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HNF1a inhibition triggers epithelial-mesenchymal
transition in human liver cancer cell lines
Laura Pelletier1,2, Sandra Rebouissou1,2, Danijela Vignjevic3, Paulette Bioulac-Sage4,5 and Jessica Zucman-Rossi1,2,6*

Abstract

Background: Hepatocyte Nuclear Factor 1a (HNF1a) is an atypical homeodomain-containing transcription factor

that transactivates liver-specific genes including albumin, a-1-antitrypsin and a- and b-fibrinogen. Biallelic

inactivating mutations of HNF1A have been frequently identified in hepatocellular adenomas (HCA), rare benign

liver tumors usually developed in women under oral contraceptives, and in rare cases of hepatocellular carcinomas

developed in non-cirrhotic liver. HNF1a-mutated HCA (H-HCA) are characterized by a marked steatosis and show

activation of glycolysis, lipogenesis, translational machinery and mTOR pathway. We studied the consequences of

HNF1a silencing in hepatic cell lines, HepG2 and Hep3B and we reproduced most of the deregulations identified

in H-HCA.

Methods: We transfected hepatoma cell lines HepG2 and Hep3B with siRNA targeting HNF1a and obtained a

strong inhibition of HNF1a expression. We then looked at the phenotypic changes by microscopy and studied

changes in gene expression using qRT-PCR and Western Blot.

Results: Hepatocytes transfected with HNF1a siRNA underwent severe phenotypic changes with loss of cell-cell

contacts and development of migration structures. In HNF1a-inhibited cells, hepatocyte and epithelial markers

were diminished and mesenchymal markers were over-expressed. This epithelial-mesenchymal transition (EMT) was

related to the up regulation of several EMT transcription factors, in particular SNAIL and SLUG. We also found an

overexpression of TGFb1, an EMT initiator, in both cells transfected with HNF1a siRNA and H-HCA. Moreover,

TGFb1 expression is strongly correlated to HNF1a expression in cell models, suggesting regulation of TGFb1

expression by HNF1a.

Conclusion: Our results suggest that HNF1a is not only important for hepatocyte differentiation, but has also a

role in the maintenance of epithelial phenotype in hepatocytes.

Keywords: Hepatocyte Nuclear Factor 1a?α?, hepatocellular adenoma, tumor suppressor gene, benign tumor,

siRNA, EMT, TGFb?β?1

Background

Hepatocyte Nuclear Factor 1a (HNF1a) is an atypical

homeodomain-containing protein that was originally

identified as a hepatocyte-specific transcriptional regula-

tor [1]. In vivo and in vitro models of HNF1a inactiva-

tion demonstrated that this transcription factor plays an

important role in hepatocyte differentiation and is also

crucial for metabolic regulation and liver function [2-5].

Biallelic mutations of HNF1A have been identified in

about 35% of hepatocellular adenomas (HCA), rare

benign liver tumors usually occurring in young women

under oral contraceptives, and in rare cases of hepato-

cellular carcinomas developed in non-cirrhotic liver

[6-8]. Recently, HCA has been described as a heteroge-

neous disease including at least three main subtypes of

tumors in which pathological phenotypes are closely

related with specific genetic alterations and clinical fea-

tures [8-12]. HNF1a-mutated HCA (H-HCA) are phe-

notypically characterized by a marked steatosis [7-9]. In

90% of the cases, H-HCA are sporadic lesions displaying

somatic mutations. However, in rare families with an

inherited mutation in one allele of HNF1A, MODY3

(Maturity Onset Diabetes of the Young type 3) patients
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are predisposed to develop familial liver adenomatosis

that is defined by the presence of more than 10 HCA

nodules in the liver [7,13-16]. Thus, HNF1A meets the

genetic criteria of a tumor suppressor gene [7].

To gain insight into the tumorigenic mechanisms

related to HNF1a inactivation, we performed a tran-

scriptomic analysis of H-HCA and identified pathways

aberrantly activated in these tumors [17,18]. Previously,

we have shown an aberrant activation of glycolysis and

lipogenesis, independent of SREBP-1 and CHREBP, that

could explain the steatotic phenotype of these tumors.

We also identified an activation of mTOR pathway and

of the translational machinery, along with an overex-

pression of several growth factors and oncogenes. We

assessed in vitro the role of HNF1a in the observed

deregulations by inhibiting its endogenous expression in

human liver cancer cell lines using small interfering

RNA. Here, we analyse the phenotypic consequences of

HNF1a inhibition in two hepatic cell lines, HepG2 and

Hep3B.

Methods

Cell lines and siRNA transfection

HepG2 and Hep3B cells were obtained from the Ameri-

can Type Culture Collection and were cultured in Dul-

becco’s Modified Eagle Medium with high glucose

(Invitrogen) supplemented with 10% fetal calf serum,

penicillin 100 IU/ml and streptomycin 100 μg/ml.

SiRNA transfections were performed, as decribed pre-

viously [17], according to the manufacturer’s protocol,

in 6 well-plates using the lipofectamine RNAiMax

reagent (Invitrogen) with siRNA duplexes targeting

HNF1A (NM_000545) (Ambion) with sequence: GGU-

CUUCACCUCAGACACUtt (exon 8-9 3544). Block-iT

Alexa Fluor Red Fluorescent Oligo siRNA (Invitrogen)

was used as a double-stranded RNA negative control. In

most experiments 10 nM of each siRNA was transfected

in triplicate, except for dose-effect studies, where several

siRNA concentrations were tested (0, 0.01, 0.05, 0.1, 0.2,

0.4, 0.6, 0.8, 1, 5, 10 and 50 nM) in order to obtain dif-

ferent levels of HNF1A expression. Cells were prepared

for analyses either 3 or 7 days after transfection for

HepG2 cells but only after 3 days for Hep3B cells,

because HNF1a inhibition could not be maintained

until 7 days in this cell line. The absence of cross-reac-

tion of the HNF1a-siRNA duplexes with the HNF1B

sequence was checked by comparing the expression

level of HNF1A transcript in cells transfected with

siRNA targeting HNF1A with the control siRNA-trans-

fected cells.

Quantitative RT-PCR

Quantitative RT-PCR (qRT-PCR) was performed in

duplicate as previously described [19] using pre-

designed primers and probe sets from Applied Biosys-

tems (Additional file 1). Ribosomal 18S (R18S) was used

for the normalization of expression data and the 2-∆∆CT

method was applied. The final results were expressed as

the fold differences of target gene expression in HNF1a

siRNA compared with control siRNA in cell lines or in

tested samples compared with the mean expression

value of normal tissues for tumor analysis.

Western blotting

Western blot analyses were performed as previously

described [18] using the primary antibodies specific for

E-Cadherin (Cell Signaling Technology, diluted 1:100),

HNF1a, Vimentin and N-Cadherin (Santa Cruz Biotech-

nology, 1:500, 1:200 and 1:200); Polyclonal rabbit anti-

actin (Sigma, 1:3000) was used as loading control.

Immunofluorescence

Cells were grown on slides for 3 or 7 days and fixed

with 4% formaldehyde in phosphate-buffered saline

(PBS) 1X for 15 min. After washing with PBS, cells were

permeabilized with 0.1% triton for 15 mn, washed with

PBS, then, cells were incubated with primary antibody

overnight. After three washes with PBS, cells were incu-

bated with secondary antibodies for 1 h. The slides were

washed, then mounted with VECTASHIELD® Mounting

Medium with DAPI (Vector Laboratories). Immuno-

fluorescence images were obtained using a Carl Zeiss

Axiophot microscope. All images within one experiment

were collected using 63x objective and the same expo-

sure time. The antibodies used were: rabbit anti-E-cad-

herin (Santa Cruz Biotechnology, 1:100), rabbit anti-N-

cadherin (Santa Cruz Biotechnology, 1:100), rabbit anti-

Fibronectin (Sigma, 1:100), and the secondary antibodies

were anti-mouse and anti-rabbit (GE Healthcare, 1:100,

1:100). Actin was stained by incubating cells for 1 h

with Alexa Fluor 488 phalloidin (Molecular Probes,

1:300).

Migration assays

Boyden chamber migration assays were performed 72 h

after transfection using 24-well migration inserts (BD

Biosciences). 1,5 × 105 cells were plated in the upper

chamber of the migration insert and they were left to

migrate towards medium with serum for 16 h. Cells on

the upper side of the insert membrane were removed

with a cotton swab, whereas cells that had migrated to

the underside of the insert membrane were fixed with

4% formaldehyde in phosphate-buffered saline (PBS) for

15 min. After washing with PBS, cells were permeabi-

lized with 0.1% triton for 15 min, washed with PBS, and

stained with hematoxylin. Cells were counted under

300x magnified field, 10 fields were counted for each

condition and each condition was done in triplicates.
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Wound-healing assays

HepG2 cells were seeded and transfected in 6-well

plates at the density of 5 × 105 cells per well. After 48

h, a scratch was made through confluent cells with a

pipette tip and cells were washed with PBS, and medium

without serum was added. Picture&+s were taken just

after the scratch was made and at 24, 48 and 72 h after-

wards, to monitor cell movements. The experiment was

reproduced three times.

Time lapse microscopy

HepG2 cells transfected with Control or HNF1a siRNA

for 3 days in glass-bottom dishes were imaged using 20x

objective and Biostation IM at Nikon Imaging Centre at

Institut Curie, Paris. Cells were incubated overnight

(during 16-18 h) in the Biostation IM and Images were

collected every 10 minutes during 16-18 h. The experi-

ment was repeated three times. Data were analysed

using MetaMorph image analysis software.

Patients and samples

Liver tissues were collected in nine French surgery

departments from 1992 to 2004. They were immediately

frozen in liquid nitrogen and stored at -80°C until used

for molecular studies. The whole series of HCA used for

the different molecular analyses included 35 H-HCA

previously described [8,9,17], and 23 normal livers taken

from patients resected with primary liver tumors devel-

oped in the absence of cirrhosis. All the patients were

recruited in accordance with French law and institu-

tional ethical guidelines. The study was approved by the

ethical committee of Hôpital Saint-Louis, Paris, France.

Statistical analysis

All the values reported are mean ± SD. Statistical ana-

lyses were performed using GraphPad Prism version 5

software and significance was determined using either

the nonparametric Mann-Whitney test for unpaired

data or the two-tailed t-test. Difference was considered

significant at P < 0.05. In all graphs, *, **, *** indicate

difference between groups at P < 0.05, 0.01 and 0.001,

respectively.

Results

HNF1a silencing impairs epithelial phenotype of

hepatocyte tumor cells HepG2 and Hep3B

HepG2 et Hep3B cell lines were transfected with siRNA

targeting exon 8-9 of HNF1A or control siRNA, as pre-

viously described [17]. HNF1A mRNA inhibition

reached 98% and was maximal at 72 h after transfection,

as well as the expression of its transactivated gene

FABP1 [17]. Silencing of HNF1a lasted until 7 days in

HepG2, but was not maintained beyond 3 days in

Hep3B. Expression of HNF1a homologue, HNF1b, was

not diminished by HNF1a siRNA at 24 and 48 h after

transfection, assessing that HNF1a siRNA did not target

HNF1b mRNA (Additional File 2A).

Cells transfected with HNF1a siRNA had a different

phenotype from cells transfected with control siRNA.

On phase contrast microscopy, they looked elongated

and had lost cell-cell contacts (Figure 1A). This pheno-

type was maintained until at least 7 days after transfec-

tion in HepG2 cells. Phalloidin labelling revealed

reorganized actin cytoskeleton with development of

actin structures looking like lamelipodia and filopodia in

both cell type (Figure 1B). Time-lapse microscopy of

HepG2 cells transfected with HNF1a siRNA showed

that the cytoplasmic protrusions observed in those cells

were dynamic structures protruding from the cell (Fig-

ure 1C).

Expression of albumin, a liver-specific gene, and of

transcription factors involved in hepatocyte differentia-

tion, assessed by quantitative RT-PCR (qRT-PCR), was

diminished 3 days after transfection in both cell type,

and was maintained low until at least 7 days after trans-

fection in HepG2 (Figure 1D and 1E). Particularly,

HNF4a expression, which has been shown to be regu-

lated by HNF1a [20,21], was decreased early after trans-

fection and this decrease was strongly correlated to

HNF1a expression, which was modulated by using sev-

eral concentrations of siRNA (Additional files 2A and

2B). These results revealed dedifferentiation of cells

transfected with HNF1a siRNA.

Epithelial markers are under expressed and mesenchymal

markers are overexpressed in HNF1a-siRNA-transfected

cells

Epithelial-mesenchymal transition (EMT) is defined by

loss of epithelial cell polarity, disappearance of differen-

tiated junctions, reorganization of the cytoskeleton and

changes in migration abilities [22-25]. During this pro-

cess, epithelial markers such as E-cadherin are under

expressed and mesenchymal markers are over expressed.

In HepG2 cells transfected with HNF1a siRNA, E-cad-

herin is strongly under expressed at the transcription

level as well as at protein level (Figure 2A and 2B).

Immunostaining of E-cadherin showed presence at cell-

cell junctions in control-siRNA-transfected cells whereas

cells transfected with HNF1a siRNA showed no staining

at cell borders, suggesting loss of adherens junction in

those cells (Figure 2C). Interestingly, the decrease of E-

cadherin mRNA was significantly correlated to HNF1a

mRNA decrease, when it was modulated using a range

of siRNA (Additional file 3). Moreover, zonula occlu-

dens-1 (ZO-1), a tight-junction protein, was also under

expressed at transcriptional level (Figure 2A). In

HNF1a-inhibited HepG2 cells, the mesenchymal mar-

kers vimentin and fibronectin were over expressed both
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Figure 1 Loss of epithelial phenotype and development of dynamic structures of migration in HepG2 and Hep3B cells transfected

with HNF1a siRNA. HepG2 and Hep3B cells were transfected with 10 nM of HNF1a siRNA (siH) or with a control siRNA (siC). A: Morphology of

transfected HepG2 and Hep3B cells obtained by phase-contrast microscopy with a 10X objective after 72 h. Scale bar 100 μm. B: Actin stained

using phalloidin (green) in HepG2 and Hep3B cells transfected with fluorescent control siRNA (red) or co-transfected with fluorescent control and

HNF1a siRNA after 72 h. DNA is stained using DAPI (blue). Scale bar 10 μm. C: Time-lapse imaging showing dynamic cytoplasmic protrusions in

HepG2 cells transfected with HNF1a siRNA compared to cells transfected with control siRNA, 72 h after transfection. Only 1 image every 50 min

is shown here. Scale bar 20 μm. D, E: Expression of transcription factors involved in hepatocyte differentiation and of albumin, a marker of

hepatocellular differentiation, in HepG2 (D) and Hep3B (E) cells transfected with HNF1a siRNA after 3 and 7 days for HepG2, compared with cells

transfected with control siRNA. mRNA levels were analyzed by qRT-PCR and are expressed as n-fold difference in gene expression of HepG2 cells

transfected with HNF1a siRNA (siH) relative to cells transfected with control siRNA (siC) (two-tailed t-test).

Pelletier et al. BMC Cancer 2011, 11:427

http://www.biomedcentral.com/1471-2407/11/427

Page 4 of 11



A

D

HNF1α

siC siHsiRNA

E-cadherin

β-actin

Vimentin

B

E

E-cadherin

N-cadherin

β-actin

HNF1α

siC siHsiRNA

F
ib

ro
n
e
c
ti
n

E
-C

a
d
h
e
ri

n

HNF1α siRNAControl siRNA

C HepG2

E
-C

a
d
h
e
ri

n
N

-C
a
d
h
e
ri

n

HNF1α siRNAControl siRNA

Hep3BF

β actin

Figure 2 Expression of EMT markers and transcription factors in HNF1a-inhibited HepG2 and Hep3B. A,D: mRNA expression levels were

compared between HepG2 (A) or Hep3B (D) cells transfected with HNF1a siRNA (siH) and with control siRNA (siC) (two-tailed t-test) at 3 and 7

days after transfection. B,E: E-Cadherin, N-Cadherin and Vimentin expression was analyzed using western-blotting after 3 days of transfection with

HNF1a siRNA (siH) or Control siRNA (siC) in HepG2 (B) or Hep3B (E). C: Immunofluorescence staining of E-Cadherin, and Fibronectin after 7 days

of transfection of Control or HNF1a siRNA in HepG2. Scale bar 10 μm. F: Immunofluorescence staining of E-Cadherin and N-Cadherin after 3

days of transfection of Control or HNF1a siRNA in Hep3B. Scale bar 10 μm.
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at RNA and protein levels (Figure 2A, B and 2C). Sev-

eral proteins involved in bassement membrane degrada-

tion, metalloproteinases (MMP) 2, 3 and 9, were also

over expressed in HepG2 cells transfected with HNF1a

siRNA (Figure 2A). These characteristics of EMT were

observed at 3 days after transfection and were mostly

maintained until 7 days.

In Hep3B cell line, epithelial markers were also under

expressed and E-cadherin staining was not found at cell

border in cells transfected with HNF1a siRNA (Figure

2D, E and 2F). However, the mesenchymal markers over

expressed in Hep3B were not the same than in HepG2

cell line. Vimentin and fibronectin remained unchanged

whereas N-cadherin was up regulated at RNA and pro-

tein levels in Hep3B cells transfected with HNF1a

siRNA (Figure 2D and 2E). Overexpression of N-cad-

herin was not obvious by immunofluorescence analysis,

but N-cadherin was mostly found at cell borders and

cell-cell contacts were diminished in HNF1a-siRNA-

transfected cells (Figure 2F). Finally, metalloproteinase 9

was also significantly over expressed in Hep3B cells

transfected with HNF1a siRNA (Figure 2D).

Overall, liver cancer cells transfected with HNF1a

siRNA lost expression of epithelial and tight junction

markers and over expressed proteins usually expressed

in mesenchymal cells, defining an epithelial-mesenchy-

mal transition in those cells.

Overexpression of transcription factors involved in EMT

Several transcription factors have been involved in the

establishment of epithelial-mesenchymal transition, and

in particular, in the repression of E-cadherin expression.

These transcription factors are usually up regulated dur-

ing EMT [22-24]. Among these proteins, the Snail

family members (Snail1 and Snail2, also known as Snail

and Slug) play a key role in EMT. Snail1 was up regu-

lated in HepG2 cells transfected with HNF1a siRNA

compared with control siRNA, at 3 days after transfec-

tion and until 7 days (Figure 2A). Snail2 was slightly

under expressed at 3 days after transfection but it was

importantly over expressed at 7 days. The transcription

factors of the ZEB family, and particularly ZEB2, were

over expressed in HepG2 cells transfected with HNF1a-

siRNA at 3 and 7 days after transfection (Figure 2A). Up

regulation of all these transcription factors was also

observed in Hep3B cells, along with the overexpression

of Twist1, another transcription factor involved in EMT

(Figure 2D).

HNF1a silencing enhances migration of HepG2 cell line

We performed several experiments to assess the ability

of migration of HNF1a-inhibited HepG2 cells. First, we

put the cells transfected with HNF1a siRNA deprived

with serum in a migration insert and let them migrate

four 16 h towards medium with serum. More cells were

able to migrate when they where transfected with

HNF1a siRNA than with control siRNA (Figure 3A).

In a wound healing assay, the scratch caused in cells

tranfected with control siRNA did not close completely,

even after 72 h (Figure 3B). In HepG2 cells transfected

with HNF1a siRNA, the wound did not close comple-

tely either but HNF1a-inhibited cells were able to move

at the center of the wound unlike control cells (Figure

3B).

Those results showed that HepG2 cells transfected

with HNF1a siRNA developed greater migration abil-

ities than control cells.

TGFb1 is over expressed in HNF1a-inhibited cells and in

HNF1a-mutated hepatocellular adenomas

Many proteins can trigger epithelial-mesenchymal tran-

sition [23,24]. Among them, we found that TGFb1 was

over expressed in HepG2 and Hep3B cells transfected

with HNF1a siRNA (Figure 4A and 4B). Moreover, the

overexpression of TGFb1 mRNA was inversely corre-

lated to HNF1a expression in HepG2 cells (Figure 4C).

We then studied the transcriptomic expression of two

genes that are known to be induced by TGFb/Smad

pathway: SMAD7, an inhibitor of TGFb pathway that is

Smad-regulated and is induced by TGFb in an early

response [26,27], and TGFb-induced (TGFBI), an extra-

cellular matrix protein which plays a role in cell-col-

lagen interactions [28]. SMAD7 and TGFBI were up-

regulated at 3 and 7 days after transfection in HepG2

(Figure 4A) and in Hep3B cell lines (Figure 4B). These

results suggest that TGFb pathway is activated in

HNF1a-inhibited cells and could participate to the EMT

observed in these cells.

Interestingly, we found an overexpression of TGFb1 in

H-HCA compared to normal livers by quantitative RT-

PCR (Figure 4D). But we couldn’t find any proof of

TGFb pathway activation in these tumors, since neither

SMAD7 nor TGFBI were over expressed, nor any other

known TGFb pathway target genes (Figure 4D, E and

data not shown).

Discussion

HNF1a is a transcription factor involved in hepatocyte

differentiation and is important for normal liver func-

tion. Here, we show that HNF1a might also be impor-

tant for maintenance of epithelial phenotype in

hepatocytes. Liver cancer cell lines in which HNF1a

expression was inhibited by siRNA underwent an

epithelial-mesenchymal transition and lost hepatocyte

differentiation and epithelial phenotype. Expression of

proteins involved in tight and adherens junctions, like

ZO-1 and E-cadherin, was diminished, leading to loss of

cell-cell contacts and reorganization of cytoskeleton.
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Cells transfected with HNF1a siRNA also showed an

overexpression of mesenchymal markers and of several

key transcription factors involved in EMT development,

in particular Snail1 and Snail2.

Under-expression of E-cadherin has previously been

described in a mouse model of HNF1a inactivation. In

this mouse model in which pancreatic b-cell over

expressed a dominant-negative mutant of HNF1a, pan-

creatic islets showed abnormal architecture with, in par-

ticular, a reduced expression of E-cadherin [29]. It was

then suggested that E-cadherin could be a target of

HNF1a. A putative HNF1a binding site was found in

intron 2 of human E-cadherin gene and HNF1a acts as

an enhancer on the chicken E-cadherin gene but further

studies are required to understand the regulation of E-

cadherin by HNF1a. Our results showed a strong corre-

lation between E-cadherin and HNF1a expression, sup-

porting the hypothesis of a regulation of E-cadherin

expression by HNF1a, whether direct or indirect.

HNF1a has also been shown to be a positive regulator

of other molecules of cellular junctions, tight junction

component claudin-2 [30] and gap junction protein con-

nexin32 [31].

The HNF1 homeoprotein family contains another

member apart from HNF1a, HNF1b. HNF1a and

HNF1b are highly homologous protein that can

recognize the same binding site and form heterodimers

[32]. They are both expressed in the polarized epithe-

lium of several tissues (liver, kidney, pancreas and diges-

tive tract), though in a sequential manner, which led to

the assumption that they could be involved in epithelial

differentiation [33]. In the liver, HNF1b is expressed

earlier during development but in adult hepatocytes

HNF1a is predominant, whereas HNF1b is weakly

expressed [20]. HNF1b inactivation has been linked to

EMT in ovarian cancer [34]. Ovarian carcinoma cell

lines where HNF1b function was knockdown by siRNA

or transfection with a dominant-negative mutant

showed reduced E-cadherin expression and underwent

epithelial-mesenchymal-like transition, associated with

Slug overexpression. HNF1b overexpression lead to

down-regulation of Snail and Slug expression. In ovarian

tumors, expression of HNF1b was associated with E-

cadherin. Altogether, these results support a role of

HNF1b in the maintenance of epithelial phenotype. As

HNF1a and b have very close activity and can recognize

the same genes, HNF1a inactivation in hepatocytes

could trigger the same reactions.

Repression of E-cadherin and other epithelial markers

by HNF1a could also go through other molecules regu-

lated by HNF1a. In particular, EMT regulators Snail1/2

and ZEB1/2 are able to repress E-cadherin expression

0 h

48 h

72 h

HNF1α siRNAControl siRNAA B

Figure 3 Migration of HNF1a-inhibited HepG2 cells. A: Boyden chamber assay. HepG2 cells transfected with control or HNF1a siRNA for 72 h

were seeded in insert upper chamber and left to migrate towards medium with serum for 16 h. B: Wound-healing assay. Confluent HepG2 cells

transfected with control or HNF1a siRNA for 48 h, were scratched with pipette tips and pictures were taken every day for 3 days. Representative

images from three independent experiments are shown. Scale bar 100 μm.
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Figure 4 Overexpression of TGFb1 in HNF1a-inhibited cells and in HNF1a-mutated HCA. A,B: mRNA expression levels of TGFB1 and its

targets SMAD7 and TGFBI were compared between HepG2 (A) or Hep3B (B) cells transfected with HNF1a siRNA (siH) and with control siRNA

(siC) at 3 and 7 days after transfection (two-tailed t-test). C: Correlation between expression of HNF1a and TGFb1 mRNA in HepG2 cells 3 days

after transfection were analyzed using a range of siRNA concentrations (0, 0.01, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 1 nM) and significance was assessed

by Spearman’s rank correlation test. All graphs plot are qRT-PCR results relative to cells transfected with control siRNA. D,E,F: mRNA expression

levels of TGFB1 (D) and its targets SMAD7 (E) and TGFBI (F) in HNF1a-mutated HCA (n = 15), HCA not mutated for HNF1A (n = 20), and normal

liver tissues (NL; n = 23). mRNA levels were analyzed by qRT-PCR and are expressed as n-fold difference in gene expression relative to the mean

expression of normal liver tissues (two-tailed Mann-Whitney test). G: Typical aspect of H-HCA featuring marked steatosis and ill-defined borders,

with adjacent non-tumoral liver infiltration (indicated by arrows). Hematoxylin-Eosin-Saffron (HES) staining.
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through interaction with specific E-boxes of the E-Cad-

herin promoter [35,36]. Snail1 has recently been shown

to be repressed by HNF1a in hepatocytes, through bind-

ing of HNF1a to a consensus site in Snail1 promoter

[37]. HNF1a can repress Snail1 expression alone or in

cooperation with HNF4a, another important regulator

of hepatocyte differentiation [37].

Hepatocyte differentiation is achieved through a com-

plex network of cross regulation between transcription

factors, especially between HNF1a and HNF4a [20].

There is a regulational hierarchy between those proteins

since HNF4a expression precedes that of HNF1a and

activates the expression of HNF1a [38]. On the other

hand, HNF1a is also capable of activating HNF4a

expression, which defines a regulatory loop assuring the

expression of HNF1a and HNF4a in hepatocytes

[21,39]. Moreover, HNF1a can repress its own expres-

sion and the expression of other targets of HNF4a,

through interaction with HNF4a [40]. HNF4a has been

involved in epithelium formation and it has been shown

to regulate the expression of several epithelial markers

and components of cell junctions [41,42]. HNF4a has

been recently shown to negatively regulate mesenchymal

molecules (vimentin, fibronectin and desmin) and EMT

master regulator Snail1 [37]. Moreover, HNF4a inactiva-

tion induces EMT in embryonic mouse kidneys [43].

Interestingly, HNF1a seems to cooperate with HNF4a

to suppress mesenchymal markers expression as well as

Snail1 [37]. Since HNF4a was down-regulated in

HNF1a-inhibited hepatocytes, the EMT observed in

these cells could also go partially through HNF4a

inhibition.

Genes involved in cell mobility are also up regulated

in HNF1a-inhibited cells, like metalloproteinases, but

also PDGFA and B, which have been previously

described as over expressed in HNF1a-inactivated

tumors and cell lines [17]. PDGF growth factors are

involved in angiogenesis but they are also autocrine fac-

tors involved in EMT and are necessary for TGFb-

induced migration and tumor progression in hepatocytes

[25,44]. Our results show that the EMT induced by

HNF1a inhibition is associated with increased cell

migration.

To induce EMT, HNF1a could also control directly

the expression of growth factors capable of inducing

EMT. Among those factors, we showed that TGFb1 was

up-regulated in cells transfected with HNF1a siRNA

and that the expression of TGFb1 was inversely corre-

lated to the expression of HNF1a, suggesting close reg-

ulation. Yet it is not clear whether it is this

overexpression that trigger the EMT observed in these

cells or not. In particular, TGFb can induce the under

expression of HNF4a in rat primary hepatocytes and in

immortalized murine hepatocytes [45]. Therefore,

HNF4a down regulation in HNF1a-inhibited cells could

also be due to TGFb1 over-expression. Further studies

are necessary to understand the role of TGFb1 overex-

pression in the development of EMT induced by

HNF1a inhibition.

Interestingly, we also found an overexpression of

TGFb1 in HNF1a-mutated HCA, but neither SMAD7

nor TGFBI up-regulation, nor changes in TGFb-activa-

tion markers. Moreover, an analysis of H-HCA tran-

scriptome failed to identify a TGFb signature in H-

HCA, whether early or late, as defined by Courlouarn et

al. [26] (data not shown). In particular we didn’t identify

any change in the expression of EMT markers at the

transcriptional level in H-HCA. Neither could we ana-

lyze the expression of EMT markers at the borders of

these tumors by immunostaining because of the impor-

tant steatosis observed in H-HCA that makes the stain-

ing in tumors highly heterogeneous. However, H-HCA

present ill-defined borders, that look like local invasions

of the adjacent non tumor liver, which is compatible

with EMT (Figure 4G).

The role of TGFb1 overexpression in these benign

tumors remains unclear. TGFb has a dual effect on

tumor development. In early carcinogenesis, TGFb acti-

vation induces cell death and in late carcinogenesis, it is

involved in invasion and EMT development [46]. In

tumorous cell lines, cells are at a late stage of carcino-

genesis and therefore TGFb is prone to induce EMT.

Whereas in benign tumors, we could think that TGFb

overexpression would induce apoptosis but HNF1a-

mutated HCA do not show important necrosis and tran-

scriptomic analysis did not reveal important changes in

genes involved in apoptosis or cell cycle arrest [17,18].

In the liver, TGFb has also been involved in hepatic dif-

ferentiation and fibrosis [47,48]. HNF1a-mutated adeno-

mas are developed in normal livers and do not show

fibrosis, so this aspect of TGFb is irrelevant, but HNF1a

and TGFb are both involved in hepatic differentiation.

TGFb pathway is involved in several steps of liver devel-

opment, in particular in hepatoblast proliferation and

differentiation [48,49]. Weak TGFb concentrations are

needed for hepatoblast differentiation into hepatocytes.

As HNF1a is involved in late hepatocyte differentiation,

we suggest that HNF1a negative control of TGFb1

expression could be associated with establishment/main-

tenance of hepatocyte differentiation and arrest of

proliferation.

Conclusion

In conclusion, our study shows that HNF1a loss can

lead to epithelial-mesenchymal transition in liver cancer

cell lines, with E-cadherin repression, TGFb1 overex-

pression and increased migration abilities. This result

suggests that HNF1a could be involved in maintenance
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of epithelial phenotype in these cell lines and gives new

insight in understanding the mechanism related to

HNF1a inactivation.

Additional material

Additional file 1: TaqMan®® pre-designed gene expression assays

Additional file 2: Expression of HNF1b and HNF4a after inhibition

of HNF1a expression in HepG2 cells. A: HepG2 cells were transfected

independently with siRNA directed against exons 8 and 9 of HNF1a (siH),

or with a control siRNA (siC). Inhibition efficiencies were assessed at 0, 1

and 2 days after transfection by measuring the expression level of HNF1A

and of its transactivated gene (FABP1) by qRT-PCR. Expression of

homologue HNF1b was measured to assess the specificity of HNF1a

siRNA, and HNF4a expression was also measured (two-tailed t-test). B:

Correlations between expression of HNF1a and HNF4a mRNA were

analyzed using a range of siRNA concentrations (0, 0.01, 0.05, 0.1, 0.2, 0.4,

0.6, 0.8, 1, 5, 10 and 50 nM) and significance was assessed by Spearman’s

rank correlation test. All graphs plot are qRT-PCR results relative to cells

transfected with control siRNA.

Additional file 3: E-cadherin expression is correlated to HNF1a
expression. Correlations between expression of HNF1A and CDH1 were

analyzed using a range of siRNA concentrations (0, 0.01, 0.05, 0.1, 0.2, 0.4,

0.6, 0.8, 1, 5, 10 and 50 nM) and significance was assessed by Spearman’s

rank correlation test. All graphs plot are qRT-PCR results relative to cells

transfected with control siRNA.
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