Temporal and Spatial Independent Component Analysis for fMRI Data Sets Embedded in the AnalyzeFMRI R Package - Archive ouverte HAL Access content directly
Journal Articles Journal of Statistical Software Year : 2011

Temporal and Spatial Independent Component Analysis for fMRI Data Sets Embedded in the AnalyzeFMRI R Package

(1) , (1) , (2)
1
2

Abstract

For statistical analysis of functional magnetic resonance imaging (fMRI) data sets, we propose a data-driven approach based on independent component analysis (ICA) implemented in a new version of the AnalyzeFMRI R package. For fMRI data sets, spatial dimension being much greater than temporal dimension, spatial ICA is the computationally tractable approach generally proposed. However, for some neuroscienti c applications, temporal independence of source signals can be assumed and temporal ICA becomes then an attractive exploratory technique. In this work, we use a classical linear algebra result ensuring the tractability of temporal ICA. We report several experiments on synthetic data and real MRI data sets that demonstrate the potential interest of our R package.
Fichier principal
Vignette du fichier
Bordier_2011-JSS11final-Editeur.pdf (1.38 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive

Dates and versions

inserm-00659425 , version 1 (12-01-2012)

Identifiers

  • HAL Id : inserm-00659425 , version 1

Cite

Cécile Bordier, Michel Dojat, Pierre Lafaye de Micheaux. Temporal and Spatial Independent Component Analysis for fMRI Data Sets Embedded in the AnalyzeFMRI R Package. Journal of Statistical Software, 2011, 44 (9), pp.1-24. ⟨inserm-00659425⟩

Collections

INSERM UGA U836
268 View
583 Download

Share

Gmail Facebook Twitter LinkedIn More