A Joint Bayesian Framework for MR Brain Scan Tissue and Structure Segmentation Based on Distributed Markovian Agents

Benoît Scherrer 1, * Florence Forbes 2 Catherine Garbay 3 Michel Dojat 4
* Auteur correspondant
1 INSERM U836, équipe 5, Neuro-imagerie fonctionnelle et métabolique
LIG - Laboratoire d'Informatique de Grenoble, GIN - Grenoble Institut des Neurosciences
2 MISTIS - Modelling and Inference of Complex and Structured Stochastic Systems
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : In most approaches, tissue and subcortical structure segmentations of MR brain scans are handled globally over the entire brain volume through two relatively independent sequential steps. We propose a fully Bayesian joint model that integrates within a multi-agent framework local tissue and structure segmentations and local intensity distribution modeling. It is based on the specification of three conditional Markov Random Field (MRF) models. The first two encode cooperations between tissue and structure segmentations and integrate a priori anatomical knowledge. The third model specifies a Markovian spatial prior over the model parameters that enables local estimations while ensuring their consistency, handling this way nonuniformity of intensity without any bias field modeling. The complete joint model provides then a sound theoretical framework for carrying out tissue and structure segmentations by distributing a set of local agents that estimate cooperatively local MRF models. The evaluation, using a previously affineregistered atlas of 17 structures, was performed using both phantoms and real 3T brain scans. It shows good results and in particular robustness to nonuniformity and noise with a low computational cost. The innovative coupling of agent-based and Markov-centered designs appears as a robust, fast and promising approach to MR brain scan segmentation.
Type de document :
Chapitre d'ouvrage
Isabelle Bichindaritz, Sachin Vaidya, Ashlesha Jain, and Lakhmi C. Jain. Computational Intelligence in Healthcare 4, Springer, pp.81-101, 2010, Studies in Computational Intelligence, 〈10.1007/978-3-642-14464-6_5〉
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger

http://www.hal.inserm.fr/inserm-00659300
Contributeur : Michel Dojat <>
Soumis le : jeudi 12 janvier 2012 - 15:10:49
Dernière modification le : jeudi 11 octobre 2018 - 08:48:04
Document(s) archivé(s) le : mardi 13 décembre 2016 - 22:31:04

Fichier

 Accès restreint
Fichier visible le : jamais

Connectez-vous pour demander l'accès au fichier

Identifiants

Collections

Citation

Benoît Scherrer, Florence Forbes, Catherine Garbay, Michel Dojat. A Joint Bayesian Framework for MR Brain Scan Tissue and Structure Segmentation Based on Distributed Markovian Agents. Isabelle Bichindaritz, Sachin Vaidya, Ashlesha Jain, and Lakhmi C. Jain. Computational Intelligence in Healthcare 4, Springer, pp.81-101, 2010, Studies in Computational Intelligence, 〈10.1007/978-3-642-14464-6_5〉. 〈inserm-00659300〉

Partager

Métriques

Consultations de la notice

479