J. M. Olefsky, Nuclear Receptor Minireview Series, Journal of Biological Chemistry, vol.276, issue.40, pp.36863-36864, 2001.
DOI : 10.1074/jbc.R100047200

D. J. Mangelsdorf, C. Thummel, M. Beato, P. Herrlich, G. Schütz et al., The nuclear receptor superfamily: The second decade, Cell, vol.83, issue.6, pp.835-839, 1995.
DOI : 10.1016/0092-8674(95)90199-X

D. M. Lonard and B. W. Malley, The Expanding Cosmos of Nuclear Receptor Coactivators, Cell, vol.125, issue.3, pp.411-414, 2006.
DOI : 10.1016/j.cell.2006.04.021

P. Lefebvre, G. Chinetti, J. Fruchart, and B. Staels, Sorting out the roles of PPAR?? in energy metabolism and vascular homeostasis, Journal of Clinical Investigation, vol.116, issue.3, pp.571-580, 2006.
DOI : 10.1172/JCI27989DS1

T. Aoyama, J. M. Peters, N. Iritani, T. Nakajima, K. Furihata et al., Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor alpha (pparalpha, J. Biol. Chem, pp.273-5678, 1998.

D. D. Patel, B. L. Knight, D. Wiggins, S. M. Humphreys, and G. F. Gibbons, Disturbances in the normal regulation of srebp-sensitive genes in ppar alpha-deficient mice, J. Lipid Res, pp.42-328, 2001.

K. Schoonjans, B. Staels, and J. Auwerx, Role of the peroxisome proliferator-activated receptor (ppar) in mediating the effects of fibrates and fatty acids on gene expression, J. Lipid Res, vol.37, pp.907-925, 1996.

S. Kersten, J. Seydoux, J. M. Peters, F. J. Gonzalez, B. Desvergne et al., Peroxisome proliferator???activated receptor ?? mediates the adaptive response to fasting, Journal of Clinical Investigation, vol.103, issue.11, pp.1489-1498, 1999.
DOI : 10.1172/JCI6223

T. Gulick, S. Cresci, T. Caira, D. D. Moore, and D. P. Kelly, The peroxisome proliferatoractivated receptor regulates mitochondrial fatty acid oxidative enzyme gene expression, Proc. Natl. Acad. Sci. U.S.A, pp.91-11012, 1994.

H. Keller, C. Dreyer, J. Medin, A. Mahfoudi, K. Ozato et al., Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptorretinoid x receptor heterodimers, Proc. Natl. Acad. Sci. U.S.A, pp.90-2160, 1993.

C. J. Chou, M. Haluzik, C. Gregory, K. R. Dietz, C. Vinson et al., Wy14,643, a peroxisome proliferator-activated receptor alpha (pparalpha ) agonist, improves hepatic and muscle steatosis and reverses insulin resistance in lipoatrophic a-zip/f-1 mice, J. Biol. Chem, pp.277-24484, 2002.

H. Kim, M. Haluzik, Z. Asghar, D. Yau, J. W. Joseph et al., Peroxisome proliferatoractivated receptor-alpha agonist treatment in a transgenic model of type 2 diabetes reverses the lipotoxic state and improves glucose homeostasis, pp.1770-1778, 2003.

M. Guerre-millo, P. Gervois, E. Raspé, L. Madsen, P. Poulain et al., Peroxisome proliferatoractivated receptor alpha activators improve insulin sensitivity and reduce adiposity, J. Biol. Chem, pp.275-16638, 2000.

F. Lalloyer and B. , Fibrates, Glitazones, and Peroxisome Proliferator-Activated Receptors, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.30, issue.5, pp.894-899, 2010.
DOI : 10.1161/ATVBAHA.108.179689

URL : https://hal.archives-ouvertes.fr/inserm-00475566

B. Staels, Fibrates in CVD: a step towards personalised medicine, The Lancet, vol.375, issue.9729, pp.1847-1848, 2010.
DOI : 10.1016/S0140-6736(10)60758-1

B. Staels, PPAR Agonists and the Metabolic Syndrome, Th??rapie, vol.62, issue.4, pp.319-326, 2007.
DOI : 10.2515/therapie:2007051

J. N. Feige, L. Gelman, L. Michalik, B. Desvergne, and W. Wahli, From molecular action to physiological outputs: Peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions, Progress in Lipid Research, vol.45, issue.2, pp.45-120, 2006.
DOI : 10.1016/j.plipres.2005.12.002

P. Tontonoz, E. Hu, and B. M. Spiegelman, Regulation of adipocyte gene expression and differentiation by peroxisome proliferator activated receptor ??, Current Opinion in Genetics & Development, vol.5, issue.5, pp.571-576, 1995.
DOI : 10.1016/0959-437X(95)80025-5

K. Schoonjans, B. Staels, and J. Auwerx, The peroxisome proliferator activated receptors (PPARs) and their effects on lipid metabolism and adipocyte differentiation, Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, vol.1302, issue.2, pp.93-109, 1996.
DOI : 10.1016/0005-2760(96)00066-5

E. D. Rosen, P. Sarraf, E. Troy, G. Bradwin, K. Moore et al., PPAR?? Is Required for the Differentiation of Adipose Tissue In Vivo and In Vitro, Molecular Cell, vol.4, issue.4, pp.611-617, 1999.
DOI : 10.1016/S1097-2765(00)80211-7

P. Tontonoz, E. Hu, and B. M. Spiegelman, Stimulation of adipogenesis in fibroblasts by PPAR??2, a lipid-activated transcription factor, Cell, vol.79, issue.7, pp.1147-1156, 1994.
DOI : 10.1016/0092-8674(94)90006-X

A. M. Sharma and B. Staels, Review: peroxisome proliferator-activated receptor gamma and adipose tissue--understanding obesity-related changes in regulation of lipid and glucose metabolism, J. Clin. Endocrinol. Metab, pp.92-386, 2007.

I. Bogacka, H. Xie, G. A. Bray, and S. R. Smith, The effect of pioglitazone on peroxisome proliferator-activated receptor-gamma target genes related to lipid storage in vivo, Diabetes Care, pp.27-1660, 2004.

A. L. Hevener, W. He, Y. Barak, J. Le, G. Bandyopadhyay et al., Muscle-specific Pparg deletion causes insulin resistance, Nature Medicine, vol.9, issue.12, pp.1491-1497, 2003.
DOI : 10.1038/nm956

W. He, Y. Barak, A. Hevener, P. Olson, D. Liao et al., Adipose-specific peroxisome proliferator-activated receptor ?? knockout causes insulin resistance in fat and liver but not in muscle, Proceedings of the National Academy of Sciences, vol.100, issue.26, pp.15712-15717, 2003.
DOI : 10.1073/pnas.2536828100

N. Kubota, Y. Terauchi, H. Miki, H. Tamemoto, T. Yamauchi et al., PPAR?? Mediates High-Fat Diet???Induced Adipocyte Hypertrophy and Insulin Resistance, Molecular Cell, vol.4, issue.4, pp.597-609, 1999.
DOI : 10.1016/S1097-2765(00)80210-5

E. Chaput, R. Saladin, M. Silvestre, and A. D. Edgar, Fenofibrate and Rosiglitazone Lower Serum Triglycerides with Opposing Effects on Body Weight, Biochemical and Biophysical Research Communications, vol.271, issue.2, pp.271-445, 2000.
DOI : 10.1006/bbrc.2000.2647

L. C. Pickavance, R. E. Buckingham, and J. P. Wilding, Insulin-sensitizing action of rosiglitazone is enhanced by preventing hyperphagia, Diabetes, Obesity and Metabolism, vol.806, issue.Suppl., pp.171-180, 2001.
DOI : 10.1046/j.1463-1326.2001.00120.x

J. J. Repa and D. J. Mangelsdorf, The Role of Orphan Nuclear Receptors in the Regulation of Cholesterol Homeostasis, Annual Review of Cell and Developmental Biology, vol.16, issue.1, pp.459-481, 2000.
DOI : 10.1146/annurev.cellbio.16.1.459

J. Vaya and H. M. Schipper, Oxysterols, cholesterol homeostasis, and Alzheimer disease, Journal of Neurochemistry, vol.1344, issue.Suppl., pp.1727-1737, 2007.
DOI : 10.1111/j.1471-4159.2007.04689.x

J. R. Schultz, H. Tu, A. Luk, J. J. Repa, J. C. Medina et al., Role of LXRs in control of lipogenesis, Genes & Development, vol.14, issue.22, pp.2831-2838, 2000.
DOI : 10.1101/gad.850400

D. J. Peet, S. D. Turley, W. Ma, B. A. Janowski, J. M. Lobaccaro et al., Cholesterol and Bile Acid Metabolism Are Impaired in Mice Lacking the Nuclear Oxysterol Receptor LXR??, Cell, vol.93, issue.5, pp.693-704, 1998.
DOI : 10.1016/S0092-8674(00)81432-4

B. A. Laffitte, L. C. Chao, J. Li, R. Walczak, S. Hummasti et al., Activation of liver X receptor improves glucose tolerance through coordinate regulation of glucose metabolism in liver and adipose tissue, Proceedings of the National Academy of Sciences, vol.100, issue.9, pp.5419-5424, 2003.
DOI : 10.1073/pnas.0830671100

G. Cao, Y. Liang, C. L. Broderick, B. A. Oldham, T. P. Beyer et al., Antidiabetic Action of a Liver X Receptor Agonist Mediated By Inhibition of Hepatic Gluconeogenesis, Journal of Biological Chemistry, vol.278, issue.2, pp.278-1131, 2003.
DOI : 10.1074/jbc.M210208200

G. Alberti, P. Schuster, D. Parini, U. Feltkamp, M. Diczfalusy et al., Hepatic cholesterol metabolism and resistance to dietary cholesterol in LXR??-deficient mice, Journal of Clinical Investigation, vol.107, issue.5, pp.565-573, 2001.
DOI : 10.1172/JCI9794

B. A. Janowski, M. J. Grogan, S. A. Jones, G. B. Wisely, S. A. Kliewer et al., Structural requirements of ligands for the oxysterol liver x receptors lxralpha and lxrbeta, Proc. Natl. Acad. Sci. U.S.A, pp.96-266, 1999.

B. A. Janowski, P. J. Willy, T. R. Devi, J. R. Falck, and D. J. Mangelsdorf, An oxysterol signalling pathway mediated by the nuclear receptor LXR??, Nature, vol.383, issue.6602, pp.728-731, 1996.
DOI : 10.1038/383728a0

M. Heverin, S. Meaney, A. Brafman, M. Shafir, M. Olin et al., Studies on the Cholesterol-Free Mouse: Strong Activation of LXR-Regulated Hepatic Genes When Replacing Cholesterol With Desmosterol, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.27, issue.10, pp.27-2191, 2007.
DOI : 10.1161/ATVBAHA.107.149823

C. Yang, J. G. Mcdonald, A. Patel, Y. Zhang, M. Umetani et al., Sterol Intermediates from Cholesterol Biosynthetic Pathway as Liver X Receptor Ligands, Journal of Biological Chemistry, vol.281, issue.38, pp.281-27816, 2006.
DOI : 10.1074/jbc.M603781200

K. R. Steffensen, M. Nilsson, G. U. Schuster, T. M. Stulnig, K. Dahlman-wright et al., Gene expression profiling in adipose tissue indicates different transcriptional mechanisms of liver x receptors alpha and beta, respectively, Biochem. Biophys. Res. Commun, pp.310-589, 2003.

J. J. Repa, G. Liang, J. Ou, Y. Bashmakov, J. M. Lobaccaro et al., Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta, Genes & Development, vol.14, issue.22, pp.2819-2830, 2000.
DOI : 10.1101/gad.844900

E. G. Lund, L. B. Peterson, A. D. Adams, M. N. Lam, C. A. Burton et al., Different roles of liver x receptor alpha and beta in lipid metabolism: effects of an alpha-selective and a dual agonist in mice deficient in each subtype, Biochem. Pharmacol, pp.71-453, 2006.

T. Nomiyama and D. Bruemmer, Liver X receptors as therapeutic targets in metabolism and atherosclerosis, Current Atherosclerosis Reports, vol.294, issue.Pt2, pp.88-95, 2008.
DOI : 10.1007/s11883-008-0013-3

H. Duez and B. Staels, Nuclear Receptors Linking Circadian Rhythms and Cardiometabolic Control, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.30, issue.8, pp.1529-1534, 2010.
DOI : 10.1161/ATVBAHA.110.209098

URL : https://hal.archives-ouvertes.fr/inserm-00504147

S. Zvonic, A. A. Ptitsyn, S. A. Conrad, L. K. Scott, Z. E. Floyd et al., Characterization of Peripheral Circadian Clocks in Adipose Tissues, Diabetes, vol.55, issue.4, pp.962-970, 2006.
DOI : 10.2337/diabetes.55.04.06.db05-0873

E. Mühlbauer, S. Wolgast, U. Finckh, D. Peschke, and E. Peschke, Indication of circadian oscillations in the rat pancreas, FEBS Letters, vol.276, issue.1-2, pp.91-96, 2004.
DOI : 10.1016/S0014-5793(04)00322-9

X. Yang, M. Downes, R. T. Yu, A. L. Bookout, W. He et al., Nuclear Receptor Expression Links the Circadian Clock to Metabolism, Cell, vol.126, issue.4, pp.801-810, 2006.
DOI : 10.1016/j.cell.2006.06.050

S. Panda, M. P. Antoch, B. H. Miller, A. I. Su, A. B. Schook et al., Coordinated Transcription of Key Pathways in the Mouse by the Circadian Clock, Cell, vol.109, issue.3, pp.307-320, 2002.
DOI : 10.1016/S0092-8674(02)00722-5

L. Yin, N. Wu, J. C. Curtin, M. Qatanani, N. R. Szwergold et al., Rev-erb??, a Heme Sensor That Coordinates Metabolic and Circadian Pathways, Science, vol.318, issue.5857, pp.1786-1789, 2007.
DOI : 10.1126/science.1150179

E. Raspé, H. Duez, A. Mansén, C. Fontaine, C. Fiévet et al., Identification of Rev-erbalpha as a physiological repressor of apoC-III gene transcription, The Journal of Lipid Research, vol.43, issue.12, pp.43-2172, 2002.
DOI : 10.1194/jlr.M200386-JLR200

N. Vu-dac, S. Chopin-delannoy, P. Gervois, E. Bonnelye, G. Martin et al., The nuclear receptors peroxisome proliferator-activated receptor alpha and rev-erbalpha mediate the species-specific regulation of apolipoprotein a-i expression by fibrates, J. Biol. Chem, pp.273-25713, 1998.

H. Duez, J. N. Van-der-veen, C. Duhem, B. Pourcet, T. Touvier et al., Regulation of Bile Acid Synthesis by the Nuclear Receptor Rev-erb??, Gastroenterology, vol.135, issue.2, pp.689-698, 2008.
DOI : 10.1053/j.gastro.2008.05.035

J. Wang and M. A. Lazar, Bifunctional Role of Rev-erb?? in Adipocyte Differentiation, Molecular and Cellular Biology, vol.28, issue.7, pp.2213-2220, 2008.
DOI : 10.1128/MCB.01608-07

C. Fontaine, G. Dubois, Y. Duguay, T. Helledie, N. Vu-dac et al., The orphan nuclear receptor rev-erbalpha is a peroxisome proliferator-activated receptor (ppar) gamma target gene and promotes ppargamma-induced adipocyte differentiation, J. Biol. Chem, pp.278-37672, 2003.

P. Pircher, P. Chomez, F. Yu, B. Vennström, and L. Larsson, Aberrant expression of myosin isoforms in skeletal muscles from mice lacking the rev-erbaalpha orphan receptor gene, Am. J. Physiol. Regul. Integr. Comp. Physiol, pp.288-482, 2005.

C. Blouet and G. J. Schwartz, Hypothalamic nutrient sensing in the control of energy homeostasis, Behavioural Brain Research, vol.209, issue.1, pp.1-12, 2010.
DOI : 10.1016/j.bbr.2009.12.024

S. Obici, Molecular Targets for Obesity Therapy in the Brain, Endocrinology, vol.150, issue.6, pp.2512-2517, 2009.
DOI : 10.1210/en.2009-0409

C. Sánchez-lasheras, A. C. Könner, and J. C. Brüning, Integrative neurobiology of energy homeostasis-neurocircuits, signals and mediators, Frontiers in Neuroendocrinology, vol.31, issue.1, pp.31-35, 2010.
DOI : 10.1016/j.yfrne.2009.08.002

R. J. Seeley and S. C. Woods, Monitoring of stored and available fuel by the CNS: implications for obesity, Nature Reviews Neuroscience, vol.4, issue.11, pp.901-909, 2003.
DOI : 10.1038/nrn1245

G. J. Morton, D. E. Cummings, D. G. Baskin, G. S. Barsh, and M. W. Schwartz, Central nervous system control of food intake and body weight, Nature, vol.52, issue.7109, pp.289-295, 2006.
DOI : 10.1016/j.physbeh.2004.04.034

S. C. Woods and D. A. , Central Control of Body Weight and Appetite, The Journal of Clinical Endocrinology & Metabolism, vol.93, issue.11_supplement_1, pp.37-50, 2008.
DOI : 10.1210/jc.2008-1630

S. C. Woods, R. J. Seeley, D. J. Porte, and M. W. Schwartz, Signals That Regulate Food Intake and Energy Homeostasis, Science, vol.280, issue.5368, pp.1378-1383, 1998.
DOI : 10.1126/science.280.5368.1378

M. W. Schwartz, S. C. Woods, D. J. Porte, R. J. Seeley, and D. G. Baskin, Central nervous system control of food intake, Nature, vol.404, pp.661-671, 2000.

J. D. Bagdade, E. L. Bierman, and D. J. Porte, The Significance of Basal Insulin Levels in the Evaluation of the Insulin Response to Glucose in Diabetic and Nondiabetic Subjects*, Journal of Clinical Investigation, vol.46, issue.10, pp.46-1549, 1967.
DOI : 10.1172/JCI105646

C. T. Montague, I. S. Farooqi, J. P. Whitehead, M. A. Soos, H. Rau et al., Congenital leptin deficiency is associated with severe early-onset obesity in humans, Nature, vol.387, pp.903-908, 1997.

A. Dua, M. I. Hennes, R. G. Hoffmann, D. L. Maas, G. R. Krakower et al., Leptin: a significant indicator of total body fat but not of visceral fat and insulin insensitivity in African-American women, Diabetes, vol.45, issue.11, pp.1635-1637, 1996.
DOI : 10.2337/diabetes.45.11.1635

H. Masuzaki, Y. Ogawa, N. Isse, N. Satoh, T. Okazaki et al., Human Obese Gene Expression: Adipocyte-Specific Expression and Regional Differences in the Adipose Tissue, Diabetes, vol.44, issue.7, pp.855-858, 1995.
DOI : 10.2337/diab.44.7.855

R. D. Cone, Anatomy and regulation of the central melanocortin system, Nature Neuroscience, vol.274, issue.5, pp.571-578, 2005.
DOI : 10.1038/sj.ijir.3901200

D. Spanswick, M. A. Smith, V. E. Groppi, S. D. Logan, and M. L. Ashford, Leptin inhibits hypothalamic neurons by activation of atp-sensitive potassium channels, Nature, vol.390, pp.521-525, 1997.

M. A. Cowley, J. L. Smart, M. Rubinstein, M. G. Cerdán, S. Diano et al., Leptin activates anorexigenic pomc neurons through a neural network in the arcuate nucleus, Nature, vol.411, issue.6836, pp.480-484, 2001.
DOI : 10.1038/35078085

C. F. Elias, C. Aschkenasi, C. Lee, J. Kelly, R. S. Ahima et al., Leptin Differentially Regulates NPY and POMC Neurons Projecting to the Lateral Hypothalamic Area, Neuron, vol.23, issue.4, pp.775-786, 1999.
DOI : 10.1016/S0896-6273(01)80035-0

M. W. Schwartz, R. J. Seeley, L. A. Campfield, P. Burn, and D. G. Baskin, Identification of targets of leptin action in rat hypothalamus., Journal of Clinical Investigation, vol.98, issue.5, pp.98-1101, 1996.
DOI : 10.1172/JCI118891

J. M. Zigman and J. K. Elmquist, Minireview: From Anorexia to Obesity???The Yin and Yang of Body Weight Control, Endocrinology, vol.144, issue.9, pp.3749-3756, 2003.
DOI : 10.1210/en.2003-0241

L. Plum, B. F. Belgardt, and J. C. Brüning, Central insulin action in energy and glucose homeostasis, Journal of Clinical Investigation, vol.116, issue.7, pp.1761-1766, 2006.
DOI : 10.1172/JCI29063

L. Plum, X. Ma, B. Hampel, N. Balthasar, R. Coppari et al., Enhanced PIP3 signaling in POMC neurons causes KATP channel activation and leads to diet-sensitive obesity, Journal of Clinical Investigation, vol.116, issue.7, pp.1886-1901, 2006.
DOI : 10.1172/JCI27123

A. C. Könner, R. Janoschek, L. Plum, S. D. Jordan, E. Rother et al., Insulin Action in AgRP-Expressing Neurons Is Required for Suppression of Hepatic Glucose Production, Cell Metabolism, vol.5, issue.6, pp.438-449, 2007.
DOI : 10.1016/j.cmet.2007.05.004

T. K. Lam, G. J. Schwartz, and L. Rossetti, Hypothalamic sensing of fatty acids, Nature Neuroscience, vol.267, issue.5, pp.579-584, 2005.
DOI : 10.1073/pnas.94.16.8878

L. Pénicaud, C. Leloup, X. Fioramonti, A. Lorsignol, and A. Benani, Brain glucose sensing: a subtle mechanism, Current Opinion in Clinical Nutrition and Metabolic Care, vol.9, issue.4, pp.458-462, 2006.
DOI : 10.1097/01.mco.0000232908.84483.e0

B. E. Levin, Metabolic sensing neurons and the control of energy homeostasis, Physiology & Behavior, vol.89, issue.4, pp.486-489, 2006.
DOI : 10.1016/j.physbeh.2006.07.003

J. Mayer, GLUCOSTATIC MECHANISM OF REGULATION OF FOOD INTAKE*, Obesity Research, vol.12, issue.5, pp.493-496, 1953.
DOI : 10.1002/j.1550-8528.1996.tb00260.x

S. D. Jordan, A. C. Könner, and J. C. Brüning, Sensing the fuels: glucose and lipid signaling in the CNS controlling energy homeostasis, Cellular and Molecular Life Sciences, vol.293, issue.13, pp.3255-3273, 2010.
DOI : 10.1007/s00018-010-0414-7

M. L. Ashford, P. R. Boden, and J. M. Treherne, Glucose-induced excitation of hypothalamic neurones is mediated by ATP-sensitive K+ channels, Pfl???gers Archiv European Journal of Physiology, vol.282, issue.4, pp.415-479, 1990.
DOI : 10.1007/BF00373626

S. Muroya, T. Yada, S. Shioda, and M. Takigawa, Glucose-sensitive neurons in the rat arcuate nucleus contain neuropeptide Y, Neuroscience Letters, vol.264, issue.1-3, pp.113-116, 1999.
DOI : 10.1016/S0304-3940(99)00185-8

N. Ibrahim, M. A. Bosch, J. L. Smart, J. Qiu, M. Rubinstein et al., Channels, Endocrinology, vol.144, issue.4, pp.1331-1340, 2003.
DOI : 10.1210/en.2002-221033

K. Kurata, K. Fujimoto, T. Sakata, H. Etou, and K. Fukagawa, D-glucose suppression of eating after intra-third ventricle infusion in rat, Physiology & Behavior, vol.37, issue.4, pp.615-620, 1986.
DOI : 10.1016/0031-9384(86)90295-7

J. Panksepp and J. Rossi, d-Glucose infusions into the basal ventromedial hypothalamus and feeding, Behavioural Brain Research, vol.3, issue.3, pp.381-392, 1981.
DOI : 10.1016/0166-4328(81)90006-1

J. D. Davis, D. Wirtshafter, K. E. Asin, and D. Brief, Sustained intracerebroventricular infusion of brain fuels reduces body weight and food intake in rats, Science, vol.212, issue.4490, pp.81-83, 1981.
DOI : 10.1126/science.7193909

H. R. Berthoud and G. J. Mogenson, Ingestive behavior after intracerebral and intracerebroventricular infusions of glucose and 2-deoxy-d-glucose, Am. J. Physiol, pp.233-127, 1977.

R. R. Miselis and A. N. Epstein, Feeding induced by intracerebroventricular 2-deoxy-d- glucose in the rat, Am. J. Physiol, vol.229, pp.1438-1447, 1975.

S. Ritter, T. T. Dinh, and Y. Zhang, Localization of hindbrain glucoreceptive sites controlling food intake and blood glucose, Brain Research, vol.856, issue.1-2, pp.37-47, 2000.
DOI : 10.1016/S0006-8993(99)02327-6

S. Ritter, K. Bugarith, and T. T. Dinh, Immunotoxic destruction of distinct catecholamine subgroups produces selective impairment of glucoregulatory responses and neuronal activation, The Journal of Comparative Neurology, vol.48, issue.2, pp.432-197, 2001.
DOI : 10.1002/cne.1097

B. Thorens, Glucose sensing and the pathogenesis of obesity and type 2 diabetes, International Journal of Obesity, vol.127, issue.6, pp.62-71, 2008.
DOI : 10.1152/jn.00697.2005

M. Claret, M. A. Smith, R. L. Batterham, C. Selman, A. I. Choudhury et al., AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons, Journal of Clinical Investigation, vol.117, issue.8, pp.2325-2336, 2007.
DOI : 10.1172/JCI31516DS1

Y. Jo, Y. Su, R. Gutierrez-juarez, and S. J. Chua, Oleic Acid Directly Regulates POMC Neuron Excitability in the Hypothalamus, Journal of Neurophysiology, vol.101, issue.5, pp.2305-2316, 2009.
DOI : 10.1152/jn.91294.2008

C. , L. Foll, B. G. Irani, C. Magnan, A. A. Dunn-meynell et al., Characteristics and mechanisms of hypothalamic neuronal fatty acid sensing, Am. J. Physiol. Regul. Integr

M. López and A. , Brain lipogenesis and regulation of energy metabolism, Current Opinion in Clinical Nutrition and Metabolic Care, vol.11, issue.4, pp.483-490, 2008.
DOI : 10.1097/MCO.0b013e328302f3d8

M. López, C. J. Lelliott, and A. Vidal-puig, Hypothalamic fatty acid metabolism: A housekeeping pathway that regulates food intake, BioEssays, vol.27, issue.3, pp.248-261, 2007.
DOI : 10.1002/bies.20539

R. Wang, C. Cruciani-guglielmacci, S. Migrenne, C. Magnan, V. E. Cotero et al., Effects of Oleic Acid on Distinct Populations of Neurons in the Hypothalamic Arcuate Nucleus Are Dependent on Extracellular Glucose Levels, Journal of Neurophysiology, vol.95, issue.3, pp.95-1491, 2006.
DOI : 10.1152/jn.00697.2005

URL : https://hal.archives-ouvertes.fr/hal-00091702

W. M. Sperry, H. Waelshand, and V. A. Stoynanoff, Lipid metabolism in brain and other tissues of the rat, J. Biol.Chem, vol.135, pp.281-290, 1940.

K. Qi, M. Hall, and R. J. Deckelbaum, Long-chain polyunsaturated fatty acid accretion in brain, Current Opinion in Clinical Nutrition and Metabolic Care, vol.5, issue.2, pp.133-138, 2002.
DOI : 10.1097/00075197-200203000-00003

J. Edmond, Essential Polyunsaturated Fatty Acids and the Barrier to the Brain: The Components of a Model for Transport, Journal of Molecular Neuroscience, vol.16, issue.2-3, pp.181-93, 2001.
DOI : 10.1385/JMN:16:2-3:181

A. Stahl, R. E. Gimeno, L. A. Tartaglia, and H. F. Lodish, Fatty acid transport proteins: a current view of a growing family, Trends in Endocrinology and Metabolism, vol.12, issue.6, pp.12-266, 2001.
DOI : 10.1016/S1043-2760(01)00427-1

S. I. Rapoport, M. C. Chang, and A. A. Spector, Delivery and turnover of plasma-derived essential pufas in mammalian brain, J. Lipid Res, vol.42, pp.678-685, 2001.

M. López, S. Tovar, M. J. Vázquez, R. Nogueiras, R. Señarís et al., Sensing the fat: Fatty acid metabolism in the hypothalamus and the melanocortin system, Peptides, vol.26, issue.10, pp.1753-1758, 2005.
DOI : 10.1016/j.peptides.2004.11.025

E. Kim, I. Miller, L. E. Landree, F. F. Borisy-rudin, P. Brown et al., Expression of FAS within hypothalamic neurons: a model for decreased food intake after C75 treatment, American Journal of Physiology - Endocrinology And Metabolism, vol.283, issue.5, pp.867-79, 2002.
DOI : 10.1152/ajpendo.00178.2002

A. Sorensen, M. T. Travers, R. G. Vernon, N. T. Price, and M. C. Barber, Localization of messenger RNAs encoding enzymes associated with malonyl-CoA metabolism in mouse brain, Gene Expression Patterns, vol.1, issue.3-4, pp.167-173, 2002.
DOI : 10.1016/S1567-133X(02)00013-3

T. Shimokawa, M. V. Kumar, and M. D. Lane, Effect of a fatty acid synthase inhibitor on food intake and expression of hypothalamic neuropeptides, Proceedings of the National Academy of Sciences, vol.99, issue.1, pp.99-66, 2002.
DOI : 10.1073/pnas.012606199

T. M. Loftus, D. E. Jaworsky, G. L. Frehywot, C. A. Townsend, G. V. Ronnett et al., Reduced Food Intake and Body Weight in Mice Treated with Fatty Acid Synthase Inhibitors, Science, vol.288, issue.5475, pp.2379-2381, 2000.
DOI : 10.1126/science.288.5475.2379

M. D. Lane, M. Wolfgang, S. Cha, and Y. Dai, Regulation of food intake and energy expenditure by hypothalamic malonyl-CoA, International Journal of Obesity, vol.102, issue.4, pp.49-54, 2008.
DOI : 10.1111/j.1471-4159.2008.05255.x

S. Gao and M. D. Lane, Effect of the anorectic fatty acid synthase inhibitor C75 on neuronal activity in the hypothalamus and brainstem, Proceedings of the National Academy of Sciences, vol.100, issue.10, pp.5628-5633, 2003.
DOI : 10.1073/pnas.1031698100

M. López, C. J. Lelliott, S. Tovar, W. Kimber, R. Gallego et al., Tamoxifen-Induced Anorexia Is Associated With Fatty Acid Synthase Inhibition in the Ventromedial Nucleus of the Hypothalamus and Accumulation of Malonyl-CoA, Diabetes, vol.55, issue.5, pp.1327-1336, 2006.
DOI : 10.2337/db05-1356

Z. Hu, S. H. Cha, S. Chohnan, and M. D. Lane, Hypothalamic malonyl-CoA as a mediator of feeding behavior, Proceedings of the National Academy of Sciences, vol.100, issue.22, pp.12624-12629, 2003.
DOI : 10.1073/pnas.1834402100

Y. Minokoshi, T. Alquier, N. Furukawa, Y. Kim, A. Lee et al., AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus, Nature, vol.428, issue.6982, pp.569-574, 2004.
DOI : 10.1038/nature02440

M. López, R. Lage, A. K. Saha, D. Pérez-tilve, M. J. Vázquez et al., Hypothalamic Fatty Acid Metabolism Mediates the Orexigenic Action of Ghrelin, Cell Metabolism, vol.7, issue.5, pp.389-399, 2008.
DOI : 10.1016/j.cmet.2008.03.006

N. Kubota, W. Yano, T. Kubota, T. Yamauchi, S. Itoh et al., Adiponectin Stimulates AMP-Activated Protein Kinase in the Hypothalamus and Increases Food Intake, Cell Metabolism, vol.6, issue.1, pp.55-68, 2007.
DOI : 10.1016/j.cmet.2007.06.003

B. Kola, E. Hubina, S. A. Tucci, T. C. Kirkham, E. A. Garcia et al., Cannabinoids and Ghrelin Have Both Central and Peripheral Metabolic and Cardiac Effects via AMP-activated Protein Kinase, Journal of Biological Chemistry, vol.280, issue.26, pp.25196-25201, 2005.
DOI : 10.1074/jbc.C500175200

Z. B. Andrews, Z. Liu, N. Walllingford, D. M. Erion, E. Borok et al., UCP2 mediates ghrelin???s action on NPY/AgRP neurons by lowering free radicals, Nature, vol.13, issue.7206, pp.846-851, 2008.
DOI : 10.1038/nature07181

U. Andersson, K. Filipsson, C. R. Abbott, A. Woods, K. Smith et al., AMP-activated Protein Kinase Plays a Role in the Control of Food Intake, Journal of Biological Chemistry, vol.279, issue.13, pp.279-12005, 2004.
DOI : 10.1074/jbc.C300557200

M. J. Wolfgang, S. H. Cha, A. Sidhaye, S. Chohnan, G. Cline et al., Regulation of hypothalamic malonyl-CoA by central glucose and leptin, Proceedings of the National Academy of Sciences, vol.104, issue.49, pp.19285-19290, 2007.
DOI : 10.1073/pnas.0709778104

S. Seo, S. Ju, H. Chung, D. Lee, and S. Park, Acute Effects of Glucagon-Like Peptide-1 on Hypothalamic Neuropeptide and AMP Activated Kinase Expression in Fasted Rats, Endocrine Journal, vol.55, issue.5, pp.55-867, 2008.
DOI : 10.1507/endocrj.K08E-091

C. Namkoong, M. S. Kim, P. G. Jang, S. M. Han, H. S. Park et al., Enhanced Hypothalamic AMP-Activated Protein Kinase Activity Contributes to Hyperphagia in Diabetic Rats, Diabetes, vol.54, issue.1, pp.63-68, 2005.
DOI : 10.2337/diabetes.54.1.63

B. M. Spiegelman and J. S. Flier, Obesity and the Regulation of Energy Balance, Cell, vol.104, issue.4, pp.531-543, 2001.
DOI : 10.1016/S0092-8674(01)00240-9

M. Palkovits, Interconnections between the Neuroendocrine Hypothalamus and the Central Autonomic System, Frontiers in Neuroendocrinology, vol.20, issue.4, pp.270-295, 1998.
DOI : 10.1006/frne.1999.0186

L. W. Swanson and P. E. Sawchenko, Paraventricular Nucleus*, Neuroendocrinology, vol.31, pp.410-417, 1980.
DOI : 10.1016/B978-012373947-6.00291-9

H. Kawano and S. Masuko, ??-endorphin-, adrenocorticotrophic hormone- and neuropeptide y-containing projection fibers from the arcuate hypothalamic nucleus make synaptic contacts on to nucleus preopticus medianus neurons projecting to the paraventricular hypothalamic nucleus in the rat, Neuroscience, vol.98, issue.3, pp.555-565, 2000.
DOI : 10.1016/S0306-4522(00)00134-2

M. A. Cowley, N. Pronchuk, W. Fan, D. M. Dinulescu, W. F. Colmers et al., Integration of NPY, AGRP, and Melanocortin Signals in the Hypothalamic Paraventricular Nucleus, Neuron, vol.24, issue.1, pp.155-163, 1999.
DOI : 10.1016/S0896-6273(00)80829-6

C. B. Saper, J. Lu, T. C. Chou, and J. Gooley, The hypothalamic integrator for circadian rhythms, Trends in Neurosciences, vol.28, issue.3, pp.152-157, 2005.
DOI : 10.1016/j.tins.2004.12.009

H. Münzberg, Differential leptin access into the brain ??? A hierarchical organization of hypothalamic leptin target sites?, Physiology & Behavior, vol.94, issue.5, pp.664-669, 2008.
DOI : 10.1016/j.physbeh.2008.04.020

T. Sakurai, A. Amemiya, M. Ishii, I. Matsuzaki, R. M. Chemelli et al., Orexins and Orexin Receptors: A Family of Hypothalamic Neuropeptides and G Protein-Coupled Receptors that Regulate Feeding Behavior, Cell, vol.92, issue.4, pp.573-585, 1998.
DOI : 10.1016/S0092-8674(00)80949-6

G. Segal-lieberman, R. L. Bradley, E. Kokkotou, M. Carlson, D. J. Trombly et al., Melanin-concentrating hormone is a critical mediator of the leptin-deficient phenotype, Proceedings of the National Academy of Sciences, vol.100, issue.17, pp.10085-10090, 2003.
DOI : 10.1073/pnas.1633636100

D. S. Ludwig, N. A. Tritos, J. W. Mastaitis, R. Kulkarni, E. Kokkotou et al., Melanin-concentrating hormone overexpression in transgenic mice leads to obesity and insulin resistance, Journal of Clinical Investigation, vol.107, issue.3, pp.379-386, 2001.
DOI : 10.1172/JCI10660

C. R. Abbott, A. R. Kennedy, A. M. Wren, M. Rossi, K. G. Murphy et al., Identification of Hypothalamic Nuclei Involved in the Orexigenic Effect of Melanin-Concentrating Hormone, Endocrinology, vol.144, issue.9, pp.3943-3949, 2003.
DOI : 10.1210/en.2003-0149

M. Van-den-top, K. Lee, A. D. Whyment, A. M. Blanks, and D. Spanswick, Orexigen-sensitive NPY/AgRP pacemaker neurons in the hypothalamic arcuate nucleus, Nature Neuroscience, vol.325, issue.5, pp.493-494, 2004.
DOI : 10.1016/0306-4522(82)90044-6

S. Muroya, H. Funahashi, A. Yamanaka, D. Kohno, K. Uramura et al., Orexins (hypocretins) directly interact with neuropeptide Y, POMC and glucose-responsive neurons to regulate Ca2+ signaling in a reciprocal manner to leptin: orexigenic neuronal pathways in the mediobasal hypothalamus, European Journal of Neuroscience, vol.269, issue.6, pp.1524-1534, 2004.
DOI : 10.1016/S0031-9384(02)00843-0

X. Ma, L. Zubcevic, J. C. Brüning, F. M. Ashcroft, and D. Burdakov, Electrical Inhibition of Identified Anorexigenic POMC Neurons by Orexin/Hypocretin, Journal of Neuroscience, vol.27, issue.7, pp.27-1529, 2007.
DOI : 10.1523/JNEUROSCI.3583-06.2007

H. Zheng, L. M. Patterson, C. Morrison, B. W. Banfield, J. A. Randall et al., Melanin concentrating hormone innervation of caudal brainstem areas involved in gastrointestinal functions and energy balance, Neuroscience, vol.135, issue.2, pp.611-625, 2005.
DOI : 10.1016/j.neuroscience.2005.06.055

H. Berthoud, Multiple neural systems controlling food intake and body weight, Neuroscience & Biobehavioral Reviews, vol.26, issue.4, pp.393-428, 2002.
DOI : 10.1016/S0149-7634(02)00014-3

K. Ohno and T. Sakurai, Orexin neuronal circuitry: Role in the regulation of sleep and wakefulness, Frontiers in Neuroendocrinology, vol.29, issue.1, pp.70-87, 2008.
DOI : 10.1016/j.yfrne.2007.08.001

M. R. Castillo, K. J. Hochstetler, R. J. Tavernier, D. M. Greene, and A. Bult-ito, Entrainment of the master circadian clock by scheduled feeding, AJP: Regulatory, Integrative and Comparative Physiology, vol.287, issue.3, pp.287-551, 2004.
DOI : 10.1152/ajpregu.00247.2004

F. W. Turek, C. Joshu, A. Kohsaka, E. Lin, G. Ivanova et al., Obesity and Metabolic Syndrome in Circadian Clock Mutant Mice, Science, vol.308, issue.5724, pp.1043-1045, 2005.
DOI : 10.1126/science.1108750

R. D. Rudic, P. Mcnamara, A. Curtis, R. C. Boston, S. Panda et al., BMAL1 and CLOCK, Two Essential Components of the Circadian Clock, Are Involved in Glucose Homeostasis, PLoS Biology, vol.414, issue.11, p.377, 2004.
DOI : 10.1371/journal.pbio.0020377.t003

E. M. Scott, A. M. Carter, and P. J. Grant, Association between polymorphisms in the Clock gene, obesity and the metabolic syndrome in man, International Journal of Obesity, vol.15, issue.4, pp.658-662, 2008.
DOI : 10.2337/diabetes.42.4.514

F. Kreier, Y. S. Kap, T. C. Mettenleiter, C. Van-heijningen, J. Van-der et al., Tracing from Fat Tissue, Liver, and Pancreas: A Neuroanatomical Framework for the Role of the Brain in Type 2 Diabetes, Endocrinology, vol.147, issue.3, pp.1140-1147, 2006.
DOI : 10.1210/en.2005-0667

C. K. Song, L. W. Enquist, and T. J. Bartness, New developments in tracing neural circuits with herpesviruses, Virus Research, vol.111, issue.2, pp.235-249, 2005.
DOI : 10.1016/j.virusres.2005.04.012

A. Pocai, S. Obici, G. J. Schwartz, and L. Rossetti, A brain-liver circuit regulates glucose homeostasis, Cell Metabolism, vol.1, issue.1, pp.53-61, 2005.
DOI : 10.1016/j.cmet.2004.11.001

L. W. Swanson and P. E. Sawchenko, Hypothalamic Integration: Organization of the Paraventricular and Supraoptic Nuclei, Annual Review of Neuroscience, vol.6, issue.1, pp.269-324, 1983.
DOI : 10.1146/annurev.ne.06.030183.001413

C. Broberger and T. Hökfelt, Hypothalamic and vagal neuropeptide circuitries regulating food intake, Physiology & Behavior, vol.74, issue.4-5, pp.669-682, 2001.
DOI : 10.1016/S0031-9384(01)00611-4

M. Bamshad, V. T. Aoki, M. G. Adkison, W. S. Warren, and T. J. Bartness, Central nervous system origins of the sympathetic nervous system outflow to white adipose tissue, Am. J. Physiol, pp.275-291, 1998.

R. M. Buijs, S. E. La-fleur, J. Wortel, C. Van-heyningen, L. Zuiddam et al., The suprachiasmatic nucleus balances sympathetic and parasympathetic output to peripheral organs through separate preautonomic neurons, The Journal of Comparative Neurology, vol.20, issue.1, pp.464-500, 2003.
DOI : 10.1002/cne.10765

C. Yi, S. E. La-fleur, E. Fliers, and A. Kalsbeek, The role of the autonomic nervous liver innervation in the control of energy metabolism, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1802, issue.4, pp.416-431, 2010.
DOI : 10.1016/j.bbadis.2010.01.006

URL : https://hal.archives-ouvertes.fr/hal-00566736

S. Moreno, S. Farioli-vecchioli, and M. P. Cerù, Immunolocalization of peroxisome proliferator-activated receptors and retinoid x receptors in the adult rat CNS, Neuroscience, vol.123, issue.1, pp.131-145, 2004.
DOI : 10.1016/j.neuroscience.2003.08.064

A. L. Bookout, Y. Jeong, M. Downes, R. T. Yu, R. M. Evans et al., Anatomical Profiling of Nuclear Receptor Expression Reveals??a Hierarchical Transcriptional Network, Cell, vol.126, issue.4, pp.789-799, 2006.
DOI : 10.1016/j.cell.2006.06.049

F. Gofflot, N. Chartoire, L. Vasseur, S. Heikkinen, D. Dembele et al., Systematic Gene Expression Mapping Clusters Nuclear Receptors According to Their Function in the Brain, Cell, vol.131, issue.2, pp.405-418, 2007.
DOI : 10.1016/j.cell.2007.09.012

URL : https://hal.archives-ouvertes.fr/hal-00187825

T. A. Roepke, Oestrogen Modulates Hypothalamic Control of Energy Homeostasis Through Multiple Mechanisms, Journal of Neuroendocrinology, vol.281, issue.Suppl, pp.141-150, 2009.
DOI : 10.1111/j.1365-2826.2008.01814.x

N. M. Martin, K. L. Smith, S. R. Bloom, and C. J. Small, Interactions between the melanocortin system and the hypothalamo???pituitary???thyroid axis, Peptides, vol.27, issue.2, pp.333-339, 2006.
DOI : 10.1016/j.peptides.2005.01.028

J. G. Tasker, Rapid Glucocorticoid Actions in the Hypothalamus as a Mechanism of Homeostatic Integration, Obesity, vol.127, pp.259-265, 2006.
DOI : 10.1038/oby.2006.320

M. T. Heneka and G. E. Landreth, PPARs in the brain, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1771, issue.8, pp.1031-1045, 2007.
DOI : 10.1016/j.bbalip.2007.04.016

L. Cristiano, A. Cimini, S. Moreno, A. M. Ragnelli, and M. P. Cerù, Peroxisome Proliferator-Activated Receptors (PPARs) and related transcription factors in differentiating astrocyte cultures, Neuroscience, vol.131, issue.3, pp.577-587, 2005.
DOI : 10.1016/j.neuroscience.2004.11.008

C. Knauf, J. Rieusset, M. Foretz, P. D. Cani, M. Uldry et al., Peroxisome Proliferator-Activated Receptor-??-Null Mice Have Increased White Adipose Tissue Glucose Utilization, GLUT4, and Fat Mass: Role in Liver and Brain, Endocrinology, vol.147, issue.9, pp.4067-4078, 2006.
DOI : 10.1210/en.2005-1536

M. V. Chakravarthy, Y. Zhu, M. López, L. Yin, D. F. Wozniak et al., Brain fatty acid synthase activates PPAR?? to maintain energy homeostasis, Journal of Clinical Investigation, vol.117, issue.9, pp.2539-2552, 2007.
DOI : 10.1172/JCI31183

D. A. Sarruf, F. Yu, H. T. Nguyen, D. L. Williams, R. L. Printz et al., Expression of Peroxisome Proliferator-Activated Receptor-?? in Key Neuronal Subsets Regulating Glucose Metabolism and Energy Homeostasis, Endocrinology, vol.150, issue.2, pp.707-712, 2009.
DOI : 10.1210/en.2008-0899

R. G. Parton and J. F. Hancock, Lipid rafts and plasma membrane microorganization: insights from Ras, Trends in Cell Biology, vol.14, issue.3, pp.141-147, 2004.
DOI : 10.1016/j.tcb.2004.02.001

M. G. Martin, S. Perga, L. Trovò, A. Rasola, P. Holm et al., Cholesterol Loss Enhances TrkB Signaling in Hippocampal Neurons Aging in Vitro, Cholesterol loss enhances trkb signaling in hippocampal neurons aging in vitro, pp.2101-2112, 2008.
DOI : 10.1091/mbc.E07-09-0897

K. Simons and D. Toomre, Lipid rafts and signal transduction, Nature Reviews Molecular Cell Biology, vol.1, issue.1, pp.31-39, 2000.
DOI : 10.1038/35036052

J. M. Dietschy and S. D. Turley, Cholesterol metabolism in the brain, Current Opinion in Lipidology, vol.12, issue.2, pp.105-112, 2001.
DOI : 10.1097/00041433-200104000-00003

E. E. Benarroch, Brain cholesterol metabolism and neurologic disease, Neurology, vol.71, issue.17, pp.1368-1373, 2008.
DOI : 10.1212/01.wnl.0000333215.93440.36

G. Cao, K. R. Bales, R. B. Demattos, and S. M. Paul, Liver X Receptor-Mediated Gene Regulation and Cholesterol Homeostasis in Brain: Relevance to Alzheimers Disease Therapeutics, Current Alzheimer Research, vol.4, issue.2, pp.179-184, 2007.
DOI : 10.2174/156720507780362173

K. Abildayeva, P. J. Jansen, V. Hirsch-reinshagen, V. W. Bloks, A. H. Bakker et al., 24(S)-Hydroxycholesterol Participates in a Liver X Receptor-controlled Pathway in Astrocytes That Regulates Apolipoprotein E-mediated Cholesterol Efflux, Journal of Biological Chemistry, vol.281, issue.18, pp.24-281, 2006.
DOI : 10.1074/jbc.M601019200

D. Perez-tilve, S. M. Hofmann, J. Basford, R. Nogueiras, P. T. Pfluger et al., Melanocortin signaling in the CNS directly regulates circulating cholesterol, Melanocortin signaling in the cns directly regulates circulating cholesterol, pp.877-882, 2010.
DOI : 10.1038/nn.2569

N. Preitner, F. Damiola, L. Lopez-molina, J. Zakany, D. Duboule et al., The Orphan Nuclear Receptor REV-ERB?? Controls Circadian Transcription within the Positive Limb of the Mammalian Circadian Oscillator, Cell, vol.110, issue.2, pp.251-260, 2002.
DOI : 10.1016/S0092-8674(02)00825-5