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ABSTRACT

In the central nervous system (CNS), myelin is pro-
duced from spirally-wrapped oligodendrocyte
plasma membrane and, as exemplified by the debi-
litating effects of inherited or acquired myelin abnor-
malities in diseases such as multiple sclerosis, it
plays a critical role in nervous system function.
Myelin sheath production coincides with rapid up-
regulation of numerous genes. The complexity of
their subsequent expression patterns, along with
recently recognized heterogeneity within the oligo-
dendrocyte lineage, suggest that the regulatory
networks controlling such genes drive multiple
context-specific transcriptional programs.
Conferring this nuanced level of control likely in-
volves a large repertoire of interacting transcription
factors (TFs). Here, we combined novel strategies
of computational sequence analyses with in vivo
functional analysis to establish a TF network model
of coordinate myelin-associated gene transcription.
Notably, the network model captures regulatory
DNA elements and TFs known to regulate oligo-
dendrocyte myelin gene transcription and/or oligo-
dendrocyte development, thereby validating our
approach. Further, it links to numerous TFs with
previously unsuspected roles in CNS myelination
and suggests collaborative relationships amongst
both known and novel TFs, thus providing
deeper insight into the myelin gene transcriptional
network.

INTRODUCTION

Throughout the mammalian nervous system, large caliber
axons are surrounded by myelin sheaths elaborated by
glial cells. As demonstrated by the severe clinical conse-
quences of acquired and inherited myelin disruption, such
sheaths serve a critical role in the nervous system. Myelin
is elaborated in the peripheral nervous system (PNS) by
Schwann cells, derived from neural crest, and in the central
nervous system (CNS) by oligodendrocytes, derived from
neuroectoderm. The lipid-rich myelin sheath is composed
of spirally wrapped glial cell plasma membrane that is
compacted into closely apposed layers through the
action of multiple myelin associated proteins. Despite
their distinct embryological origins, cellular architecture
and maturation programs, Schwann cells and oligoden-
droctyes accumulate several myelin proteins in common.
However, features unique to CNS and PNS myelin also
are well documented extending to differences in myelin
proteins [reviewed in (1)] and interlamellar spacing (2).
Within each of these glial populations additional molecu-
lar heterogeneity and developmentally contextual expres-
sion programs are well recognized (3–5). Such diversity,
combined with studies that demonstrate multiple enhancer
involvement (6) suggest a potentially large and complex
transcriptional regulatory architecture.
Maturation of oligodendrocytes involves multiple tran-

sitions through progenitor, pre-myelinating, myelinating
and mature myelin maintaining states, each distinguished
by the expression of specific marker proteins (7). Initiation
of myelin synthesis is associated with a rapid and marked
increase in the expression of numerous genes encoding
myelin proteins (referred to hereafter as ‘myelin genes’).
In the mouse, myelin synthesis follows a protracted
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developmental program initiating throughout the PNS
and spinal cord (CNS) near birth. More rostral regions
of the CNS including optic nerves, brain stem and deep
cerebellum initiate myelin synthesis only 5–6 days later
with more dorsal regions following in a stereotyped
program over the next 2 weeks (8). At the completion of
myelin synthesis, myelin gene expression decreases to
moderate levels that are maintained throughout
maturity. Of relevance to this investigation, enriched
populations of pre-, post- and actively myelinating glia
emerge in definable domains of the nervous system
during specific periods of post-natal development.
Previous expression analyses during oligodendrocyte

maturation suggest that both lineage progression and
myelin protein production are accompanied by major
changes in gene expression (9). The basic helix-loop-helix
transcription factor (TF) family, including: OLIG1,
OLIG2, ASCL1 and the Id proteins, appears to play sig-
nificant roles in early oligodendrocyte lineage specification
[see reviews in (10,11)]. Other key TF classes appear to
operate at both early and late stages of maturation and
include homeodomain (Nkx), high-mobility group (Hmg),
Pou, Sox, Egr (EGR1) and zinc-finger (ZFP488) family
members.
Eukaryote gene transcription is modulated in part by

the binding of multiple TFs to ‘promoter’ sequences (12).
In this report, we use the term ‘promoter’ to refer to
non-coding regulatory sequences proximal to (basal pro-
moters) and distal from (enhancers) the transcription start
site (TSS). While computational analyses have been used
to predict sets of contributing TFs (13), non-coding
sequence is vast making such predictions challenging. To
refine the search space, TF binding site (TFBS) detection
algorithms typically exploit evolutionarily conserved se-
quences or phylogenetic footprints (14) to identify candi-
date regulatory regions under presumed selective pressure.
Accordingly, conserved sequences associated with
numerous genes demonstrate regulatory function (15–17)
and in such active enhancer regions clusters of
participating regulatory TFBS, generally referred to as
cis-linked regulatory modules (CRMs), are frequently
observed (18,19).
A transcriptional regulatory network (TRN) documents

both TFs and the genes that they regulate in a biological
process. Recent studies have incorporated predicted TRNs
to reveal the TFs involved in developing systems, such as
neural crest formation (20). While cooperative TF rela-
tionships regulating cell fate specification and differenti-
ation in the oligodendrocyte lineage have been
documented (21–24), experimental strategies capable of
advancing our understanding of the collaborating TFs dir-
ecting the myelin gene regulatory system remain limited.
The aim of this study was to further elucidate the tran-
scriptional machinery responsible for expression of myelin
associated genes by establishing a myelin gene TRN
model. To achieve this aim, we first used a controlled
mouse transgenesis procedure to supplement a known
set of confirmed oligodendrocyte myelin gene regulatory
sequences (25,26). We next established and validated a
CRM detection procedure that achieves selectivity
through identification of statistically over-represented

regulatory element combinations. This CRM detection
algorithm was applied to the promoter regions of a set
of oligodendrocyte genes determined to be co-expressed
at or near the initiation of myelin formation.
Reconciling the promoter predictions with sequence
properties identified in the functionally defined enhancer
collection highlighted shared CRM predictions that
were amassed to obtain a TRN model of coordinate
myelin gene transcription. Finally, we performed TRN
model data validations using experimental data and
demonstrated its capacity to recognize and expand on
previously validated TFs involved in myelin gene tran-
scription. Significantly, the TRN model identifies previ-
ously uncharacterized TFs that appear in
oligodendrocyte genome-wide expression datasets and
predicts collaborative roles amongst both known and
novel TFs.

MATERIALS AND METHODS

Overview of methodology

See Supplementary Figure S1 process flow diagram.

Selection of conserved regions for validation in mice

The University of California, Santa Cruz (UCSC) browser
human–mouse–dog non-coding sequence alignments
(Mouse May 2005 mm7—based on Build 35 assembly
by NCBI) (27) for myelin-associated genes were qualita-
tively reviewed to identify well-conserved putative regula-
tory regions. Previously tested conserved regions (by other
labs) associated with the Pou3f‘1 and Olig1 genes were not
considered. We selected non-coding regions for the follow-
ing genes (Supplementary Tables S1 and S2, and
Supplementary Figure S2): (i) An intergenic sequence
2.5 kilobases (kb) downstream Cldn11 gene; (ii) a region
in the first intron of Cnp; (iii) an intergenic region 5.8 kb
downstream of the Mal gene; (iv) a region in the first
intron of Gjb1; (v) a region just 50 of the TSS of Ermn;
(vi) a conserved region 17 kb upstream of Olig2 gene; (vii)
a region 30 kb downstream of the Olig1 gene and (viii) a
sequence 8 kb downstream the Pou3f1 gene.

Isolation of genomic DNA sequences

The conserved regions were amplified by PCR with Taq
DNA polymerase on genomic DNA after selection of the
primers in the surrounding sequence using Primer3 (28).
Restriction sites AscI and XhoI were added to the
primers for insertion and digestion (Supplementary
Table S3).

Generation of reporter constructs

PCR products were digested and subcloned into AscI and
XhoI sites upstream of the heat shock protein (HSP)
promoter in an HSPeGFPLacZ Entry vector (25), with
the exception of the Ermn-associated sequence, which
was inserted into the eGFPLacZ Entry vector (a similar
vector where the HSP promoter is removed). These
reporter constructs were recombined into a ‘Gateway’
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Destination vector bearing Hprt homology arms using the
LR clonase reaction kit (Invitrogen). The final destination
vectors were amplified, sequenced across the insert and
linearized by restriction enzymes Age1 or SalI and trans-
fected into hybrid embryonic stem (ES) cells, bearing a
deletion of the promoter and exon 1 of the Hprt gene, as
previously described (15,29). The Hprt gene is restored
through recombination, which allows the cells to survive
after hypoxanthine, aminopterin, thymidine (HAT) selec-
tion (30). Positive clones were sequenced at the McGill
University and Génome Québec Innovation Center
(Montreal, Quebec, Canada) using the forward primer
5-CGCTTGTCTCTGGATGGAAC-3 located in the
HSP promoter and the reverse primer 5-AGCCTGGGC
AACAGAGAAATATC-3 located in the Hprt homology
arm. Positive clones were injected into blastocysts to
derive chimeras. Subsequent mating to C57Bl/6 females
led to recovery of germ-line passage offspring and all sub-
sequent breeding was designed as a back-cross to C57Bl/6.
The animal use experimental protocols were approved
prior to the study by the Research Institute of the
McGill University Health Centre—Facility Animal Care
Committee (for Royal Victoria Hospital and
Meakins-Cristie Laboratories sites).

Histochemistry, fluorescence microscopy and
immunocytochemistry

Wholemount histochemical detection of b-galactosidase
activity was performed as described previously (15).
Anesthetized mice were perfused with 4% PFA in phos-
phate buffered saline (PBS). Brains were incubated over-
night in fixation buffer at 4�C. Brains were transferred to
30% sucrose the following day, left overnight at 4�C, and
then frozen. Thirty micrometer cryosections were
evaluated for immunofluorescence and/or direct GFP de-
tection. Primary antibodies: Rabbit anti-GFP antibody
(Molecular Probes 1/200), Rat anti-myelin basic protein
(Chemicon 1/500), Rat anti PDGFr (BD Pharmingen 1/
500) and secondary antibodies: Goat anti-Rabbit Alexa
488 for GFP detection (Molecular Probes 1/1000), and
Goat anti-Rat Cy3 for the detection of the other
antigens (Jackson ImmunoResearch 1/1000) were
incubated at 4�C overnight. Nuclei were labeled with
Hoescht.

Gene expression profiling analyses

Dataset 1: P4 versus P10 mouse optic nerve expression
data. Optic nerves were dissected and placed into
RNAlaterTM (Ambion Inc.) and left at 4�C overnight
before being stored at �80�C. A total of 75 postnatal
(P) Day 4 (P4) C57Bl/6 J mice and 70 P10 C57Bl/6 J
mice were used for microarray Experiment 1, and 55 P4
and 100 P10 mice, the latter divided into two pools, were
used in Experiment 2. Each pool of optic nerves was
homogenized in Trizol (Life Technologies) using a glass/
glass homogenizer. Following chloroform extraction, the
lysate was purified using an RNAeasy column (Qiagen).
RNA quality was assessed using an Agilent Bioanalyzer at
the McGill University and Génome Québec Innovation
Center (McGill-GQIC). The probe preparation,

hybridization and scanning of microarrays were per-
formed at the McGill-GQIC according to the manufactur-
er’s instructions using Affymetrix Mouse Expression
430A Array (MOE430) microarrary chips. Background
correction and normalization were performed in the R
environment (31) with the Bioconductor packages (32)
using the robust multichip analysis method (RMA)
(33,34) of the R Affy package (35). The microarray data
was deposited in the NCBI Gene Expression Omnibus
(GEO; http://www.ncbi.nlm.nih.gov/geo/) under series
number GSE24513. The mouse Affymetrix chip probes
were mapped to mouse NCBI Entrez Genes (36) using
Bioconductor packages (32). A set of mouse TF genes
(37) was mapped to the mouse Affymetrix probes using
a developed Perl program. Differential expression analyses
for the P4 and P10 datasets were performed using a
two-sample t-test with a random variance model (38)
and the Benjamini and Hochberg method to compute a
false discovery rate (FDR—expected proportion of Type 1
errors within the rejected hypotheses) implemented in the
BRB-Array software (http://linus.nci.nih.gov/�brb/). Perl
scripts were created to convert each of the
HTML-formatted expression analysis results to text files
and extract and report all significantly (P� 0.001 and
FDR� 0.05), differentially expressed genes across the
pairwise expression profiles.
A GO term enrichment analysis was performed on the

differentially expressed set of genes with the AmiGO an-
notation and ontology toolkit (39) using a hypergeometric
test, which incorporated the GO annotations for the
Mouse Genome Database (40) and Rat Genome
Database (41).

Dataset 1I: oligodendrocytes progenitor cells versus early
oligodendrocytes and early oligodendrocytes versus mature
oligodendrocytes mouse forebrain expression
data. Affymetrix Mouse 430 2.0 chip CEL files were
downloaded from NCBI GEO (GEO dataset ID:
GSE9566) (42). CEL files recording expression for
olidgodendrocyte progenitor cells (OPCs), early oligo-
dendrocytes (EOLs) and mature oligodendrocytes
(MOLs) were analyzed using RMA (as described above)
to obtain individual probe set expression values and each
pair of experiments was subjected to a two-sample t-test
with a random variance model (38) implemented in the
BRB-Array software (http://linus.nci.nih.gov/�brb/).
The mouse Affymetrix chip probes were mapped to
mouse NCBI Entrez Genes (36) using Bioconductor
packages (32). Perl software (described above) was used
to extract and report all significantly (P� 0.001 and
FDR� 0.05), differentially expressed genes across the
pairwise expression profiles and TF genes were identified
as described above.
Gene expression profiles were compared across the P4

versus P10 (P4-P10d); OPCs versus EOLs (OPC-EOLd)
and EOLs versus MOLs (EOL-MOLd) datsets for differ-
ential gene expression overlap, enhancer library
co-expression and TF-mapped differential gene expression
using developed software. The intersection of oligo-
dendrocyte early development expression dataset
(IOLEDd) was established using the maximal overlap of
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differentially expressed genes between the P4–P10d and
OPC–EOLd gene expression datasets.

Evaluation of local sequence conservation for previously
validated TFBS

Software was developed to extract human and mouse
aligned genomic sequences from the UCSC 28-way
multi-species alignments data (43) around annotated
TFBS defined in the Annotation Regulatory Binding
Site Database (ABS) (44) available within the PAZAR
system (45). Sequence identity values for regions sur-
rounding TFBS instances were computed and reported.

Development of the promoter database and CRM analysis
algorithm

A database of human–mouse non-coding alignments was
developed and populated using a human–mouse subset of
the UCSC 28-way alignment data (43,46). All UCSC
Hg18 multiz28way chromosome and database files were
downloaded from a UCSC FTP site (ftp://hgdownload
.cse.ucsc.edu/). Kent source utilities were downloaded
and compiled on a linux server and Perl-C wrappers
were developed for selected C programs. Software was
developed to extract 15 006 alignments from the chromo-
some databases based on pre-computed human coordin-
ates in the oPOSSUM database (47). Human-anchored
alignment subsets for human and mouse sequences, with
aligned gaps removed and exons masked, were saved in
MySQL database tables and coordinates for each
non-contiguous mouse alignment in a multiple alignment
format (MAF) block were recorded. Binding site informa-
tion was compiled from the literature for a set of
glia-related TFs: POU2F1; EGR1; EGR2; EGR3;
EGR4; POU3F1; NKX2-2; NKX2-5 to supplement the
Jaspar TF binding profile database (Supplementary
Figure S3). All Jaspar database TFBS profiles, along
with the supplemented profiles, were used to enumerate
predicted TFBS motifs in the human–mouse aligned
regions requiring only that a predicted motif overlap
across the aligned sequences. On the basis of similarity
between the binding properties of TFs in the same
family, the Combination Site Analysis (CSA) algorithm
identifies statistical over-representation of combinations
of TFBS class-representatives in a set of co-expressed
genes, as compared with a background set (48). For
each enriched class-level CRM, the predicted TFBS
classes are expanded and each possible TFBS-level CRM
is evaluated for over-representation. The CSA+algorithm
was developed to incorporate the improved set of regula-
tory sequence feature predictions and utilize two random
background samples for the class combination and TFBS
combination evaluation steps.

Validation of promoter analyses method

A reference collection of 25 skeletal muscle genes with
defined CRMs was utilized for the validation of the pro-
moter analyses approach (http://burgundy.cmmt.ubc.ca/
tjkwon/ and Supplementary Tables S4 and S5). Using
this training collection as input to the CSA+ algorithm
(described above), parameters were selected for the

boundaries of search regions. The CSA+ algorithm pre-
dicted combinations of two TFBS (minimal CRMs) for all
analyses. A TFBS inter-binding site distance (IBSD) par-
ameter was set to 225 base pairs (bp), consistent with past
observations of TF cooperativity up to �20 helical turns
(�210 bp) (49). The analysis was performed using the full
database of promoter regions for assessing background
properties in addition to a random background
promoter sampling procedure. A ‘noise-added’ represen-
tation of the training collection was generated for further
validation of CSA+ by appending an additional set of 25
randomly selected genes (Supplementary Table S6). The
same CSA+parameter selections were utilized for all sub-
sequent promoter analyses (Supplementary Table S7).

Jaspar profile clustering and cluster labeling

Vertebrate binding site profiles were extracted from the
supplemented Jaspar database and pairwise profile
Pearson correlations were computed using the
CompareAce program (50). Clustering was performed
using the hclust function in the R software package
using a cut-off of 0.40. TFBS profile clusters were
examined manually and each cluster with �4 members
was assigned a class label that, in most cases, reflected
the structural class of its members. Clusters with <4
members were labeled with the corresponding TF name
and structural class.

CRM promoter analyses of differentially expressed genes
in oligodendrocytes

CSA+ analyses were conducted over the IOLEDd oligo-
dendrocyte dataset using parameter values determined in
the validation step (Supplementary Table S7). To
maintain search regions spanning �5000 kb we omitted
the 2000 bp upstream/downstream parameter in CSA+

analyses of the oligodendrocyte data. The mouse
IOLEDd gene set was comprised of 203 mouse Entrez
genes associated with 202 mouse Ensembl genes.
Mapping the mouse ensembl genes to human orthologs
resulted in 194 human Ensembl gene identifiers, of
which 178 were represented in the promoter database
(File 1 in Supplementary Data). A second set of CSA+

analyses was performed using a TFBS prediction thresh-
old of 85%, retaining all other parameter values. In total,
16 analyses were performed, each of which provided a
ranked list of CRM (TFBS pair) predictions that fell
below the 0.05 ranking cut-off.

Enhancer support of CRM predictions

We developed software to extract UCSC MAF 28-way
human–mouse alignments (27,43) and predict TFBS in
the tested myelin gene enhancer sequences
(Supplementary Table S8). Predicted TFBS with aligned
positions were stored in a MySQL database. Software was
developed to extract and report genomic coordinates for:
CRMs predicted by CSA+ in non-coding regions of the
IOLEDd genes and CRM instances predicted in the
myelin gene enhancer collection. Myelin gene enhancer
constructs that were expressed in the CNS and linked to
genes that demonstrated differential expression in the
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IOLEDd dataset were assigned to the ‘positive’ enhancer
group. Two enhancers that failed to direct reporter gene
expression in white matter were classified in the negative
group: (i) Cnp—its associated gene was differentially
expressed in the IOLEDd dataset and (ii) Ermn—its
associated gene (alias A330104H05Rik) was up-regulated
in both the OPC_EOLd and EOL_MOLd datasets (the
Affymetrix chip used to obtain the P4_P10d dataset did
not have a probe for this gene). Software was developed to
evaluate the coincidence of CRMs found in the CSA+

analyses results and in the enhancer groups. CSA+CRM
predictions were included in the enhancer-supported set if
they had a co-occurring CRM prediction in a ‘positive’
enhancer and no corresponding CRM prediction in a
‘negative enhancer’ (Supplementary Table S9). A Perl
program was developed to map the enhancer-supported
CRM predictions to CRM class labels using the TF
class label mapping described above.

Myelin gene TRN construction

Predicted CRMs in the enhancer-supported CRM set were
extracted if the genes linked to the CRMs were identified
in a list of abundant CNS myelin proteins [Figure 5a in
(51)]. Software was developed to construct a TRN using
the enhancer-supported myelin protein CRM predictions
and visualized using BioLayout (52).

Mouse optic nerve (P4–P10) and mouse forebrain (P16)
expression profile comparisons were reviewed for TFs
associated with TFBS classes identified in the TRN. A
P7 rat brain oligodendrocyte dataset [GEO dataset:
GSE5940 (53)] was also queried for expression of TF
genes using the NCBI GEO Profiles viewer (54).

Analysis of overlapping oligodendrocyte CRM predictions

Software was written to identify pairs of enhancer-
supported CRM predictions with one overlapping pre-
dicted TFBS genomic coordinate position to identify
CRM predictions with three TFBS.

Myelin gene TRN database and website tool

A MySQL database was designed and developed to house
the oligodendrocyte myelin TRN data. A Perl script was
written to populate the database with predicted CRM
genomic instances. CRM predictions identified in mouse
(mm8) enhancer sequences were also converted to human
(hg18) genomic coordinates and inserted into the database
using the UCSC Genome Browser LiftOver C-based
software (http://hgdownload.cse.ucsc.edu/admin/exe/)
and developed Perl software. PHP software was developed
to create a website tool which enables entry of parameter
selections and data extraction from the MySQL database
(www.cisreg.ca/MyelinCode). An interface to the UCSC
Browser display (27) was developed to facilitate display of
selected CRM predictions in the genome browser.

Access to the website tool is available at www.cisreg.ca/
MyelinCode. Additional material is available at: www
.cisreg.ca/MyelinCode/supporting_material.

RESULTS

Myelin gene associated conserved regions confer reporter
gene activity in glial cells

We showed previously that regulatory sequences
associated with the myelin genes, myelin basic protein
(Mbp) and proteolipid protein (myelin) 1 (Plp1), often
coincided with domains highly conserved between
human and mouse (15,25,26,55). To expand on this
enhancer set, eight similarly conserved sequences
associated with genes known to function in myelinating
cells were evaluated. These sequences were located
adjacent to the coding regions of mouse genes: claudin
11 (Cldn11); 20,30-cyclic nucleotide 30 phosphodiesterase
(Cnp); ermin, ERM-like protein (Ermn); connexin 32
(Gjb1); myelin and lymphocyte protein, T-cell differenti-
ation protein (Mal); oligodendrocyte TF 1 (Olig1); oligo-
dendrocyte TF 2 (Olig2) and pou domain class 3, TF 1
(Pou3f1) (Supplementary Figure S2). With one exception,
the putative regulatory regions were ligated to an
eGFP-lacZ reporter gene with a minimal HSP promoter
(Figure 1). In contrast, the Ermn-associated reporter con-
struct included its endogenous promoter. These constructs
were inserted in the same orientation in single copy at a
common site 50 of the Hprt locus and their in vivo expres-
sion phenotypes evaluated in transgenic mice at multiple
developmental ages.
Of the candidate non-coding regions tested, three

were proximal to genes encoding the tetraspan myelin
protein family members: CLDN11, GJB1 and MAL.
CLDN11 is an integral membrane protein contributing
�1% of CNS myelin protein (51). A 30 631 bp sequence
directed widespread CNS expression that initiated in
pre-myelinating oligodendrocytes at P5 (Figure 2 and
Supplementary Figure S4) and persisted in mature
myelinating oligodendrocytes at P10 and P90. Reporter
gene expression was absent in the PNS (Supplementary
Figure S5). GJB1 is a transmembrane gap junction
subunit expressed in oligodendrocytes and Schwann cells
(56). A 637 bp sequence located in intron 1 corresponds
to an orthologous human sequence containing Sox
TFBS that, when mutated, are associated with cases of
Charcot-Marie-Tooth Disease (57,58). This region
directed reporter expression to both the CNS and PNS
(Figure 2; Supplementary Figures S4 and S5). In P5
samples, the reporter gene expressed diffusely in both
brain and optic nerves while spinal cords labeled intensely
from cervical through lumbar levels (Figure 2;
Supplementary Figures S4 and S5) consistent with expres-
sion in both OPCs and myelinating oligodendrocytes.
Reporter expression in white matter continued into
maturity. Additionally, reporter expression was robust in
myelinating Schwann cells (spinal roots and sciatic nerves)
at P5 and P10 but not in cells maintaining mature myelin
sheaths (P6 months) (Supplementary Figure S5). MAL is
a tetraspan raft-associated proteolipid, which regulates
sorting and trafficking of membrane components in
myelinating cells (59). A 50 680 bp sequence directed
reporter expression to myelin forming cells in both the
CNS and PNS; at P5, spinal cord and peripheral nerves
were densely labeled while the chiasmal end of optic
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Figure 2. Histochemical detection of b-galactosidase activity in brain sections from P5, P10 and 2–3-month-old mice reveals targeting and devel-
opmental expression programming of Cldn11, Gjb1, Mal and Pou3f1 reporter constructs.

Figure 1. Putative myelin gene-associated regulatory regions were tested for function in mice using reporter constructs inserted in single copy at the
Hprt locus. (UCSC genome browser displayed using mouse MM8-mapped coordinates http://genome.ucsc.edu).
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nerves and deep regions of the cerebellum were lightly
labeled (Figure 2; Supplementary Figures S4 and S5).
Expression continued in white matter and in the PNS at
P18 and P5 months (Supplementary Figure S5).

Two of the conserved non-coding regions tested were
associated with glial genes encoding the cytoplasmic
proteins ERMN and CNP. Ermn encodes a cytoskeletal
protein that is expressed during late stage myelination
(60). At P5 and P10, a 50 587 bp sequence conferred
sparse expression in dorsal spinal cord white matter but
not in brain. In mature mice, oligodendrocytes in the cere-
bellum and brain stem labeled weakly (Supplementary
Figures S5 and S6). In the PNS, Schwann cells did not
label at any age (Supplementary Figures S5 and S7). CNP
accumulates in uncompacted regions of the myelin sheath
(61). A reporter construct bearing a 742 bp sequence from
intron 1 of the CNP gene directed no detectable expression
in either the CNS or PNS at any age (data not shown).

Putative enhancer regions associated with three genes
encoding TFs with regulatory roles in oligodendrocytes,
Pou3f1, Olig1 and Olig2, were evaluated. POU3F1,
encodes a Pou-homeodomain containing TF expressed
in cerebral cortex OPCs, astrocytes (62–64) and
Schwann cells (65,66). A 30 650 bp sequence that
encompasses a portion of a previously identified
Schwann cell enhancer sequence (67) was evaluated.
Reporter expression was observed throughout the CNS
at P5, was increased in white matter at P10, and continued
at reduced levels throughout maturity (Figure 2;
Supplementary Figures S4 and S5). Schwann cells were
strongly labeled at P5 and P10 but were weakly labeled
in adults (Supplementary Figures S4 and S5). Expression
was also observed in several neuronal populations in the
hippocampus and the dentate gyrus. OLIG1 is a basic
helix-loop-helix TF required for normal oligodendrocyte
development (68). A 30 1101 bp sequence conferred
labeling in neurons throughout development and trace
levels of expression in the white matter tracks of cerebel-
lum and brain stem at P10 but not at other time points
(Supplementary Figures S5–S7). A 50 894 bp sequence
from Olig2 directed low-level expression in optic nerves
of P10 mice. Sparse expression was observed elsewhere
in the white matter of the P10 brain and at later time
points (Supplementary Figures S5–S7) although robust
expression was observed in the lateral septal nucleus and
medial cerebellar nucleus at P5 and P10.

To confirm that the Cldn11, Gjb1, Mal and Pou3f1
reporter constructs expressed in cells of the oligodendro-
cyte lineage, sections from P10 brain were co-labeled for
the OPC marker, platelet derived growth factor receptor
alpha (PDGFRA) and the later appearing myelination
marker, MBP. In the P10 brain stem, myelination has
progressed and oligodendrocytes expressing each of
these constructs co-labeled for MBP (Supplementary
Figure S8A and B). In contrast, in the P10 cortex, mye-
lination has yet to initiate but cells expressing each of the
constructs co-labeled for the oligodendrocyte progenitor
marker PDGFRA (Supplementary Figure S9). Thus, as
predicted by the reporter gene expression profiles, the
Cldn11, Gjb1, Mal and Pou3f1 enhancer sequences
function in the oligodendrocyte lineage.

Coordinate myelin gene expression is detected in
mouse forebrain and optic nerves

Transcriptional profiles highlight genes that are tempor-
ally co-expressed in a given cell state (69,70) and promoter
analyses of such coordinately expressed genes may impli-
cate mediating DNA-binding TFs. In contrast, non-
cohesive groupings of expressed genes seldom reveal
insights into regulatory mechanisms. Thus, a refined and
reliable set of co-expressed genes is key for detection of
enriched TFBS in their promoter sequences.
Optic nerves are a structurally uniform CNS domain

containing axons projecting from retinal ganglion
neurons with few other neural components. In the
mouse, oligodendrocytes initiate myelination in optic
nerves late on P5 and myelination is advanced by P10.
To identify genes induced during the myelination
process, we generated gene expression profiles at P4 and
P10. Our comparative analyses identified 487 differentially
expressed genes at a P-value cutoff of 0.001 (File 2 in
Supplementary Data).
To illuminate potential functional roles for the differen-

tially expressed genes, we mapped the 487 partially redun-
dant mouse gene identifiers to a set of 504 mouse and
orthologous rat genes and performed a Gene Ontology
(GO) (71) over-representation analysis using the GO
mouse and rat annotation databases and the Molecular
Function and Cellular Component branches
(Supplementary Tables S10 and S11). The two most sig-
nificant GO categories highlighted in these analyses
were: GO:0005488 ‘binding’ and GO:0019911 ‘structural
constituent of myelin sheath’ for the Molecular
Function sub-tree (Supplementary Table S10) and
GO:0043209 ‘myelin sheath’ and GO:0044421 ‘extracellu-
lar region part’ in the Cellular Component sub-tree
(Supplementary Table S11), confirming that a portion of
the genes differentially expressed at P4 and P10 encode
myelin structural proteins.
During the process of lineage progression, oligodendro-

cytes transition through a developmental process in which
four cell states are recognized: progenitors, pre-
myelinating, myelinating and myelin maintaining cells,
each distinguished by specific oligodendrocyte protein
markers. While more mature oligodendrocytes will be
present in the P10 optic nerve compared to P4, limited
synchronicity of cell lineage progression will result in het-
erogeneous populations at both time points. In contrast, a
recent study designed to establish stage-specific gene ex-
pression profiles exploited stage specific markers to
recover populations of oligodendrocyte lineage cells at
multiple stages of maturation from the P16 mouse fore-
brain (42). As these marker-enriched populations and the
optic nerve samples represent CNS domains divergent in
both structure and developmental programming, any
myelin genes with differential gene expression concord-
ance may be components of a core set used throughout
the lineage. Therefore, we reanalyzed the forebrain data
using a method consistent with the optic nerve expression
profile analyses and searched for overlap of differentially
expressed genes. Using only those genes represented on
both microarray chips (Figure 3A and File 2 in
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Supplementary Data) the P4 versus P10 optic nerve
dataset (P4–P10d) was compared to the oligodendrocyte
progenitor cells versus early oligodendrocytes (OPC–
EOLd) and early oligodendrocytes versus myelinating
oligodendrocytes (EOL–MOLd) datasets. We found that
the maximal overlap of differentially expressed genes
occurred between the P4–P10d and OPC–EOLd gene ex-
pression datasets (Figure 3A and File 3 in Supplementary
Data), referred to here as the intersection of oligodendro-
cyte early development expression dataset (IOLEDd). The
IOLEDd expression dataset is composed of 203 genes that
are either concordantly up- or down-regulated during
oligodendrocyte maturation. Notably, five of the myelin
genes associated with enhancers in the supplemented
myelin enhancer collection were differentially expressed
in the IOLEDd expression dataset (Figure 3B).
Moreover, comparison of this dataset to a recent prote-
omic analysis of myelin (51) illuminated that additional
myelin genes were captured within the IOLEDd set.
TFs that are co-expressed with tissue-specific genes may

be causally associated with the biological process under
study (72,73). Therefore, we mapped the optic nerve and
forebrain expression data to a curated mouse–human TF
catalogue to identify the subset of differentially-expressed

genes that encode transcriptional regulators (37). A subset
of 31 TFs in the IOLEDd set was identified and the other
sets of differentially expressed genes included 829 candi-
date TFs (Figure 3C and File 4 in Supplementary Data).
Notably, TFs previously shown to regulate oligodendro-
cyte proliferation and differentiation, as well as novel TFs,
were captured in these subsets. To illuminate the CRMs
responsible for oligodendrocyte development, we used a
novel procedure described below to analyze the
non-coding regions of the IOLEDd set of differentially
expressed genes.

Promoter analyses

Promoter analyses methods typically focus on non-coding
regions that satisfy minimum sequence conservation
criteria (e.g. �60% nucleotide identity in sequence align-
ments of orthologous genes separated by �60 million
years of evolution) over a given length of sequence (e.g.
100 bp). However, orthologous non-coding sequences
identified by alignment algorithms can exhibit a range of
sequence conservation and/or constraint (74) and recent
gene regulatory and chromatin immunoprecipitation
(ChIP) studies have highlighted binding and activity of

Figure 3. Overlap of differentially expressed genes in the mouse optic nerve and forebrain datasets. (A) Oligodendrocyte gene expression profile
comparisons for optic nerve (P4–P10d) and forebrain (OPC–EOLd and EOL–MOLd) were assessed for concordance of differential gene
expression. (B) Identification of the overlap concordance for genes linked to the enhancer constructs. (C) Overlap of differentially expressed
genes that are TFs.
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TFs over sequence regions that possess little or no
inter-species sequence identity (75,76). Our evaluation of
regions surrounding experimentally validated TFBS in
aligned sequences (44) suggested that local sequence con-
servation flanking TFBS can fall below typically applied
threshold cut-offs (Supplementary Figure S10).
Accordingly, to facilitate regulatory element detection in
sequences with more diverse conservation values, we
designed a new CRM detection approach called CSA+,
that requires only that each aligned sequence block (77)
be evaluated for aligned binding site predictions. Other
binding site conservation approaches have been
incorporated in previous promoter sequence analysis
studies [for examples see (78,79)].

To validate the capacity of the CSA+ algorithm to
identify known CRMs, we first applied it to a reference
collection of 25 human skeletal muscle-related
co-expressed genes (Supplementary Table S4) containing
previously characterized CRMs. A procedure for the de-
tection of over-represented TFBS motif combinations was
evaluated, which compared motif frequencies in a
co-expressed gene set against background sets composed
of either random selections of 5000 gene promoters found
in our promoter database (see ‘Materials and Methods’
section) or all available gene promoters in the database.
The CSA+ algorithm predicted minimal CRMs, namely
combinations of two TFBS, for all analyses. We applied
the reference collection to both approaches and arbitrarily
extracted the top 12 ranked TFBS pair results for com-
parison. The same 4 known muscle CRMs were predicted
in the top 12 results by both background methods
(Supplementary Tables S12 and S13), while an additional
TFBS CRM, was identified using the randomly sampled
background method (Supplementary Table S13B.).
Importantly, the CSA+method demonstrated refinements
in the rankings of known CRMs compared with previous
validations using a similar reference collection (47,48).
Given the results of the background validations, we
hypothesized that a randomized sample of genes may
minimize any impact of promoter characteristic properties
that might dominate the full database of orthologs. As
such, the random background sampling method was
incorporated in all subsequent CSA+ analyses.

Among the group of differentially expressed genes
recognized through gene expression comparisons, some
are likely to be co-regulated by a common transcriptional
regulatory program while others may be controlled by un-
related regulatory pathways. To evaluate the capacity of
the CSA+ algorithm to identify over-represented CRM
mechanisms in a set of genes that are controlled by differ-
ent transcriptional programs, an equal number of
randomly selected genes was added to the validation ref-
erence test set (Supplementary Table S6) and reanalyzed
with CSA+. The majority of the known CRMs continued
to be ranked among the top 12 results (Supplementary
Table S14). One TFBS combination, correctly predicted
in the ‘specific’ reference collection promoter analyses did
not satisfy the score cut-off in the analyses of the
‘noise-added’ test set, while an additional known CRM
was raised to rank 11 from rank 14 (Supplementary
Tables S13 and S14). Such changes are not surprising as

the frequency of TFBS class pair instances can be
obscured and/or altered in larger, less cohesive gene sets,
supporting the view that promoter analysis specificity will
be maximized when using cohesive sets of co-expressed
genes. We retained and incorporated this ‘noise-added’
representation of the muscle reference collection
(Supplementary Table S6) in the remainder of our CSA+

algorithm validation to approximate the noise that may be
present in the differentially expressed oligodendrocyte
IOLEDd dataset.
To test the capacity of the promoter analysis method to

recover CRMs in varying lengths of search sequence, po-
tentially spanning more than one TSS, sequence range
values between 100 and 10 000 bp were evaluated
(Supplementary Table S7). The results confirmed that dis-
covery of over-represented TFBS combinations was not
obfuscated by the length of non-coding regions analyzed.

Promoter analyses of differentially expressed
oligodendrocyte genes highlights potential TF
cooperativity

The promoter analyses method and search parameters
defined above were applied to the IOLEDd oligodendro-
cyte gene set to elucidate the CRMs that may be respon-
sible for their co-expression. Individual TFBS predictions
often implicate the binding of homologous TFs with
similar binding properties. Consequently, we clustered
the vertebrate TFBS profiles from the JASPAR profile
database (80) supplemented with additional TFBS
profiles (Supplementary Figure S3) using a binding
profile similarity measure. This led to 47 TFBS classes
(Supplementary Table S15) of which over half (26/47)
were composed of single TFBS profiles while the remain-
der contained four or more (see ‘Materials and Methods’
section). TFBS in each predicted CRM identified by the
oligodendrocyte CSA+ analyses were mapped to their
respective TFBS class labels. Four recurring class CRMs
corresponded to the top 4 of 15 highest ranked hits across
all analyses: SOX/HMG GRP - NKX/HOX GRP; SOX/
HMG GRP - EGR/ZF GRP; SOX/HMG GRP - ETS
GRP and SP1 (ZF) - SPZ1 (HLH). Importantly, most
of these highly ranked CRM predictions align with previ-
ously established associations between TF families and
oligodendrocytes (10,11).

A myelin gene TRN supported by enhancer predicted
regulatory elements

Using the set of statistically-supported TFBS signatures
enriched in the co-expressed oligodendrocyte genes
(IOLEDd), we exploited the demonstrated regulatory
capacity of the myelin enhancer sequence collection to
improve the specificity of oligodendrocyte-associated
CRM predictions. We performed analyses to extract and
store all human–mouse aligned TFBS predictions found in
the myelin enhancer sequence collection (Supplementary
Table S8). Each enhancer included in the myelin gene
enhancer collection was classified as ‘positive’ or
‘negative’ or deemed ‘not applicable’, based both on its
capacity to activate the reporter gene in oligodendrocytes
and co-expression of its associated gene in the IOLEDd

Nucleic Acids Research, 2011 9

 by guest on A
ugust 24, 2011

nar.oxfordjournals.org
D

ow
nloaded from

 

http://nar.oxfordjournals.org/cgi/content/full/gkr326/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr326/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr326/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr326/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr326/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr326/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr326/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr326/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr326/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr326/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr326/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr326/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr326/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr326/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr326/DC1
http://nar.oxfordjournals.org/


set (Supplementary Table S9). Using the full set of
promoter analyses results, we identified and mapped all
instances of the ranked TFBS pair predictions found in
gene promoters to TFBS classes. This resulted in 143
distinct TFBS class CRM predictions with score values
�0.05 (File 5 in Supplementary Data). To isolate CSA+

CRM predictions supported by enhancer sequence data,
we identified the overlap with CRMs predicted in the posi-
tive enhancers but absent in the negative enhancers. This
resulted in 49 unique enhancer-supported CRM predic-
tions targeting the IOLEDd set (File 6 in Supplementary
Data). Finally, we identified enhancer-supported CRM
pair predictions with overlapping TFBS to distinguish
IOLEDd genes with predicted CRMs made up of three
TFBS. This analysis identified 300 unique CRMs with 3
TFBS (Files 7 and 8 in Supplementary Data).
A TRN model was established by extracting the associ-

ations between the list of enhancer-supported predicted
CRMs and oligodendrocyte myelin proteins (51). The
TRN model includes 28 unique TF classes that participate
in 43 CRMs (Figure 4 and Table 1). Importantly, the
network highlights previously identified regulators of
oligodendrocyte development: SOX/HMG GRP,
POU3F1 (POU-HOX) and NKX/HOX GRP (Table 2).
Moreover, a review of gene expression data and related
evidence for other TF candidates provided noteworthy
support for their involvement in oligodendrocyte matur-
ation (Table 2). For example, a recent CNS myelin
proteome list (51) includes proteins (DES; ACTA1;

ACTC1; CKB) that are also components of muscle. The
predicted role of Mef2a and the Myf family of TFs in the
TRN model and their demonstrated expression with
known target genes in developing oligodendrocytes
(Table 2) suggest that these TFs also play a key role in
CNS myelinogenesis. Notably, >80% of the TF classes
are corroborated by experimental support and/or oligo-
dendrocyte TF gene expression evidence. Additionally,
oligodendrocyte genome-wide expression analyses
support the involvement of >65% of the previously
unknown TF class regulators (Table 2). Importantly, the
TRN model and associated CRM predictions provide
support for cooperative roles between TF classes.

TRN model predictions are supported by experimental
data

To facilitate query and extraction of the TRN model data,
we populated a relational database with the genomic co-
ordinates of the CRMs predicted in the oligodendro-
cyte promoter analyses. A website portal was developed
(www.cisreg.ca/MyelinCode) to enable data selection and
extraction using the following parameters: co-expressed
genes, enhancers, CRMs, TFBS and/or a genomic coord-
inate interval. Extracted CRMs may be downloaded in a
text-tabbed file or viewed in the UCSC genome browser
(27).

The TRN model data should predict both known and
putative regulatory elements and TFs. To validate this

Figure 4. TRN model for myelin genes. Predicted functional linkages between TF classes (gold spheres) and targeted myelin genes (blue spheres) are
indicated with connecting edges.
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capacity we reviewed the current literature for experimen-
tal data that identified combinations of acting TFs and
regulatory elements in myelin gene non-coding regions.
To avoid circularity, we required that experimentally
evaluated regions did not overlap with and/or were not
orthologous to our enhancer sequences. Two criteria-
compliant studies were identified for validation of the
TRN model data: (i) Li et al. (22) and (ii) Gokhan et al.
(21). Using data from the first study, we extracted TRN
model data predictions that fell within the genomic
boundaries of the investigated promoter region and
compared them with the experimentally-validated regula-
tory elements determined in the study. Notably, all regu-
latory elements identified in the study were present in the
CRM predictions confirming the ability of the TRN
model data to identify bonafide CRMs (Supplementary
Figure S11). Remarkably, the remaining set of CRM can-
didates identified by the TRN model data was composed

of TFBS that bind TFs with previously demonstrated
regulatory roles in oligodendrocytes. We then extracted
and compared TRN model data with experimental data
from the second study and confirmed that predicted
CRMs were capable of engaging the TF combinations
validated in the study (Supplementary Figure S12).
Similarly, the predicted CRMs included putative TFBS
associated with TFs known to regulate oligodendrocyte
myelination, corroborating their potential involvement.
Thus, we confirmed the ability of the TRN model data
to identify experimentally validated TFBS and to predict
the involvement of regulatory elements and TFs that
warrant further investigation.

DISCUSSION

The initiation of CNS myelin elaboration is marked by
the up-regulation of numerous myelin-associated genes.

Table 1. Predicted myelin gene TRN

TFBS class I TFBS class II Predicted targeted myelin genes

EGR/ZF GRP GFI (ZF) Gjb1; Mal
EGR/ZF GRP HAND1-TCFE2A (HLH) Gjb1; Mal; Mbp; Plp1
EGR/ZF GRP HOX GRP Gjb1; Mal; Mbp; Plp1
EGR/ZF GRP MYB (MYB) Gjb1; Mal
EGR/ZF GRP NHLH1 (HLH) Gjb1; Mal; Mbp; Plp1
EGR/ZF GRP NKX/HOX GRP Gjb1; Mal; Mbp
EGR/ZF GRP PBX1 (HOX) Plp1
EGR/ZF GRP PRRX2 (HOX) Gjb1; Mal; Mbp
EGR/ZF GRP SOX/HMG GRP Cnp; Gjb1; Mal; Mbp; Plp1
EGR/ZF GRP YY1 (ZF) Gjb1; Mal; Mbp;
EGR/ZF GRP ZEB1 (ZF) Gjb1; Mal; Mbp;
ETS GRP FOS (LEUZIP) Cldn11; Gjb1; Plp1; Sirt2
ETS GRP GFI (ZF) Cldn11; Gjb1; Plp1; Tspan2
ETS GRP GLI (ZF) Gjb1; Plp1
ETS GRP HAND1-TCFE2A (HLH) Cldn11; Gjb1; Sirt2; Tspan2
ETS GRP PBX1 (HOX) Plp1; Tspan2
ETS GRP ROAZ (ZF) Gjb1; Mbp; Plp1;Tspan2
ETS GRP SOX/HMG GRP Cldn11; Gjb1
ETS GRP SPZ1 (HLH) Plp1
FOS (LEUZIP) FKH GRP Cldn11; Mbp; Plp1; Tspan2
FOS (LEUZIP) NKX/HOX GRP Cldn11; Mbp
FOS (LEUZIP) NR GRP Sirt2
GFI (ZF) MEF2A (MADS) Cldn11; Mal
GFI (ZF) MIZF (ZF) Gjb1
GFI (ZF) MYF (HLH) Cldn11; Gjb1; Mal; Mbp; Plp1
HAND1-TCFE2A (HLH) HOX GRP Cldn11; Gjb1; Mbp; Plp1; Tspan2
HAND1-TCFE2A (HLH) MEF2A (MADS) Cldn11; Mal; Tspan2
HAND1-TCFE2A (HLH) NKX/HOX GRP Cldn11; Mbp; Tspan2
HAND1-TCFE2A (HLH) RORA2 (NR) Gjb1
HAND1-TCFE2A (HLH) TEAD1 (TEA) Cldn11; Plp1
MEF2A (MADS) POU3F1 (POU-HOX) Cldn11; Tspan2
MEF2A (MADS) SP1 (ZF) Cldn11; Mal
NHLH1 (HLH) NFYA (CCAATBOX) Plp1; Sirt2
NHLH1 (HLH) TEAD1 (TEA) Cldn11; Plp1
REL GRP FKH GRP Mal
REL GRP FOS (LEUZIP) Gjb1; Plp1; Tspan2
REL GRP HOX GRP Gjb1; Mal; Plp1; Sirt2; Tspan2
REL GRP PRRX2 (HOX) Gjb1; Mal; Plp1; Tspan2
REL GRP SOX/HMG GRP Gjb1; Mal
ROAZ (ZF) NKX/HOX GRP Gjb1; Mag; Mbp; Plp1; Sirt2
ROAZ (ZF) SP1 (ZF) Gjb1; Mag; Mbp; Plp1; Tspan2
ROAZ (ZF) ZEB1 (ZF) Gjb1; Mag; Mbp; Plp1; Sirt2; Tspan2
SOX/HMG GRP TEAD1 (TEA) Cldn11; Plp1
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Table 2. Evidence for TFs predicted in the myelin gene TRN

Ckb
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Table 2. Continued
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While gene knock-out and gene-centric transcription
studies have highlighted the essential role of some
DNA-binding TFs in the myelination process, a compre-
hensive inventory of collaborating TFs driving myelin-
associated gene expression has remained elusive. In this
investigation we combined genome-wide oligodendrocyte
expression profiling, in vivo enhancer analysis and
sequence analysis of non-coding regions to establish a
TRN model of coordinate myelin-associated gene tran-
scription. Functional characterization of new myelin
gene enhancers coupled with novel profiling of the mye-
lination expression program provided the experimental
foundation for computational modeling of network com-
ponents. The derived myelin gene TRN model contains 43
CRMs that link an expanded myelination-relevant TF
repertoire of DNA-binding TFs. Furthermore, the TRN
model, together with the underlying pro-myelination
CRMs, specifies the collaborative relationships among
TFs.
To functionally characterize myelin gene enhancers, we

used a controlled transgenesis strategy and evaluated
reporter-gene expression in oligodendrocytes co-labeled
with progenitor or myelinating cell stage markers. This
in vivo approach accesses the developmental context,
provides cellular resolution and controls many of the ex-
perimental variables typically associated with analysis of
in vivo reporter gene expression. The myelin gene enhancer
set reported here augments existing resources such as:
Vista Enhancer Browser (VEB) (81), which records
reporter expression phenotypes in mouse embryos, and
the Pleiades Promoter Project (PPP) (82), which identifies
targeted transgene activity in the brains of mature mice.
Additionally, non-overlapping non-coding regions
associated with genes that are common to our enhancer
collection have previously been investigated for activity:
Pou3f1 (VEB), Olig1 (VEB and PPP) and Olig2 (83).
Expansion of such characterized enhancer sequence col-
lections should contribute in a progressive manner to the
understanding of gene regulatory mechanisms.
Much like oligodendrocytes in the CNS, myelin produc-

tion by Schwann cells in the PNS is controlled largely by
transcriptional mechanisms (84). Additionally, PNS and
CNS myelin share many structural proteins and accord-
ingly, several of the enhancer sequences characterized here
direct expression in both oligodendrocytes and Schwann
cells. TFs SOX10, EGR2 and POU3F1 act in a combina-
torial manner to drive the myelinating transition in
Schwann cells and our analyses also predict the coopera-
tive involvement of Sox and Egr (i.e. Krox) TF family
members in oligodendrocyte myelination. Recent experi-
mental analyses of the Mbp (26,29,55,85) and Plp1 (25)
loci have exposed regulatory architectures composed of
multiple enhancers individually directing expression to
oligodendrocytes and/or Schwann cells. Future joint in-
vestigations of myelin development in the CNS and
PNS should offer unique opportunities to elucidate the
transcriptional mechanisms responsible for directing
commonly expressed genes in these different cell types.
Several groups have performed gene expression

profiling to identify genes that participate in oligodendro-
cyte development and function. We hypothesized that a

core set of differentially expressed genes responsible for
oligodendrocyte myelination would be shared by oligo-
dendrocytes maturing on different temporal programs in
different CNS domains. Consistent with this expectation,
the optic nerve P4–P10 expression comparison dataset
shared 65% of its differentially expressed genes with the
P16 mouse forebrain stage-specific differential expression
profiles and 52% are found in common with the OPC–
EOL oligodendrocyte stage transition. Notably, we
identified a subset of 31 TFs in the IOLEDd set and 829
genes classified as TFs in the other differentially expressed
datasets. While some of these TFs will be responsible for
transcriptional regulation of myelin structural proteins,
others may control gene expression in related processes
such as lipid synthesis and membrane assembly.

The oligodendrocyte myelination TRN model depicts a
gene regulatory system that is coordinated by multiple
CRMs and includes classes of TFs not previously linked
to myelin gene targets. Importantly, the regulatory archi-
tecture defined by the TRN accommodates the emerging
view of oligodendrocyte combinatorial gene regulation,
where specific TFs provide sustained input throughout
the myelination process [e.g. Hmg protein Sox10 (86)]
while additional TFs conditionally exert enhancing and/
or antagonizing transcriptional effects; for example, in
response to environmental influences (87). Further
system complexity is embodied in the TRN class nodes,
such that the same CRM elements may be engaged by
different TF class members resulting in different regula-
tory outcomes (88). Notably, differences in reporter gene
expression programs along with loss of expression at
mature developmental stages for some of the enhancers
investigated in this study implicate further levels of het-
erogeneity in transcriptional mechanisms.

In an effort to achieve specificity in the predicted myelin
gene TRN, we included only those CRM predictions
unique to the positive enhancers and also identified as
statistically over-represented by the CSA+ analyses. If
the enhancer set does not include all myelin gene regula-
tory sequences, the approach will necessarily exclude
contributing CRMs. Nonetheless, the current TRN
model provides a significantly refined view of the TFs
controlling oligodendrocyte maturation and we expect
that progressively enhanced sensitivity will be realized as
new myelin gene-associated regulatory sequences are
identified and characterized.

Validation of the oligodendrocyte TRN model data
using experimental data demonstrated its capacity to
identify bonafide regulatory sequence and associated
TFs. While a naive CRM prediction approach (i.e. pre-
dicting all TFBS combinations in non-coding sequence)
would identify these regulatory sequences, the specificity
and sensitivity achieved in the TRN model data validation
results substantiate our approach. Significantly, the TRN
includes TFs with previously recognized roles in oligo-
dendrocyte maturation and further expands on known
regulatory mechanisms by predicting CRMs with the
capacity to bind factors expressed during oligodendrocyte
development. Our study supplements and extends recently
developed oligodendrocyte gene expression data resources
(9,42,53) and establishes the transition from a gene-centric
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to a network-informed systems view of the regulatory
mechanisms directing oligodendrocyte myelinogenesis.
Further characterization of the TF network controlling
myelin gene expression should help refine our understand-
ing of oligodendrocyte development as well as suggest
novel therapeutic strategies to potentiate their regenera-
tive capacity.
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