hargreaves and G. R. Crabtree, ATP-dependent chromatin remodeling: genetics, genomics and mechanisms, Cell Research, vol.15, issue.3, pp.396-420, 2011.
DOI : 10.1038/sj.emboj.7601541

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3110148

N. Liu and J. J. Hayes, When Push Comes to Shove: SWI/SNF Uses a Nucleosome to Get Rid of a Nucleosome, Molecular Cell, vol.38, issue.4, pp.484-486, 2010.
DOI : 10.1016/j.molcel.2010.05.005

B. Belandia, R. L. Orford, H. C. Hurst, and M. G. Parker, Targeting of SWI/SNF chromatin remodelling complexes to estrogen-responsive genes, The EMBO Journal, vol.21, issue.15, pp.4094-4103, 2002.
DOI : 10.1093/emboj/cdf412

H. Chiba, M. Muramatsu, A. Nomoto, and H. Kato, are transcriptional coactivators cooperating with the estrogen receptor and the retinoic acid receptor, Nucleic Acids Research, vol.22, issue.10, pp.1815-1820, 1994.
DOI : 10.1093/nar/22.10.1815

K. A. Link, C. J. Burd, E. Williams, T. Marshall, G. Rosson et al., BAF57 Governs Androgen Receptor Action and Androgen-Dependent Proliferation through SWI/SNF, Molecular and Cellular Biology, vol.25, issue.6, pp.2200-2215, 2005.
DOI : 10.1128/MCB.25.6.2200-2215.2005

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1061596

S. Flajollet, B. Lefebvre, C. Cudejko, B. Staels, and P. Lefebvre, The core component of the mammalian SWI/SNF complex SMARCD3/BAF60c is a coactivator for the nuclear retinoic acid receptor, Molecular and Cellular Endocrinology, vol.270, issue.1-2, pp.23-32, 2007.
DOI : 10.1016/j.mce.2007.02.004

URL : https://hal.archives-ouvertes.fr/hal-00531916

J. Miao, S. Fang, J. Lee, C. Comstock, K. E. Knudsen et al., Functional Specificities of Brm and Brg-1 Swi/Snf ATPases in the Feedback Regulation of Hepatic Bile Acid Biosynthesis, Molecular and Cellular Biology, vol.29, issue.23, pp.6170-6181, 2009.
DOI : 10.1128/MCB.00825-09

P. W. Hsiao, C. J. Fryer, K. W. Trotter, W. Wang, and T. K. Archer, BAF60a Mediates Critical Interactions between Nuclear Receptors and the BRG1 Chromatin-Remodeling Complex for Transactivation, Molecular and Cellular Biology, vol.23, issue.17, pp.6210-6220, 2003.
DOI : 10.1128/MCB.23.17.6210-6220.2003

J. K. Kemper, H. Kim, J. Miao, S. Bhalla, and Y. Bae, Role of an mSin3A-Swi/Snf Chromatin Remodeling Complex in the Feedback Repression of Bile Acid Biosynthesis by SHP, Molecular and Cellular Biology, vol.24, issue.17, pp.7707-7719, 2004.
DOI : 10.1128/MCB.24.17.7707-7719.2004

C. Underhill, M. S. Qutob, S. P. Yee, and J. Torchia, A Novel Nuclear Receptor Corepressor Complex, N-CoR, Contains Components of the Mammalian SWI/SNF Complex and the Corepressor KAP-1, Journal of Biological Chemistry, vol.275, issue.51, pp.40463-40470, 2000.
DOI : 10.1074/jbc.M007864200

W. Tao, S. Chen, G. Shi, J. Guo, Y. Xu et al., The SWI/SNF complex subunit BAF60a integrates hepatic circadian clock and energy metabolism, Hepatology, 2011.

R. C. Conaway and J. W. Conaway, Origins and activity of the Mediator complex, Seminars in Cell & Developmental Biology, vol.22, issue.7, 2011.
DOI : 10.1016/j.semcdb.2011.07.021

J. D. Fondell, M. Guermah, S. Malik, and R. G. Roeder, Thyroid hormone receptorassociated proteins and general positive cofactors mediate thyroid hormone receptor function in the absence of the TATA box-binding protein-associated factors of TFIID

W. Gu, S. Malik, M. Ito, C. X. Yuan, J. D. Fondell et al., A Novel Human SRB/MED-Containing Cofactor Complex, SMCC, Involved in Transcription Regulation, Molecular Cell, vol.3, issue.1, pp.97-108, 1999.
DOI : 10.1016/S1097-2765(00)80178-1

M. Ito, C. X. Yuan, S. Malik, W. Gu, J. D. Fondell et al., Identity between TRAP and SMCC Complexes Indicates Novel Pathways for the Function of Nuclear Receptors and Diverse Mammalian Activators, Molecular Cell, vol.3, issue.3, pp.361-370, 1999.
DOI : 10.1016/S1097-2765(00)80463-3

H. Bromage, P. Tempst, and L. P. Freedman, Ligand-dependent transcription activation by nuclear receptors requires the DRIP complex, Nature, vol.398, pp.824-828, 1999.

A. M. Naar, P. A. Beaurang, S. Zhou, S. Abraham, W. Solomon et al., Composite co-activator ARC mediates chromatin-directed transcriptional activation, Nature, vol.398, pp.828-832, 1999.

D. J. Taatjes, The human Mediator complex: a versatile, genome-wide regulator of transcription, Trends in Biochemical Sciences, vol.35, issue.6, pp.315-322, 2010.
DOI : 10.1016/j.tibs.2010.02.004

L. Bai, Y. Jia, N. Viswakarma, J. Huang, A. Vluggens et al., Transcription coactivator mediator subunit MED1 Is required for the development of fatty liver in the mouse, Hepatology, vol.278, issue.4, pp.1164-1174, 2011.
DOI : 10.1002/hep.24155

K. Ge, Y. W. Cho, H. Guo, T. B. Hong, M. Guermah et al., Alternative Mechanisms by Which Mediator Subunit MED1/TRAP220 Regulates Peroxisome Proliferator-Activated Receptor ??-Stimulated Adipogenesis and Target Gene Expression, Molecular and Cellular Biology, vol.28, issue.3, pp.1081-1091, 2008.
DOI : 10.1128/MCB.00967-07

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2223395

K. Ge, M. Guermah, C. X. Yuan, M. Ito, A. E. Wallberg et al., Transcription coactivator TRAP220 is required for PPAR??2-stimulated adipogenesis, Nature, vol.90, issue.6888, pp.563-567, 2002.
DOI : 10.1128/MCB.21.20.6882-6894.2001

W. Chen, X. Zhang, K. Birsoy, and R. G. Roeder, A muscle-specific knockout implicates nuclear receptor coactivator MED1 in the regulation of glucose and energy metabolism, Proceedings of the National Academy of Sciences, vol.107, issue.22
DOI : 10.1073/pnas.1005626107

J. Zhang, M. Kalkum, B. T. Chait, and R. G. Roeder, The N-CoR-HDAC3 Nuclear Receptor Corepressor Complex Inhibits the JNK Pathway through the Integral Subunit GPS2, Molecular Cell, vol.9, issue.3, pp.611-623, 2002.
DOI : 10.1016/S1097-2765(02)00468-9

H. G. Yoon, D. W. Chan, Z. Q. Huang, J. Li, J. D. Fondell et al., Purification and functional characterization of the human N-CoR complex: the roles of HDAC3, TBL1 and TBLR1, The EMBO Journal, vol.22, issue.6, pp.1-1, 2003.
DOI : 10.1093/emboj/cdg120

J. Li, J. Wang, J. Wang, Z. Nawaz, J. M. Liu et al., Both corepressor proteins SMRT and N-CoR exist in large protein complexes containing HDAC3, The EMBO Journal, vol.19, issue.16, pp.4342-4350, 2000.
DOI : 10.1093/emboj/19.16.4342

V. Perissi, K. Jepsen, C. K. Glass, and M. G. Rosenfeld, Deconstructing repression: evolving models of co-repressor action, Nature Reviews Genetics, vol.26, issue.2, pp.109-123, 2010.
DOI : 10.1038/nrg2736

D. D. Sakai, S. Helms, J. Carlstedt-duke, J. A. Gustafsson, F. M. Rottman et al., Hormone-mediated repression: a negative glucocorticoid response element from the bovine prolactin gene., Genes & Development, vol.2, issue.9, pp.1144-1154, 1988.
DOI : 10.1101/gad.2.9.1144

V. K. Chatterjee, J. K. Lee, A. Rentoumis, J. , and J. L. , Negative regulation of the thyroid-stimulating hormone alpha gene by thyroid hormone: receptor interaction adjacent to the TATA box., Proceedings of the National Academy of Sciences, vol.86, issue.23, pp.9114-9118, 1989.
DOI : 10.1073/pnas.86.23.9114

M. I. Diamond, J. N. Miner, S. K. Yoshinaga, and K. R. Yamamoto, Transcription factor interactions: selectors of positive or negative regulation from a single DNA element, Science, vol.249, issue.4974, pp.1266-1272, 1990.
DOI : 10.1126/science.2119054

N. Subramaniam, W. Cairns, and S. Okret, Glucocorticoids Repress Transcription from a Negative Glucocorticoid Response Element Recognized by Two Homeodomain-containing Proteins, Pbx and Oct-1, Journal of Biological Chemistry, vol.273, issue.36, pp.23567-23574, 1998.
DOI : 10.1074/jbc.273.36.23567

A. Villa, J. Santiago, B. Belandia, and A. Pascual, A response unit in the first exon of the beta-amyloid precursor protein gene containing thyroid hormone receptor and Sp1 binding sites mediates negative regulation by 3, Mol. Endocrinol, vol.5, issue.18, pp.3-863, 2004.

J. N. Miner and K. R. Yamamoto, The basic region of AP-1 specifies glucocorticoid receptor activity at a composite response element., Genes & Development, vol.6, issue.12b, pp.2491-2501, 1992.
DOI : 10.1101/gad.6.12b.2491

M. Surjit, K. P. Ganti, A. Mukherji, T. Ye, G. Hua et al., Widespread Negative Response Elements Mediate Direct Repression by Agonist- Liganded Glucocorticoid Receptor, Cell, vol.145, issue.2, pp.224-241, 2011.
DOI : 10.1016/j.cell.2011.03.027

URL : http://doi.org/10.1016/j.cell.2011.03.027

H. Berghagen, E. Ragnhildstveit, K. Krogsrud, G. Thuestad, J. Apriletti et al., Corepressor SMRT Functions as a Coactivator for Thyroid Hormone Receptor T3Ralpha from a Negative Hormone Response Element, Journal of Biological Chemistry, vol.277, issue.51, pp.49517-49522, 2002.
DOI : 10.1074/jbc.M209546200

T. Tagami, Y. Park, J. , and J. L. , Mechanisms That Mediate Negative Regulation of the Thyroid-stimulating Hormone ?? Gene by the Thyroid Hormone Receptor, Journal of Biological Chemistry, vol.274, issue.32, pp.22345-22353, 1999.
DOI : 10.1074/jbc.274.32.22345

R. E. Weiss, J. Xu, G. Ning, J. Pohlenz, B. W. O-'malley et al., Mice deficient in the steroid receptor co-activator 1(SRC-1) are resistant to thyroid hormone, The EMBO Journal, vol.18, issue.7, pp.1900-1904, 1999.
DOI : 10.1093/emboj/18.7.1900

D. Wang, X. Xia, R. E. Weiss, S. Refetoff, Y. et al., Distinct and histone-specific modifications mediate positive versus negative transcriptional regulation of TSHalpha promoter, PLoS. One, issue.5, p.9853, 2010.

R. Schule, Phosphorylation of histone H3T6 by PKCbeta(I) controls demethylation at histone H3K4, Nature, vol.464, pp.792-796, 2010.

S. J. Han, D. M. Lonard, O. Malley, and B. W. , Multi-modulation of nuclear receptor coactivators through posttranslational modifications, Trends in Endocrinology & Metabolism, vol.20, issue.1, pp.8-15, 2009.
DOI : 10.1016/j.tem.2008.10.001

B. K. De, B. W. Vanden, L. Vermeulen, S. Plaisance, E. Boone et al., Glucocorticoids repress NF-kappaB-driven genes by disturbing the interaction of p65 with the basal transcription machinery, irrespective of coactivator levels in the cell, Proc. Natl. Acad

P. Delerive, F. Martin-nizard, G. Chinetti, F. Trottein, J. C. Fruchart et al., Peroxisome Proliferator-Activated Receptor Activators Inhibit Thrombin-Induced Endothelin-1 Production in Human Vascular Endothelial Cells by Inhibiting the Activator Protein-1 Signaling Pathway, Circulation Research, vol.85, issue.5, pp.394-402, 1999.
DOI : 10.1161/01.RES.85.5.394

H. F. Luecke and K. R. Yamamoto, The glucocorticoid receptor blocks P-TEFb recruitment by NF??B to effect promoter-specific transcriptional repression, Genes & Development, vol.19, issue.9, pp.1116-1127, 2005.
DOI : 10.1101/gad.1297105

R. M. Nissen and K. R. Yamamoto, The glucocorticoid receptor inhibits NFkappa B by interfering with serine-2 phosphorylation of the RNA polymerase II carboxy-terminal domain, Genes & Development, vol.14, issue.18, pp.2314-2329, 2000.
DOI : 10.1101/gad.827900

N. Auphan, J. A. Didonato, C. Rosette, A. Helmberg, K. et al., Immunosuppression by Glucocorticoids: Inhibition of NF-kappaB Activity Through Induction of IkappaB Sy nthesis, Science, vol.270, issue.5234, pp.286-290, 1995.
DOI : 10.1126/science.270.5234.286

S. Dedieu and P. Lefebvre, Retinoids interfere with the AP1 signalling pathway in human breast cancer cells, Cellular Signalling, vol.18, issue.6, pp.889-898, 2006.
DOI : 10.1016/j.cellsig.2005.08.001

URL : https://hal.archives-ouvertes.fr/hal-00021330

S. Ogawa, J. Lozach, C. Benner, G. Pascual, R. K. Tangirala et al., Molecular Determinants of Crosstalk between Nuclear Receptors and Toll-like Receptors, Cell, vol.122, issue.5, pp.707-721, 2005.
DOI : 10.1016/j.cell.2005.06.029

M. Benkoussa, C. Brand, M. H. Delmotte, P. Formstecher, and P. Lefebvre, Retinoic Acid Receptors Inhibit AP1 Activation by Regulating Extracellular Signal-Regulated Kinase and CBP Recruitment to an AP1-Responsive Promoter, Molecular and Cellular Biology, vol.22, issue.13, pp.4522-4534, 2002.
DOI : 10.1128/MCB.22.13.4522-4534.2002

C. K. Glass and K. Saijo, Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells, Nature Reviews Immunology, vol.37, issue.5, pp.365-376, 2010.
DOI : 10.1038/nri2748

K. Saijo, B. Winner, C. T. Carson, J. G. Collier, L. Boyer et al., A Nurr1/CoREST Pathway in Microglia and Astrocytes Protects Dopaminergic Neurons from Inflammation-Induced Death, Cell, vol.137, issue.1, pp.47-59, 2009.
DOI : 10.1016/j.cell.2009.01.038

B. Stein and M. X. Yang, Repression of the interleukin-6 promoter by estrogen receptor is mediated by NF-kappa B and C/EBP beta., Molecular and Cellular Biology, vol.15, issue.9, pp.4971-4979, 1995.
DOI : 10.1128/MCB.15.9.4971

I. M. Beck, B. W. Vanden, L. Vermeulen, K. R. Yamamoto, G. Haegeman et al., Crosstalk in Inflammation: The Interplay of Glucocorticoid Receptor-Based Mechanisms and Kinases and Phosphatases, Endocrine Reviews, vol.30, issue.7, pp.830-882, 2009.
DOI : 10.1210/er.2009-0013

S. Ghisletti, W. Huang, K. Jepsen, C. Benner, G. Hardiman et al., Cooperative NCoR/SMRT interactions establish a corepressor-based strategy for integration of inflammatory and anti-inflammatory signaling pathways, Genes & Development, vol.23, issue.6, pp.681-693, 2009.
DOI : 10.1101/gad.1773109

S. Ghisletti, W. Huang, S. Ogawa, G. Pascual, M. E. Lin et al., Parallel SUMOylation-Dependent Pathways Mediate Gene- and Signal-Specific Transrepression by LXRs and PPAR??, Molecular Cell, vol.25, issue.1, pp.57-70, 2007.
DOI : 10.1016/j.molcel.2006.11.022

W. Huang, S. Ghisletti, K. Saijo, M. Gandhi, M. Aouadi et al., Coronin 2A mediates actin-dependent de-repression of inflammatory response genes, Nature, vol.458, issue.7334, pp.414-418, 2011.
DOI : 10.1038/nature09703

A. Sanchez-pacheco, O. Martinez-iglesias, M. Mendez-pertuz, and A. Aranda, Residues K128, 132, and 134 in the Thyroid Hormone Receptor-?? Are Essential for Receptor Acetylation and Activity, Endocrinology, vol.150, issue.11, pp.5143-5152, 2009.
DOI : 10.1210/en.2009-0117

C. Jennewein, A. M. Kuhn, M. V. Schmidt, V. Meilladec-jullig, K. A. Von et al., Sumoylation of Peroxisome Proliferator-Activated Receptor ?? by Apoptotic Cells Prevents Lipopolysaccharide-Induced NCoR Removal from ??B Binding Sites Mediating Transrepression of Proinflammatory Cytokines, The Journal of Immunology, vol.181, issue.8, pp.5646-5652, 2008.
DOI : 10.4049/jimmunol.181.8.5646

E. H. Jeninga, B. O. Van, A. D. Van-dijk, N. Hamers, B. I. Hendriks-stegeman et al., Impaired Peroxisome Proliferator-Activated Receptor ?? Function through Mutation of a Conserved Salt Bridge (R425C) in Familial Partial Lipodystrophy, Molecular Endocrinology, vol.21, issue.5, pp.1049-1065, 2007.
DOI : 10.1210/me.2006-0485

J. Wu, Y. Li, J. Dietz, L. , and D. S. , Repression of p65 Transcriptional Activation by the Glucocorticoid Receptor in the Absence of Receptor-Coactivator Interactions, Molecular Endocrinology, vol.18, issue.1, pp.53-62, 2004.
DOI : 10.1210/me.2002-0373

H. M. Reichardt, J. P. Tuckermann, M. Gottlicher, M. Vujic, F. Weih et al., Repression of inflammatory responses in the absence of DNA binding by the glucocorticoid receptor, The EMBO Journal, vol.20, issue.24, pp.7168-7173, 2001.
DOI : 10.1093/emboj/20.24.7168

D. C. Whitacre, K. J. Karnas, and R. L. Miesfeld, Analysis of Glucocorticoid and Androgen Receptor Gene Fusions Delineates Domains Required for Transcriptional Specificity, Endocrine, vol.15, issue.1, pp.111-118, 2001.
DOI : 10.1385/ENDO:15:1:111

M. Jakacka, M. Ito, J. Weiss, P. Y. Chien, B. D. Gehm et al., Estrogen receptor binding to DNA is not required for its activity through the nonclassical AP1 pathway, J. Biol. Chem, vol.276, pp.13615-13621, 2001.

J. E. Valentine, E. Kalkhoven, R. White, S. Hoare, and M. G. Parker, Mutations in the Estrogen Receptor Ligand Binding Domain Discriminate between Hormone-dependent Transactivation and Transrepression, Journal of Biological Chemistry, vol.275, issue.33, pp.25322-25329, 2000.
DOI : 10.1074/jbc.M002497200

B. K. De, B. W. Vanden, L. Vermeulen, S. Plaisance, E. Boone et al., Glucocorticoids repress NF-kappaB-driven genes by disturbing the interaction of p65 with the basal transcription machinery, irrespective of coactivator levels in the cell, Proc. Natl. Acad

D. Disepio, M. Sutter, A. T. Johnson, R. A. Chandraratna, and S. Nagpal, Identification of the AP1-Antagonism Domain of Retinoic Acid Receptors, Molecular Cell Biology Research Communications, vol.1, issue.1, pp.7-13, 1999.
DOI : 10.1006/mcbr.1999.0101

H. M. Reichardt, K. H. Kaestner, O. Wessely, P. Gass, W. Schmid et al., Analysis of glucocorticoid signalling by gene targeting, The Journal of Steroid Biochemistry and Molecular Biology, vol.65, issue.1-6, pp.111-115, 1998.
DOI : 10.1016/S0960-0760(97)00181-7

H. M. Reichardt, K. H. Kaestner, J. Tuckermann, O. Kretz, O. Wessely et al., DNA Binding of the Glucocorticoid Receptor Is Not Essential for Survival, Cell, vol.93, issue.4, pp.531-541, 1998.
DOI : 10.1016/S0092-8674(00)81183-6

F. Saatcioglu, G. Lopez, B. L. West, E. Zandi, W. Feng et al., Mutations in the conserved C-terminal sequence in thyroid hormone receptor dissociate hormone-dependent activation from interference with AP-1 activity., Molecular and Cellular Biology, vol.17, issue.8, pp.4687-4695, 1997.
DOI : 10.1128/MCB.17.8.4687

A. Rauch, S. Seitz, U. Baschant, A. F. Schilling, A. Illing et al., Glucocorticoids Suppress Bone Formation by Attenuating Osteoblast Differentiation via the Monomeric Glucocorticoid Receptor, Glucocorticoids suppress bone formation by attenuating osteoblast differentiation via the monomeric glucocorticoid receptor, pp.517-531, 2010.
DOI : 10.1016/j.cmet.2010.05.005

F. Acconcia, P. Ascenzi, A. Bocedi, E. Spisni, V. Tomasi et al., Palmitoylation-dependent Estrogen Receptor ?? Membrane Localization: Regulation by 17??-Estradiol, Molecular Biology of the Cell, vol.16, issue.1, pp.231-237, 2005.
DOI : 10.1091/mbc.E04-07-0547

A. Pedram, M. Razandi, R. C. Sainson, J. K. Kim, C. C. Hughes et al., A Conserved Mechanism for Steroid Receptor Translocation to the Plasma Membrane, Journal of Biological Chemistry, vol.282, issue.31
DOI : 10.1074/jbc.M611877200

M. Razandi, A. Pedram, L. , and E. R. , Heat Shock Protein 27 Is Required for Sex Steroid Receptor Trafficking to and Functioning at the Plasma Membrane, Molecular and Cellular Biology, vol.30, issue.13, pp.3249-3261, 2010.
DOI : 10.1128/MCB.01354-09

H. P. Kim, J. Y. Lee, J. K. Jeong, S. W. Bae, H. K. Lee et al., Nongenomic Stimulation of Nitric Oxide Release by Estrogen Is Mediated by Estrogen Receptor ?? Localized in Caveolae, Biochemical and Biophysical Research Communications, vol.263, issue.1, pp.257-262, 1999.
DOI : 10.1006/bbrc.1999.1348

M. Razandi, P. Oh, A. Pedram, J. Schnitzer, L. et al., ERs Associate with and Regulate the Production of Caveolin: Implications for Signaling and Cellular Actions, Molecular Endocrinology, vol.16, issue.1, pp.100-115, 2002.
DOI : 10.1210/mend.16.1.0757

L. Matthews, A. Berry, V. Ohanian, J. Ohanian, H. Garside et al., Caveolin Mediates Rapid Glucocorticoid Effects and Couples Glucocorticoid Action to the Antiproliferative Program, Molecular Endocrinology, vol.22, issue.6, pp.1320-1330, 2008.
DOI : 10.1210/me.2007-0154

A. Pedram, M. Razandi, M. Aitkenhead, C. C. Hughes, L. et al., Integration of the Non-genomic and Genomic Actions of Estrogen. MEMBRANE-INITIATED SIGNALING BY STEROID TO TRANSCRIPTION AND CELL BIOLOGY, Journal of Biological Chemistry, vol.277, issue.52, pp.50768-50775, 2002.
DOI : 10.1074/jbc.M210106200

G. Castoria, A. Migliaccio, A. Bilancio, D. M. Di, F. A. De et al., PI3-kinase in concert with Src promotes the S-phase entry of oestradiol-stimulated MCF-7 cells, The EMBO Journal, vol.20, issue.21, pp.6050-6059, 2001.
DOI : 10.1093/emboj/20.21.6050

A. Migliaccio, D. M. Di, G. Castoria, F. A. De, P. Bontempo et al., Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol-receptor complex in MCF-7 cells, EMBO J, vol.15, pp.1292-1300, 1996.

M. R. Meyer, E. Haas, E. R. Prossnitz, and M. Barton, Non-genomic regulation of vascular cell function and growth by estrogen, Molecular and Cellular Endocrinology, vol.308, issue.1-2, pp.9-16, 2009.
DOI : 10.1016/j.mce.2009.03.009

N. Geffroy, A. Guedin, C. Dacquet, and P. Lefebvre, Cell cycle regulation of breast cancer cells through estrogen-induced activities of ERK and Akt protein kinases, Molecular and Cellular Endocrinology, vol.237, issue.1-2, pp.11-23, 2005.
DOI : 10.1016/j.mce.2005.04.003

C. Ballare, M. Uhrig, T. Bechtold, E. Sancho, D. M. Di et al., Two Domains of the Progesterone Receptor Interact with the Estrogen Receptor and Are Required for Progesterone Activation of the c-Src/Erk Pathway in Mammalian Cells, Molecular and Cellular Biology, vol.23, issue.6, 1994.
DOI : 10.1128/MCB.23.6.1994-2008.2003

G. P. Vicent, C. Ballare, A. S. Nacht, J. Clausell, A. Subtil-rodriguez et al., Convergence on chromatin of non-genomic and genomic pathways of hormone signaling, The Journal of Steroid Biochemistry and Molecular Biology, vol.109, issue.3-5, pp.344-349, 2008.
DOI : 10.1016/j.jsbmb.2008.03.015

B. Lefebvre, K. Ozato, and P. Lefebvre, Phosphorylation of histone H3 is functionally linked to retinoic acid receptor beta promoter activation, EMBO Reports, vol.3, issue.4, pp.335-340, 2002.
DOI : 10.1093/embo-reports/kvf066

T. R. Uhrenholt, J. Schjerning, L. E. Rasmussen, P. B. Hansen, R. Norregaard et al., Rapid non-genomic effects of aldosterone on rodent vascular function, Acta Physiologica Scandinavica, vol.4, issue.4, pp.415-419, 2004.
DOI : 10.1006/bbrc.1994.2484

M. A. Moskowitz, B. A. French, K. Ley, and J. K. Liao, Acute cardiovascular protective effects of corticosteroids are mediated by non-transcriptional activation of endothelial nitric oxide synthase, Nat. Med, vol.8, pp.473-479, 2002.

J. D. Croxtall, Q. Choudhury, F. , and R. J. , Glucocorticoids act within minutes to inhibit recruitment of signalling factors to activated EGF receptors through a receptor-dependent, transcription-independent mechanism, British Journal of Pharmacology, vol.10, issue.2, pp.289-298, 2000.
DOI : 10.1038/sj.bjp.0703272

J. D. Croxtall, Q. Choudhury, S. Newman, F. , and R. J. , Lipocortin 1 and the control of cPLA2 activity in A549 cells, Biochemical Pharmacology, vol.52, issue.2, pp.351-356, 1996.
DOI : 10.1016/0006-2952(95)02442-5

B. Bartholome, C. M. Spies, T. Gaber, S. Schuchmann, T. Berki et al., Membrane glucocorticoid receptors (mGCR) are expressed in normal human peripheral blood mononuclear cells and up-regulated after in vitro stimulation and in patients with rheumatoid arthritis, The FASEB Journal, vol.18, issue.1, pp.70-80, 2004.
DOI : 10.1096/fj.03-0328com

F. Buttgereit, R. H. Straub, M. Wehling, and G. R. Burmester, Glucocorticoids in the treatment of rheumatic diseases: An update on the mechanisms of action, Arthritis & Rheumatism, vol.48, issue.11, pp.3408-3417, 2004.
DOI : 10.1002/art.20583

I. H. Song, R. Gold, R. H. Straub, G. R. Burmester, and F. Buttgereit, New Glucocorticoids on the Horizon: Repress, Don't Activate!, J. Rheumatol, vol.32, pp.1199-1207, 2005.

C. Rochette-egly and P. Germain, Dynamic and combinatorial control of gene expression by nuclear retinoic acid receptors (RARs), Nuclear Receptor Signaling, vol.4, 2009.
DOI : 10.1621/nrs.07005

URL : https://hal.archives-ouvertes.fr/inserm-00420158

Y. Alsayed, S. Uddin, N. Mahmud, F. Lekmine, D. V. Kalvakolanu et al., Activation of Rac1 and the p38 Mitogen-activated Protein Kinase Pathway in Response to All-trans-retinoic Acid, Journal of Biological Chemistry, vol.276, issue.6, pp.4012-4019, 2001.
DOI : 10.1074/jbc.M007431200

C. Rochette-egly, P38MAPK-dependent phosphorylation and degradation of SRC-3/AIB1 and RARalpha-mediated transcription, EMBO J, vol.25, pp.739-751, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00187931

M. M. Poon and L. Chen, Retinoic acid-gated sequence-specific translational control by RAR??, Proceedings of the National Academy of Sciences, vol.105, issue.51, pp.20303-20308, 2008.
DOI : 10.1073/pnas.0807740105

J. Aoto, C. I. Nam, M. M. Poon, P. Ting, C. et al., Synaptic Signaling by All-Trans Retinoic Acid in Homeostatic Synaptic Plasticity, Neuron, vol.60, issue.2, pp.308-320, 2008.
DOI : 10.1016/j.neuron.2008.08.012

N. Chen, B. Onisko, and J. L. Napoli, The Nuclear Transcription Factor RAR?? Associates with Neuronal RNA Granules and Suppresses Translation, Journal of Biological Chemistry, vol.283, issue.30, pp.20841-20847, 2008.
DOI : 10.1074/jbc.M802314200

S. Aquila, D. Bonofiglio, M. Gentile, E. Middea, S. Gabriele et al., Peroxisome proliferator-activated receptor (PPAR)?? is expressed by human spermatozoa: Its potential role on the sperm physiology, Journal of Cellular Physiology, vol.15, issue.3, pp.977-986, 2006.
DOI : 10.1002/jcp.20807

A. Lombardi, G. Cantini, E. Piscitelli, S. Gelmini, M. Francalanci et al., A new mechanism involving ERK contributes to rosiglitazone inhibition of tumor necrosis factor-alpha and interferon-gamma inflammatory effects in human endothelial cells

G. Cantini, A. Lombardi, E. Piscitelli, G. Poli, E. Ceni et al., Rosiglitazone Inhibits Adrenocortical Cancer Cell Proliferation by Interfering with the IGF-IR Intracellular Signaling, PPAR Research, vol.235, issue.2, p.904041, 2008.
DOI : 10.1177/0091270002250602

E. Papageorgiou, N. Pitulis, M. Manoussakis, P. Lembessis, and M. Koutsilieris, Rosiglitazone attenuates insulin-like growth factor 1 receptor survival signaling in PC-3 cells, Mol. Med, vol.14, pp.403-411, 2008.

L. G. Fryer, A. Parbu-patel, and D. Carling, The Anti-diabetic Drugs Rosiglitazone and Metformin Stimulate AMP-activated Protein Kinase through Distinct Signaling Pathways, Journal of Biological Chemistry, vol.277, issue.28
DOI : 10.1074/jbc.M202489200

S. Fediuc, A. S. Pimenta, M. P. Gaidhu, C. , and R. B. , Activation of AMP-activated protein kinase, inhibition of pyruvate dehydrogenase activity, and redistribution of substrate partitioning mediate the acute insulin-sensitizing effects of troglitazone in skeletal muscle cells, Journal of Cellular Physiology, vol.8, issue.2, pp.392-400, 2008.
DOI : 10.1002/jcp.21321

Y. Zhang, J. Soto, K. Park, G. Viswanath, S. Kuwada et al., Nuclear Receptor SHP, a Death Receptor That Targets Mitochondria, Induces Apoptosis and Inhibits Tumor Growth, Molecular and Cellular Biology, vol.30, issue.6, pp.1341-1356, 2010.
DOI : 10.1128/MCB.01076-09

J. Du, B. Mcewen, and H. K. Manji, Glucocorticoid receptors modulate mitochondrial function, Communicative & Integrative Biology, vol.39, issue.4, pp.350-352, 2009.
DOI : 10.1385/MN:32:2:173

L. Chen, L. Hu, T. H. Chan, G. S. Tsao, D. Xie et al., Chromodomain helicase/adenosine triphosphatase DNA binding protein 1-like (CHD1l) gene suppresses the nucleus-to-mitochondria translocation of nur77 to sustain hepatocellular carcinoma cell survival, Hepatology, vol.27, issue.Suppl, pp.122-129, 2009.
DOI : 10.1002/hep.22933

J. Thompson and A. Winoto, During negative selection, Nur77 family proteins translocate to mitochondria where they associate with Bcl-2 and expose its proapoptotic BH3 domain, The Journal of Experimental Medicine, vol.1, issue.5, pp.1029-1036, 2008.
DOI : 10.1016/0092-8674(91)90362-3

X. Cao, W. Liu, F. Lin, H. Li, S. K. Kolluri et al., Retinoid X Receptor Regulates Nur77/Thyroid Hormone Receptor 3-Dependent Apoptosis by Modulating Its Nuclear Export and Mitochondrial Targeting, Molecular and Cellular Biology, vol.24, issue.22, pp.9705-9725, 2004.
DOI : 10.1128/MCB.24.22.9705-9725.2004