A. Kat and M. Staney, Principles of Computerized Tomographic imaging, pp.177-201, 1988.

C. Zhang, C. Li, and L. V. Wang, Fast and Robust Deconvolution-Based Image Reconstruction for Photoacoustic Tomography in Circular Geometry: Experimental Validation, IEEE Photonics Journal, vol.2, issue.1, pp.57-66, 2010.
DOI : 10.1109/JPHOT.2010.2042801

F. J. Beekman and C. Kamphuis, Ordered subset reconstruction for x-ray CT, Physics in Medicine and Biology, vol.46, issue.7, pp.1835-1855, 2001.
DOI : 10.1088/0031-9155/46/7/307

I. A. Elbakri and J. A. Fessler, Efficient and accurate likelihood for iterative image reconstruction in x-ray computed tomography, Medical Imaging 2003: Image Processing, pp.1839-50, 2003.
DOI : 10.1117/12.480302

L. A. Shepp and Y. Vardi, Maximum Likelihood Reconstruction for Emission Tomography, IEEE Transactions on Medical Imaging, vol.1, issue.2, pp.113-121, 1982.
DOI : 10.1109/TMI.1982.4307558

K. Lange and J. A. Fessler, Globally convergent algorithms for maximum a posteriori transmission tomography, IEEE Transactions on Image Processing, vol.4, issue.10, pp.1430-1438, 1995.
DOI : 10.1109/83.465107

M. Bertero, T. Poggio, and V. Torre, Ill-posed problems in early vision, Proc. IEEE, pp.869-889, 1988.
DOI : 10.1109/5.5962

K. Lange, Convergence of EM image reconstruction algorithms with Gibbs smoothing, IEEE Transactions on Medical Imaging, vol.9, issue.4, pp.439-446, 1990.
DOI : 10.1109/42.61759

H. Erdo?-gan and J. A. Fessler, Monotonic algorithms for transmission tomography, IEEE Transactions on Medical Imaging, vol.18, issue.9, pp.801-814, 1999.
DOI : 10.1109/42.802758

W. Chlewicki, F. Hermansen, and S. Hansen, Noise reduction and convergence of Bayesian algorithms with blobs based on the Huber function and median root prior, Physics in Medicine and Biology, vol.49, issue.20, pp.4717-4730, 2004.
DOI : 10.1088/0031-9155/49/20/004

C. Bouman and K. Sauer, A generalized Gaussian image model for edge-preserving MAP estimation, IEEE Transactions on Image Processing, vol.2, issue.3, pp.296-310, 1993.
DOI : 10.1109/83.236536

V. Duval, J. F. Aujol, and Y. Gousseau, The TVL1 Model: A Geometric Point of View, Multiscale Modeling & Simulation, vol.8, issue.1, pp.154-189, 2009.
DOI : 10.1137/090757083

URL : https://hal.archives-ouvertes.fr/hal-00380195

Y. Chen, D. Gao, C. Nie, L. Luo, W. Chen et al., Bayesian statistical reconstruction for low-dose X-ray computed tomography using an adaptive-weighting nonlocal prior, Computerized Medical Imaging and Graphics, vol.33, issue.7, pp.495-500, 2009.
DOI : 10.1016/j.compmedimag.2008.12.007

D. F. Yu and J. A. Fessler, Edge-preserving tomographic reconstruction with nonlocal regularization, IEEE Transactions on Medical Imaging, vol.21, issue.2, pp.159-173, 2002.
DOI : 10.1109/42.993134

S. Z. Li, Markov Random Field Modeling in image Analysis, 2001.
DOI : 10.1007/978-4-431-67044-5

A. Buades, B. Coll, and J. M. , A Review of Image Denoising Algorithms, with a New One, Multiscale Modeling & Simulation, vol.4, issue.2, pp.490-530, 2005.
DOI : 10.1137/040616024

URL : https://hal.archives-ouvertes.fr/hal-00271141

Y. Chen, J. H. Ma, Q. Feng, L. M. Luo, P. C. Shi et al., Nonlocal Prior Bayesian Tomographic Reconstruction, Journal of Mathematical Imaging and Vision, vol.4, issue.4, pp.133-146, 2008.
DOI : 10.1007/s10851-007-0042-5

M. Accelerating, C. Using, and M. Files, nvidia.com/object/matlab cuda.html [20] GPU Acceleration in MATLAB An implicit Markov random field model for the multi-scale oriented representations of natural images, IEEE Conference on Computer Vision and Pattern Recognition, pp.1919-1925, 2009.

P. Winkler, Image Analysis, Random Fields And Markov Chain Monte Carlo Methods, 2003.
DOI : 10.1007/978-3-642-55760-6

G. Peyr, S. Bougleux, and L. Cohen, Non-local Regularization of Inverse Problems, European Conference on Computer Vision, pp.57-68, 2008.
DOI : 10.1007/978-3-540-88690-7_5

G. Gilboa and S. Osher, Nonlocal Operators with Applications to Image Processing, Multiscale Modeling & Simulation, vol.7, issue.3, pp.1005-1028, 2008.
DOI : 10.1137/070698592

S. C. Zhu, Y. N. Wu, and D. B. Mumford, FRAME: filters, random field And Maximum Entropy:Towards a Unified Theory for Texture Modeling, International Journal of Computer Vision, vol.27, issue.2, pp.1-20, 1998.

I. T. Hsiao, A. Rangarajan, and G. R. Gindi, Bayesian image reconstruction for transmission tomography using deterministic annealing, Journal of Electronic Imaging, vol.12, issue.1, pp.7-16, 2003.

C. A. Bouman and K. Sauer, A unified approach to statistical tomography using coordinate descent optimization, IEEE Transactions on Image Processing, vol.5, issue.3, pp.480-492, 1996.
DOI : 10.1109/83.491321

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

F. L. Huang, C. Hsieh, K. W. Chang, and C. J. Lin, Iterative scaling and coordinate descent methods for maximum entropy models, Journal of Machine Learning Research, vol.11, pp.815-848, 2010.
DOI : 10.3115/1667583.1667671

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

K. Lange, D. R. Hunter, and I. Yang, Optimization Transfer Using Surrogate Objective Functions, Journal of Computational and Graphical Statistics, vol.68, issue.1, pp.1-20, 2000.
DOI : 10.1080/10618600.2000.10474858

C. A. Deledalle, L. Denis, and F. Tupin, Iterative Weighted Maximum Likelihood Denoising With Probabilistic Patch-Based Weights, IEEE Transactions on Image Processing, vol.18, issue.12, pp.2661-2672, 2009.
DOI : 10.1109/TIP.2009.2029593

URL : https://hal.archives-ouvertes.fr/ujm-00431266

W. Zbijewski and F. J. Beekman, Suppression of intensity transition artifacts in statistical x-ray computer tomography reconstruction through Radon inversion initialization, Medical Physics, vol.13, issue.1, pp.31-62, 2004.
DOI : 10.1118/1.1631091

J. A. Fessler, Aspire 3.0 user's guide: A sparse reconstruction library, 1998.

H. Scherl, B. Keck, and M. Kowarschik, Fast GPU-Based CT Reconstruction using the Common Unified Device Architecture (CUDA), 2007 IEEE Nuclear Science Symposium Conference Record, pp.4464-4466, 2007.
DOI : 10.1109/NSSMIC.2007.4437102

M. Knaup, S. Steckmann, and M. Kachelrie, GPU-based parallel-beam and cone-beam forward- and backprojection using CUDA, 2008 IEEE Nuclear Science Symposium Conference Record, pp.5153-5157, 2008.
DOI : 10.1109/NSSMIC.2008.4774396