D. Noble, Modeling the Heart--from Genes to Cells to the Whole Organ, Science, vol.295, issue.5560, pp.1678-1682, 2002.
DOI : 10.1126/science.1069881

D. Noble, The Music of Life: Biology Beyond the Genome, 2006.

V. A. Saks, C. Monge, and R. Guzun, Philosophical Basis and Some Historical Aspects of Systems Biology: From Hegel to Noble - Applications for Bioenergetic Research, International Journal of Molecular Sciences, vol.10, issue.3, pp.1161-1192, 2009.
DOI : 10.3390/ijms10031161

URL : https://hal.archives-ouvertes.fr/inserm-00391381

H. V. Westerhoff, A. Kolodkin, R. Conradie, S. J. Wilkinson, F. J. Bruggeman et al., Systems biology towards life in silico: mathematics of the control of living cells, Journal of Mathematical Biology, vol.70, issue.1???2, pp.7-34, 2009.
DOI : 10.1007/s00285-008-0160-8

V. A. Saks, N. Beraud, and T. Wallimann, Metabolic Compartmentation ??? A System Level Property of Muscle Cells, International Journal of Molecular Sciences, vol.9, issue.5, pp.751-767, 2008.
DOI : 10.3390/ijms9050751

URL : https://hal.archives-ouvertes.fr/inserm-00391390

P. Hunter and P. Nielsen, A Strategy for Integrative Computational Physiology, Physiology, vol.20, issue.5, pp.316-325, 2005.
DOI : 10.1152/physiol.00022.2005

V. A. Saks, P. Dzeja, U. Schlattner, M. Vendelin, A. Terzic et al., Cardiac system bioenergetics: metabolic basis of the Frank-Starling law, The Journal of Physiology, vol.95, issue.Suppl. 3, pp.253-273, 2006.
DOI : 10.1113/jphysiol.2005.101444

URL : https://hal.archives-ouvertes.fr/inserm-00390883

V. A. Saks, R. Favier, R. Guzun, U. Schlattner, and T. Wallimann, Molecular system bioenergetics: regulation of substrate supply in response to heart energy demands, The Journal of Physiology, vol.103, issue.3, pp.769-777, 2006.
DOI : 10.1113/jphysiol.2006.120584

URL : https://hal.archives-ouvertes.fr/inserm-00390890

V. A. Saks, C. Monge, T. Anmann, and P. Dzeja, Integrated and Organized Cellular Energetic Systems, Molecular System Bioenergetics, pp.59-110, 2007.
DOI : 10.1002/9780470048672.wecb699

V. A. Saks, C. Monge, R. Guzun, P. Dzeja, and T. Wallimann, Integrated and Organized Cellular Energetic Systems, In Wiley Encyclopedia of Chemical Biology, vol.34, issue.257, pp.366-393, 2009.
DOI : 10.1002/9780470048672.wecb699

P. P. Dzeja and A. Terzic, Phosphotransfer networks and cellular energetics, Journal of Experimental Biology, vol.206, issue.12, pp.2039-2047, 2003.
DOI : 10.1242/jeb.00426

P. P. Dzeja and A. Terzic, Mitochondrial-nucleus energetic communication: Role of phosphotransfer networks in processing cellular information, Handbook of Neurochemistry & Molecular Neurobiology, pp.614-666, 2005.

P. Dzeja, S. Chung, and A. Terzic, Integration of adenylate kinase and glycolytic and clycogenolytic circuits in cellular energetics Energy for life, Molecular System Bioenergetics

C. Monge, N. Beraud, A. V. Kuznetsov, T. Rostovtseva, D. Sackett et al., Regulation of respiration in brain mitochondria and synaptosomes: restrictions of ADP diffusion in??situ, roles of tubulin, and mitochondrial creatine kinase, Molecular and Cellular Biochemistry, vol.76, issue.3, pp.147-165, 2008.
DOI : 10.1007/s11010-008-9865-7

URL : https://hal.archives-ouvertes.fr/inserm-00390936

T. Wallimann, M. Tokarska-schlattner, D. Neumann, R. F. Epand, R. H. Andres et al., The Phosphocreatine Circuit: Molecular and Cellular Physiology of Creatine Kinases, Sensitivity to Free Radicals, and Enhancement by Creatine Supplementation, In Molecular System Bioenergetics. Energy for Life, pp.195-264, 2007.
DOI : 10.1002/9783527621095.ch7

T. Wallimann, M. Wyss, D. Brdiczka, K. Nicolay, and H. M. Eppenberger, Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ???phosphocreatine circuit??? for cellular energy homeostasis, Biochemical Journal, vol.281, issue.1, pp.21-40, 1992.
DOI : 10.1042/bj2810021

J. R. Neely, R. M. Denton, P. J. England, and P. J. Randle, The effects of increased heart work on the tricarboxylate cycle and its interactions with glycolysis in the perfused rat heart, Biochemical Journal, vol.128, issue.1, pp.147-159, 1972.
DOI : 10.1042/bj1280147

R. S. Balaban, H. L. Kantor, L. A. Katz, and R. W. Briggs, Relation between work and phosphate metabolite in the in vivo paced mammalian heart, Science, vol.232, issue.4754, pp.1121-1123, 1986.
DOI : 10.1126/science.3704638

V. A. Saks, Molecular System Bioenergetics Energy for Life, 2007.

R. S. Balaban, Cardiac Energy Metabolism Homeostasis: Role of Cytosolic Calcium, Journal of Molecular and Cellular Cardiology, vol.34, issue.10, pp.1259-1271, 2002.
DOI : 10.1006/jmcc.2002.2082

D. A. Beard, Modeling of Oxygen Transport and Cellular Energetics Explains Observations on In Vivo Cardiac Energy Metabolism, PLoS Computational Biology, vol.1504, issue.9, p.107, 2006.
DOI : 0006-3002(2001)1504[0031:TSOTRO]2.0.CO;2

J. H. Van-beek, Multiscale and Modular Analysis of Cardiac Energy Metabolism, Annals of the New York Academy of Sciences, vol.257, issue.1, pp.1123-155, 2008.
DOI : 10.1196/annals.1420.018

R. S. Balaban, Domestication of the cardiac mitochondrion for energy conversion, Journal of Molecular and Cellular Cardiology, vol.46, issue.6, pp.832-841, 2009.
DOI : 10.1016/j.yjmcc.2009.02.018

D. A. Beard and M. J. Kushmerick, Strong Inference for Systems Biology, PLoS Computational Biology, vol.31, issue.257, 2009.
DOI : 10.1371/journal.pcbi.1000459.g003

E. J. Griffiths and G. A. Rutter, Mitochondrial calcium as a key regulator of mitochondrial ATP production in mammalian cells, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1787, issue.11, pp.1324-1333, 2009.
DOI : 10.1016/j.bbabio.2009.01.019

R. Guzun, N. Timohhina, K. Tepp, C. Monge, T. Kaambre et al., Regulation of respiration controlled by mitochondrial creatine kinase in permeabilized cardiac cells in situ, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1787, issue.9, pp.1089-1105, 2009.
DOI : 10.1016/j.bbabio.2009.03.024

URL : https://hal.archives-ouvertes.fr/inserm-00391389

J. S. Ingwall, Energy metabolism in heart failure and remodelling, Cardiovascular Research, vol.81, issue.3, pp.412-419, 2009.
DOI : 10.1093/cvr/cvn301

T. Liu and B. O-'rourke, Regulation of mitochondrial Ca2+ and its effects on energetics and redox balance in normal and failing heart, Journal of Bioenergetics and Biomembranes, vol.507, issue.Pt 2, pp.127-132, 2009.
DOI : 10.1007/s10863-009-9216-8

N. Timohhina, R. Guzun, K. Tepp, C. Monge, M. Varikmaa et al., Direct measurement of energy fluxes from mitochondria into cytoplasm in permeabilized cardiac cells in situ: some evidence for mitochondrial interactosome, Journal of Bioenergetics and Biomembranes, vol.185, issue.Pt 1, pp.259-275, 2009.
DOI : 10.1007/s10863-009-9224-8

URL : https://hal.archives-ouvertes.fr/inserm-00422517

L. F. Barros and C. Martinez, An Enquiry into Metabolite Domains, Biophysical Journal, vol.92, issue.11, pp.3878-3884, 2007.
DOI : 10.1529/biophysj.106.100925

F. Wu, E. Y. Zhang, J. Zhang, R. J. Bache, and D. A. Beard, Phosphate metabolite concentrations and ATP hydrolysis potential in normal and ischaemic hearts, The Journal of Physiology, vol.94, issue.17, pp.4193-4208, 2008.
DOI : 10.1113/jphysiol.2008.154732

F. Wu and D. A. Beard, Roles of the creatine kinase system and myoglobin in maintaining energetic state in the working heart, BMC Systems Biology, vol.3, issue.1, p.22, 2009.
DOI : 10.1186/1752-0509-3-22

P. P. Dzeja, P. Bast, D. Pucar, B. Wieringa, and A. Terzic, Defective Metabolic Signaling in Adenylate Kinase AK1 Gene Knock-out Hearts Compromises Post-ischemic Coronary Reflow, Journal of Biological Chemistry, vol.282, issue.43
DOI : 10.1074/jbc.M705268200

V. A. Saks, T. Anmann, R. Guzun, T. Kaambre, P. Sikk et al., The Creatine Kinase Phosphotransfer Network: Thermodynamic and Kinetic Considerations, the Impact of the Mitochondrial Outer Membrane and Modelling Approaches, Creatine and Creatine Kinase in Health and Disease, pp.27-66, 2007.
DOI : 10.1007/978-1-4020-6486-9_3

URL : https://hal.archives-ouvertes.fr/inserm-00390950

B. Chance, J. Im, S. Nioka, and M. Kushmerick, Skeletal muscle energetics with PNMR: personal views and historic perspectives, NMR in Biomedicine, vol.286, issue.7, pp.904-926, 2006.
DOI : 10.1002/nbm.1109

H. Howald, H. Hoppeler, H. Claassen, O. Mathieu, and R. Straub, Influences of endurance training on the ultrastructural composition of the different muscle fiber types in humans, Pfl???gers Archiv European Journal of Physiology, vol.95, issue.4, pp.369-376, 1985.
DOI : 10.1007/BF00589248

E. Ponsot, S. P. Dufour, J. Zoll, S. Doutrelau, B. N-'guessan et al., Exercise training in normobaric hypoxia in endurance runners. II. Improvement of mitochondrial properties in skeletal muscle, Journal of Applied Physiology, vol.100, issue.4
DOI : 10.1152/japplphysiol.00361.2005

B. Kiens, B. Essen-gustavsson, N. J. Christensen, and B. Saltin, Skeletal muscle substrate utilization during submaximal exercise in man: effect of endurance training., The Journal of Physiology, vol.469, issue.1, pp.459-478, 1993.
DOI : 10.1113/jphysiol.1993.sp019823

J. Zoll, N. Koulmann, L. Bahi, R. Ventura-clapier, and A. Bigard, Quantitative and qualitative adaptation of skeletal muscle mitochondria to increased physical activity, Journal of Cellular Physiology, vol.194, issue.2, pp.186-193, 2003.
DOI : 10.1002/jcp.10224

J. R. Williamson, C. Ford, J. Illingworth, and B. Safer, Coordination of citric acid cycle activity with electron transport flux, Circ. Res, vol.38, pp.139-151, 1976.

K. Ugurbil, Regulation of the oxidative phosphorylation rate in the intact cell, Biochemistry, vol.29, pp.3731-3743, 1990.

M. J. Kushmerick, T. S. Moerland, and R. W. Wiseman, Mammalian skeletal muscle fibers distinguished by contents of phosphocreatine, ATP, and Pi., Proc. Natl. Acad. Sci. USA 1992, pp.7521-7525
DOI : 10.1073/pnas.89.16.7521

R. A. Meyer, H. L. Sweeney, and M. J. Kushmerick, A simple analysis of the "phosphocreatine shuttle, Am. J. Physiol, vol.246, pp.365-377, 1984.

E. W. Mcfarland, M. J. Kushmerick, and T. S. Moerland, Activity of creatine kinase in a contracting mammalian muscle of uniform fiber type, Biophysical Journal, vol.67, issue.5, pp.1912-1924, 1994.
DOI : 10.1016/S0006-3495(94)80674-5

J. A. Jeneson, R. W. Wiseman, H. V. Westerhoff, and M. J. Kushmerick, The Signal Transduction Function for Oxidative Phosphorylation Is at Least Second Order in ADP, Journal of Biological Chemistry, vol.271, issue.45, pp.27995-27998, 1996.
DOI : 10.1074/jbc.271.45.27995

J. A. Jeneson, H. V. Westerhoff, and M. J. Kushmerick, A metabolic control analysis of kinetic controls in ATP free energy metabolism in contracting skeletal muscle, Am. J. Physiol. Cell Physiol, vol.279, pp.813-832, 2000.

M. J. Kushmerick and K. E. Conley, Energetics of muscle contraction: the whole is less than the sum of its parts, Biochemical Society Transactions, vol.30, issue.2, pp.227-231, 2002.
DOI : 10.1042/bst0300227

D. A. Beard, A biophysical model of the mitochondrial respiratory system and oxidative phosphorylation, PLoS Comput .Biol, issue.1, p.36, 2005.

J. Shimizu, K. Todaka, and D. Burkhoff, Load dependence of ventricular performance explained by model of calcium-myofilament interactions, American Journal of Physiology - Heart and Circulatory Physiology, vol.282, issue.3, pp.1081-1091, 2002.
DOI : 10.1152/ajpheart.00498.2001

T. Kobayashi and R. J. Solaro, CALCIUM, THIN FILAMENTS, AND THE INTEGRATIVE BIOLOGY OF CARDIAC CONTRACTILITY, Annual Review of Physiology, vol.67, issue.1, pp.39-67, 2005.
DOI : 10.1146/annurev.physiol.67.040403.114025

L. A. Katz, J. A. Swain, M. A. Portman, and R. S. Balaban, Relation between phosphate metabolites and oxygen consumption of heart in vivo, Am. J. Physiol, vol.256, pp.265-274, 1989.

J. G. Mccormack, A. P. Halestrap, and R. M. Denton, Role of calcium ions in regulation of mammalian intramitochondrial metabolism, Physiol. Rev, vol.70, pp.391-425, 1990.

L. S. Jouaville, P. Pinton, C. Bastianutto, G. A. Rutter, and R. Rizzuto, Regulation of mitochondrial ATP synthesis by calcium: Evidence for a long-term metabolic priming, Proc. Natl. Acad. Sci. USA 1999, pp.13807-13812
DOI : 10.1073/pnas.96.24.13807

P. R. Territo, S. A. French, M. C. Dunleavy, F. J. Evans, and R. S. Balaban, Calcium Activation of Heart Mitochondrial Oxidative Phosphorylation: RAPID KINETICS OFmV O2 , NADH, AND LIGHT SCATTERING, Journal of Biological Chemistry, vol.276, issue.4, pp.2586-2599, 2001.
DOI : 10.1074/jbc.M002923200

D. M. Bers, Cardiac excitation???contraction coupling, Nature, vol.415, issue.6868, pp.198-205, 2002.
DOI : 10.1038/415198a

M. Brini, Ca 2+ signalling in mitochondria: Mechanism and role in physiology and pathology. Cell Calcium, pp.399-405, 2003.

K. Bianchi, A. Rimessi, A. Prandini, G. Szabadkai, and R. Rizzuto, Calcium and mitochondria: mechanisms and functions of a troubled relationship, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1742, issue.1-3, pp.1742-119, 2004.
DOI : 10.1016/j.bbamcr.2004.09.015

L. Opie, The Heart. Physiology, from Cell to Circulation, 1998.

J. A. Jeneson, J. P. Schmitz, N. M. Van-den-broek, N. A. Van-riel, P. Hilbers et al., Magnitude and control of mitochondrial sensitivity to ADP, AJP: Endocrinology and Metabolism, vol.297, issue.3, pp.774-784, 2009.
DOI : 10.1152/ajpendo.00370.2009

M. Klingenberg, The State of ADP or ATP Fixed to the Mitochondria by Bongkrekate, European Journal of Biochemistry, vol.52, issue.2, pp.601-605, 1976.
DOI : 10.1016/0006-291X(70)90585-1

A. K. Carroll, W. R. Clevenger, T. Szabo, L. E. Ackermann, Y. Pei et al., Ectopic expression of the human adenine nucleotide translocase, isoform 3 (ANT-3). Characterization of ligand binding properties, Mitochondrion, vol.5, issue.1, pp.1-13, 2005.
DOI : 10.1016/j.mito.2004.06.004

M. Klingenberg, The ADP and ATP transport in mitochondria and its carrier, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1778, issue.10, pp.1978-2021, 2008.
DOI : 10.1016/j.bbamem.2008.04.011

E. Metelkin, I. Goryanin, and O. Demin, Mathematical Modeling of Mitochondrial Adenine Nucleotide Translocase, Biophysical Journal, vol.90, issue.2, pp.423-432, 2006.
DOI : 10.1529/biophysj.105.061986

S. Schiaffino, M. Sandri, and M. Murgia, Activity-Dependent Signaling Pathways Controlling Muscle Diversity and Plasticity, Physiology, vol.22, issue.4, pp.269-278, 2007.
DOI : 10.1152/physiol.00009.2007

S. C. Forbes, A. T. Paganini, J. M. Slade, T. F. Towse, and R. A. Meyer, Phosphocreatine recovery kinetics following low- and high-intensity exercise in human triceps surae and rat posterior hindlimb muscles, AJP: Regulatory, Integrative and Comparative Physiology, vol.296, issue.1, pp.161-170, 2009.
DOI : 10.1152/ajpregu.90704.2008

V. A. Saks, V. I. Veksler, A. V. Kuznetsov, L. Kay, P. Sikk et al., Permeabilized cell and skinned fiber techniques in studies of mitochondrial function in vivo, Mol. Cell Biochem, vol.184, pp.81-100, 1998.
DOI : 10.1007/978-1-4615-5653-4_7

URL : https://hal.archives-ouvertes.fr/inserm-00391349

A. V. Kuznetsov, V. Veksler, F. N. Gellerich, V. A. Saks, R. Margreiter et al., Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells, Nature Protocols, vol.444, issue.6, pp.965-976, 2008.
DOI : 10.1038/nprot.2008.61

U. Schlattner, F. Gehring, N. Vernoux, M. Tokarska-schlattner, D. Neumann et al., C-terminal Lysines Determine Phospholipid Interaction of Sarcomeric Mitochondrial Creatine Kinase, Journal of Biological Chemistry, vol.279, issue.23, pp.24334-24342, 2004.
DOI : 10.1074/jbc.M314158200

URL : https://hal.archives-ouvertes.fr/inserm-00390858

U. Schlattner, M. Tokarska-schlattner, and T. Wallimann, Mitochondrial creatine kinase in human health and disease, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1762, issue.2, pp.1762-164, 2006.
DOI : 10.1016/j.bbadis.2005.09.004

URL : https://hal.archives-ouvertes.fr/inserm-00390875

B. Walsh, M. Tonkonogi, and K. Sahlin, Effect of endurance training on oxidative and antioxidative function in human permeabilized muscle fibres, Pfl??gers Archiv, vol.442, issue.3, pp.420-425, 2001.
DOI : 10.1007/s004240100538

R. Cherpec, Molecular system bioenergetics of muscle cells: Mechanisms of regulation of respiration in vivo ? importance of system level properties, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00397648

V. A. Saks, T. Kaambre, P. Sikk, M. Eimre, E. Orlova et al., Intracellular energetic units in red muscle cells, Biochemical Journal, vol.356, issue.2, pp.643-657, 2001.
DOI : 10.1042/bj3560643

URL : https://hal.archives-ouvertes.fr/inserm-00391060

V. A. Saks, Z. A. Khuchua, E. V. Vasilyeva, O. Belikova, and A. Kuznetsov, Metabolic compartmentation and substrate channelling in muscle cells. Role of coupled creatine kinases in in vivo regulation of cellular respiration ? a synthesis, Mol. Cell Biochem, pp.133-134, 1994.
URL : https://hal.archives-ouvertes.fr/inserm-00391377

P. P. Dzeja, R. J. Zeleznikar, and N. D. Goldberg, Suppression of creatine kinase-catalyzed phosphotransfer results in increased phosphoryl transfer by adenylate kinase in intact skeletal muscle, J. Biol. Chem, vol.271, pp.12847-12851, 1996.

P. P. Dzeja, K. T. Vitkevicius, M. M. Redfield, J. C. Burnett, and A. Terzic, Adenylate Kinase??Catalyzed Phosphotransfer in the Myocardium : Increased Contribution in Heart Failure, Circulation Research, vol.84, issue.10, pp.1137-1143, 1999.
DOI : 10.1161/01.RES.84.10.1137

M. R. Abraham, V. A. Selivanov, D. M. Hodgson, D. Pucar, L. V. Zingman et al., Coupling of Cell Energetics with Membrane Metabolic Sensing: INTEGRATIVE SIGNALING THROUGH CREATINE KINASE PHOSPHOTRANSFER DISRUPTED BY M-CK GENE KNOCK-OUT, Journal of Biological Chemistry, vol.277, issue.27, pp.24427-24434, 2002.
DOI : 10.1074/jbc.M201777200

V. A. Saks, A. V. Kuznetsov, M. Vendelin, K. Guerrero, L. Kay et al., Functional coupling as a basic mechanism of feedback regulation of cardiac energy metabolism, Molecular and Cellular Biochemistry, vol.256, issue.1/2, pp.256-257, 2004.
DOI : 10.1023/B:MCBI.0000009868.92189.fb

URL : https://hal.archives-ouvertes.fr/inserm-00391052

U. Schlattner and T. Wallimann, Metabolite channeling: Creatine kinase microcompartments, In In Encyclopedia of Biological Chemistry, pp.646-651, 2004.

V. A. Selivanov, A. E. Alekseev, D. M. Hodgson, P. P. Dzeja, and A. Terzic, Nucleotide-gated KATP channels integrated with creatine and adenylate kinases: Amplification, tuning and sensing of energetic signals in the compartmentalized cellular environment, Mol. Cell Biochem, pp.256-257, 2004.

M. Vendelin, M. Lemba, and V. A. Saks, Analysis of Functional Coupling: Mitochondrial Creatine Kinase and Adenine Nucleotide Translocase, Biophysical Journal, vol.87, issue.1, pp.696-713, 2004.
DOI : 10.1529/biophysj.103.036210

URL : https://hal.archives-ouvertes.fr/inserm-00391048

E. K. Seppet and V. A. Saks, Intracellular diffusion of adenosine phosphates is locally restricted in cardiac muscle, Mol. Cell Biochem, pp.256-257, 2004.
URL : https://hal.archives-ouvertes.fr/inserm-00391051

V. A. Selivanov, S. Krause, J. Roca, and M. Cascante, Modeling of Spatial Metabolite Distributions in the Cardiac Sarcomere, Biophysical Journal, vol.92, issue.10, pp.3492-3500, 2007.
DOI : 10.1529/biophysj.106.101352

P. Mitchell, Compartmentation and Communication in Living Systems. Ligand Conduction: a General Catalytic Principle in Chemical, Osmotic and Chemiosmotic Reaction Systems, European Journal of Biochemistry, vol.235, issue.1
DOI : 10.1016/0003-9861(69)90411-1

W. A. Engelhardt, Life and Science, Annual Review of Biochemistry, vol.51, issue.1, pp.1-19, 1982.
DOI : 10.1146/annurev.bi.51.070182.000245

V. A. Belitzer and E. Tsybakova, About mechanism of phosphorylation, respiratory coupling, Biokhimiya, vol.4, pp.516-534, 1939.

E. Lundsgaard, Untersuhungen uber Muskelkontractionen ohne Milchsaurebildung, Biochem. Z, vol.217, pp.162-177, 1930.

W. Mommaerts, Energetics of muscular contraction, Physiol. Rev, vol.49, pp.427-508, 1969.

A. Hill, A challenge to biochemists, Biochimica et Biophysica Acta, vol.4, pp.4-11, 1950.
DOI : 10.1016/0006-3002(50)90003-5

A. A. Infante and R. E. Davies, The effect of 2,4-dinitrofluorobenzene on the activity of striated muscle, J. Biol. Chem, vol.240, pp.3996-4001, 1965.

R. L. Veech, J. W. Lawson, N. W. Cornell, and H. A. Krebs, Cytosolic phosphorylation potential, J. Biol. Chem, vol.254, pp.6538-6547, 1979.

H. Jacobs, H. W. Heldt, and M. Klingenberg, High activity of creatine kinase in mitochondria from muscle and brain and evidence for a separate mitochondrial isoenzyme of creatine kinase, Biochemical and Biophysical Research Communications, vol.16, issue.6
DOI : 10.1016/0006-291X(64)90185-8

S. P. Bessman and A. Fonyo, The possible role of the mitochondrial bound creatine kinase in regulation of mitochondrial respiration, Biochemical and Biophysical Research Communications, vol.22, issue.5, pp.597-602, 1966.
DOI : 10.1016/0006-291X(66)90317-2

W. E. Jacobus and A. L. Lehninger, Creatine kinase of rat heart mitochondria. Coupling of creatine phosphorylation to electron transport, J. Biol. Chem, vol.248, pp.4803-4810, 1973.

S. P. Bessman and C. L. Carpenter, The Creatine-Creatine Phosphate Energy Shuttle, Annual Review of Biochemistry, vol.54, issue.1, pp.831-862, 1985.
DOI : 10.1146/annurev.bi.54.070185.004151

U. Schlattner, M. Forstner, M. Eder, O. Stachowiak, K. Fritz-wolf et al., Functional aspects of the X-ray structure of mitochondrial creatine kinase: A molecular physiology approach, Mol. Cell Biochem, vol.184, pp.125-140, 1998.
DOI : 10.1007/978-1-4615-5653-4_10

URL : https://hal.archives-ouvertes.fr/inserm-00390791

U. Schlattner, M. Dolder, and T. Wallimann, Tokarska-Schlattner, M. Mitochondrial creatine kinase and mitochondrial outer membrane porin show a direct interaction that is modulated by calcium, J. Biol. Chem, vol.276, pp.48027-48030, 2001.

U. Schlattner, Molecular structure and function of mitochondrial creatine kinases, pp.123-170, 2006.

M. Wyss, J. Smeitink, R. A. Wevers, and T. Wallimann, Mitochondrial creatine kinase: a key enzyme of aerobic energy metabolism, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1102, issue.2, pp.119-166, 1992.
DOI : 10.1016/0005-2728(92)90096-K

M. Dolder, B. Walzel, O. Speer, U. Schlattner, and T. Wallimann, Inhibition of the Mitochondrial Permeability Transition by Creatine Kinase Substrates: REQUIREMENT FOR MICROCOMPARTMENTATION, Journal of Biological Chemistry, vol.278, issue.20
DOI : 10.1074/jbc.M208705200

URL : https://hal.archives-ouvertes.fr/inserm-00390849

V. A. Saks and M. K. Aliev, Is There the Creatine Kinase Equilibrium in Working Heart Cells?, Biochemical and Biophysical Research Communications, vol.227, issue.2, pp.360-367, 1996.
DOI : 10.1006/bbrc.1996.1513

URL : https://hal.archives-ouvertes.fr/inserm-00391363

V. A. Saks, G. B. Chernousova, I. I. Voronkov, V. N. Smirnov, and E. Chazov, Study of energy transport mechanism in myocardial cells, Circ. Res, vol.35, pp.138-149, 1974.

V. A. Saks, G. B. Chernousova, D. E. Gukovsky, V. N. Smirnov, and E. Chazov, Studies of Energy Transport in Heart Cells. Mitochondrial Isoenzyme of Creatine Phosphokinase: Kinetic Properties and Regulatory Action of Mg2+ Ions, European Journal of Biochemistry, vol.35, issue.1, pp.273-290, 1975.
DOI : 10.1016/0014-5793(73)80803-8

F. Gellerich and V. A. Saks, Control of heart mitochondrial oxygen consumption by creatine kinase: The importance of enzyme localization, Biochemical and Biophysical Research Communications, vol.105, issue.4, pp.1473-1481, 1982.
DOI : 10.1016/0006-291X(82)90954-8

W. E. Jacobus and V. A. Saks, Creatine kinase of heart mitochondria: Changes in its kinetic properties induced by coupling to oxidative phosphorylation, Archives of Biochemistry and Biophysics, vol.219, issue.1, pp.167-178, 1982.
DOI : 10.1016/0003-9861(82)90146-1

R. L. Barbour, J. Ribaudo, and S. H. Chan, Effect of creatine kinase activity on mitochondrial ADP/ATP transport. Evidence for a functional interaction, J. Biol. Chem, vol.259, pp.8246-8251, 1984.

A. V. Kuznetsov, Z. A. Khuchua, E. V. Vassil-'eva, N. V. Medved-'eva, and V. A. Saks, Heart mitochondrial creatine kinase revisited: The outer mitochondrial membrane is not important for coupling of phosphocreatine production to oxidative phosphorylation, Archives of Biochemistry and Biophysics, vol.268, issue.1, pp.176-190, 1989.
DOI : 10.1016/0003-9861(89)90578-X

V. A. Saks, A. V. Kuznetsov, V. V. Kupriyanov, M. V. Miceli, and W. Jacobus, Creatine kinase of rat heart mitochondria. The demonstration of functional coupling to oxidative phosphorylation in an inner membrane-matrix preparation, J. Biol. Chem, vol.260, pp.7757-7764, 1985.

F. Joubert, P. Mateo, B. Gillet, J. C. Beloeil, J. L. Mazet et al., CK flux or direct ATP transfer: Versatility of energy transfer pathways evidenced by NMR in the perfused heart, Molecular and Cellular Biochemistry, vol.256, issue.1/2
DOI : 10.1023/B:MCBI.0000009858.41434.fc

R. Ventura-clapier, A. Kuznetsov, V. Veksler, E. Boehm, and K. Anflous, Functional coupling of creatine kinases in muscles: Species and tissue specificity, Molecular and Cellular Biochemistry, vol.184, issue.1/2, pp.231-247, 1998.
DOI : 10.1023/A:1006840508139

I. Segel, Enzyme Kinetics, BioScience, vol.26, issue.7, pp.1-957, 1975.
DOI : 10.2307/1297475

H. Qian, Phosphorylation Energy Hypothesis: Open Chemical Systems and Their Biological Functions, Annual Review of Physical Chemistry, vol.58, issue.1, pp.113-142, 2007.
DOI : 10.1146/annurev.physchem.58.032806.104550

H. Qian, Cooperativity and Specificity in Enzyme Kinetics: A Single-Molecule Time-Based Perspective, Biophysical Journal, vol.95, issue.1, pp.10-17, 2008.
DOI : 10.1529/biophysj.108.131771

I. M. De-la-fuente, L. Martinez, A. L. Perez-samartin, L. Ormaetxea, and C. Amezaga, Global Self-Organization of the Cellular Metabolic Structure, PLoS ONE, vol.224, issue.215, p.3100, 2008.
DOI : 10.1371/journal.pone.0003100.t004

M. A. Aon, D. F. Gomez-casati, A. A. Iglesias, and S. Cortassa, ULTRASENSITIVITY IN (SUPRA)MOLECULARLY ORGANIZED AND CROWDED ENVIRONMENTS, Cell Biology International, vol.25, issue.11, pp.1091-1099, 2001.
DOI : 10.1006/cbir.2001.0804

M. A. Aon, B. O-'rourke, and S. Cortassa, The fractal architecture of cytoplasmic organization: Scaling, kinetics and emergence in metabolic networks, Molecular and Cellular Biochemistry, vol.256, issue.1/2, pp.256-257, 2004.
DOI : 10.1023/B:MCBI.0000009867.54552.09

S. Cortassa, B. O-'rourke, R. L. Winslow, and M. A. Aon, Control and Regulation of Mitochondrial Energetics in an Integrated Model of Cardiomyocyte Function, Biophysical Journal, vol.96, issue.6, pp.2466-2478, 2009.
DOI : 10.1016/j.bpj.2008.12.3893

V. A. Saks, Y. O. Belikova, and A. Kuznetsov, In vivo regulation of mitochondrial respiration in cardiomyocytes: specific restrictions for intracellular diffusion of ADP, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1074, issue.2, pp.302-311, 1991.
DOI : 10.1016/0304-4165(91)90168-G

M. Vendelin, N. Beraud, K. Guerrero, T. Andrienko, A. V. Kuznetsov et al., Mitochondrial regular arrangement in muscle cells: a "crystal-like" pattern, AJP: Cell Physiology, vol.288, issue.3
DOI : 10.1152/ajpcell.00281.2004

URL : https://hal.archives-ouvertes.fr/inserm-00391045

N. Beraud, S. Pelloux, Y. Usson, A. V. Kuznetsov, X. Ronot et al., Mitochondrial dynamics in heart cells: Very low amplitude high frequency fluctuations in adult cardiomyocytes and flow motion in non beating Hl-1 cells, Journal of Bioenergetics and Biomembranes, vol.95, issue.257, pp.195-214, 2009.
DOI : 10.1007/s10863-009-9214-x

URL : https://hal.archives-ouvertes.fr/hal-00380282

S. Pelloux, J. Robillard, R. Ferrera, A. Bilbaut, C. Ojeda et al., Non-beating HL-1 cells for confocal microscopy: Application to mitochondrial functions during cardiac preconditioning, Progress in Biophysics and Molecular Biology, vol.90, issue.1-3, pp.270-298, 2006.
DOI : 10.1016/j.pbiomolbio.2005.06.009

URL : https://hal.archives-ouvertes.fr/inserm-00392258

T. Anmann, R. Guzun, N. Beraud, S. Pelloux, A. V. Kuznetsov et al., Different kinetics of the regulation of respiration in permeabilized cardiomyocytes and in HL-1 cardiac cells, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1757, issue.12, pp.1597-1606, 2006.
DOI : 10.1016/j.bbabio.2006.09.008

A. V. Kuznetsov, T. Tiivel, P. Sikk, T. Kaambre, L. Kay et al., Striking Differences Between the Kinetics of Regulation of Respiration by ADP in Slow-Twitch and Fast-Twitch Muscles In Vivo, European Journal of Biochemistry, vol.95, issue.3, pp.909-915, 1996.
DOI : 10.1016/0005-2728(96)00011-4

URL : https://hal.archives-ouvertes.fr/inserm-00391362

F. Appaix, A. V. Kuznetsov, Y. Usson, L. Kay, T. Andrienko et al., Possible Role of Cytoskeleton in Intracellular Arrangement and Regulation of Mitochondria, Experimental Physiology, vol.88, issue.1, pp.175-190, 2003.
DOI : 10.1113/eph8802511

URL : https://hal.archives-ouvertes.fr/hal-00192526

D. Brdizka, Mitochondrial VDAC and its complexes Energy for Life, Molecular System Bioenergetics, pp.165-194, 2007.

T. K. Rostovtseva and S. M. Bezrukov, VDAC regulation: role of cytosolic proteins and mitochondrial lipids, Journal of Bioenergetics and Biomembranes, vol.1706, issue.3, pp.163-170, 2008.
DOI : 10.1007/s10863-008-9145-y

T. K. Rostovtseva, K. L. Sheldon, E. Hassanzadeh, C. Monge, V. A. Saks et al., Tubulin binding blocks mitochondrial voltage-dependent anion channel and regulates respiration, Proc. Natl. Acad. Sci, pp.18746-18751, 2008.
DOI : 10.1073/pnas.0806303105

C. Monge, A. Grichine, T. Rostovtseva, P. Sackett, and V. A. Saks, Compartmentation of ATP in cardiomyocytes and mitochondria. Kinetic studies and direct measurements, Biophys. J, pp.96-241, 2009.

P. L. Pedersen, Y. H. Ko, and S. Hong, ATP synthases in the year 2000: Evolving views about the structures of these remarkable enzyme complexes, Journal of Bioenergetics and Biomembranes, vol.32, issue.4, pp.325-332, 2000.
DOI : 10.1023/A:1005594800983

Y. H. Ko, M. Delannoy, J. Hullihen, W. Chiu, P. L. Pedersen et al., Mitochondrial ATP Synthasome: CRISTAE-ENRICHED MEMBRANES AND A MULTIWELL DETERGENT SCREENING ASSAY YIELD DISPERSED SINGLE COMPLEXES CONTAINING THE ATP SYNTHASE AND CARRIERS FOR Pi AND ADP/ATP, Journal of Biological Chemistry, vol.278, issue.14, pp.12305-12309, 2003.
DOI : 10.1074/jbc.C200703200

C. Chen, Y. Ko, M. Delannoy, S. J. Ludtke, W. Chiu et al., Mitochondrial ATP Synthasome: THREE-DIMENSIONAL STRUCTURE BY ELECTRON MICROSCOPY OF THE ATP SYNTHASE IN COMPLEX FORMATION WITH CARRIERS FOR Pi AND ADP/ATP, Journal of Biological Chemistry, vol.279, issue.30, pp.31761-31768, 2004.
DOI : 10.1074/jbc.M401353200

P. L. Pedersen, Transport ATPases into the year 2008: a brief overview related to types, structures, functions and roles in health and disease, Journal of Bioenergetics and Biomembranes, vol.22, issue.5-6, pp.349-355, 2007.
DOI : 10.1007/s10863-007-9123-9

P. L. Pedersen and . Warburg, Warburg, me and Hexokinase 2: Multiple discoveries of key molecular events underlying one of cancers??? most common phenotypes, the ???Warburg Effect???, i.e., elevated glycolysis in the presence of oxygen, Journal of Bioenergetics and Biomembranes, vol.12, issue.Pt 2, pp.211-222, 2007.
DOI : 10.1007/s10863-007-9094-x

S. A. Smith, S. J. Montain, G. P. Zientara, and R. A. Fielding, Use of phosphocreatine kinetics to determine the influence of creatine on muscle mitochondrial respiration: an in vivo 31P-MRS study of oral creatine ingestion, Journal of Applied Physiology, vol.96, issue.6, pp.2288-2292, 2004.
DOI : 10.1152/japplphysiol.01021.2003

G. Lenaz and M. L. Genova, Kinetics of integrated electron transfer in the mitochondrial respiratory chain: random collisions vs. solid state electron channeling, AJP: Cell Physiology, vol.292, issue.4, pp.1221-1239, 2007.
DOI : 10.1152/ajpcell.00263.2006

J. Vonck and E. Schafer, Supramolecular organization of protein complexes in the mitochondrial inner membrane, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1793, issue.1, pp.117-124, 2009.
DOI : 10.1016/j.bbamcr.2008.05.019

R. J. Zeleznikar, P. P. Dzeja, and N. D. Goldberg, Adenylate kinase-catalyzed phosphoryl transfer couples ATP utilization with its generation by glycolysis in intact muscle, J. Biol. Chem, vol.270, pp.7311-7319, 1995.

M. Vendelin, O. Kongas, and V. A. Saks, Regulation of mitochondrial respiration in heart cells analyzed by reaction-diffusion model of energy transfer, Am. J. Physiol. Cell Physiol, vol.278, pp.747-764, 2000.
URL : https://hal.archives-ouvertes.fr/inserm-00392269

M. K. Aliev and V. A. Saks, Compartmentalized energy transfer in cardiomyocytes: use of mathematical modeling for analysis of in vivo regulation of respiration, Biophysical Journal, vol.73, issue.1, pp.428-445, 1997.
DOI : 10.1016/S0006-3495(97)78082-2

URL : https://hal.archives-ouvertes.fr/inserm-00391359

D. Santos, P. Aliev, M. K. Diolez, P. Duclos, F. Besse et al., Metabolic Control of Contractile Performance in Isolated Perfused Rat Heart. Analysis of Experimental Data by Reaction:Diffusion Mathematical Model, Journal of Molecular and Cellular Cardiology, vol.32, issue.9, pp.1703-1734, 2000.
DOI : 10.1006/jmcc.2000.1207

S. C. Forbes, G. H. Raymer, J. M. Kowalchuk, R. T. Thompson, and G. D. Marsh, Effects of recovery time on phosphocreatine kinetics during repeated bouts of heavy-intensity exercise, European Journal of Applied Physiology, vol.99, issue.6, pp.665-675, 2008.
DOI : 10.1007/s00421-008-0762-2

S. C. Forbes, J. M. Slade, R. M. Francis, and R. A. Meyer, Comparison of oxidative capacity among leg muscles in humans using gated (31)P 2-D chemical shift imaging, NMR Biomed, vol.22, pp.1063-1071, 2009.

R. G. Larsen, D. M. Callahan, S. A. Foulis, and J. A. Kent-braun, In vivo oxidative capacity varies with muscle and training status in young adults, Journal of Applied Physiology, vol.107, issue.3, pp.873-879, 2009.
DOI : 10.1152/japplphysiol.00260.2009

M. Spindler, B. Illing, M. Horn, M. De-groot, G. Ertl et al., Temporal fluctuations of myocardial high-energy phosphate metabolites with the cardiac cycle, Basic Research in Cardiology, vol.96, issue.6, pp.553-556, 2001.
DOI : 10.1007/s003950170006

H. Honda, K. Tanaka, N. Akita, and T. Haneda, Cyclical Changes in High-Energy Phosphates During the Cardiac Cycle by Pacing-Gated 31P Nuclear Magnetic Resonance, Circulation Journal, vol.66, issue.1, pp.80-86, 2002.
DOI : 10.1253/circj.66.80

S. Gudbjarnason, P. Mathes, and K. G. Ravens, Functional compartmentation of ATP and creatine phosphate in heart muscle, Journal of Molecular and Cellular Cardiology, vol.1, issue.3, pp.325-339, 1970.
DOI : 10.1016/0022-2828(70)90009-X

H. Kammermeier, E. Roeb, E. Jungling, and B. Meyer, Regulation of systolic force and control of free energy of ATP-hydrolysis in hypoxic hearts, Journal of Molecular and Cellular Cardiology, vol.22, issue.6, pp.707-713, 1990.
DOI : 10.1016/0022-2828(90)91013-W

M. Griese, V. Perlitz, E. Jungling, and H. Kammermeier, Myocardial performance and free energy of ATP-hydrolysis in isolated rat hearts during graded hypoxia, reoxygenation and high Ke+-perfusion, Journal of Molecular and Cellular Cardiology, vol.20, issue.12, pp.1189-1201, 1988.
DOI : 10.1016/0022-2828(88)90598-6

R. G. Weiss, G. Gerstenblith, and P. A. Bottomley, ATP flux through creatine kinase in the normal, stressed, and failing human heart, Proc. Natl. Acad. Sci. USA 2005, pp.808-813
DOI : 10.1073/pnas.0408962102

J. N. Weiss, L. Yang, and Z. Qu, Thematic review series: Systems Biology Approaches to Metabolic and Cardiovascular Disorders. Network perspectives of cardiovascular metabolism, The Journal of Lipid Research, vol.47, issue.11, pp.2355-2366, 2006.
DOI : 10.1194/jlr.R600023-JLR200

J. S. Ingwall, On the hypothesis that the failing heart is energy starved: Lessons learned from the metabolism of ATP and creatine, Current Hypertension Reports, vol.39, issue.1 suppl, pp.457-464, 2006.
DOI : 10.1007/s11906-006-0023-x

J. S. Ingwall and R. G. Weiss, Is the Failing Heart Energy Starved?: On Using Chemical Energy to Support Cardiac Function, Circulation Research, vol.95, issue.2, pp.135-145, 2004.
DOI : 10.1161/01.RES.0000137170.41939.d9

R. Ventura-clapier, A. Garnier, and V. Veksler, Energy metabolism in heart failure, The Journal of Physiology, vol.543, issue.1, pp.1-13, 2004.
DOI : 10.1113/jphysiol.2003.055095

URL : https://hal.archives-ouvertes.fr/inserm-00290146

S. Neubauer, The Failing Heart ??? An Engine Out of Fuel, New England Journal of Medicine, vol.356, issue.11, pp.1140-1151, 2007.
DOI : 10.1056/NEJMra063052

R. Ventura-clapier, Exercise training, energy metabolism, and heart failureThis paper is one of a selection of papers published in this Special Issue, entitled 14th International Biochemistry of Exercise Conference????? Muscles as Molecular and Metabolic Machines, and has undergone the Journal???s usual peer review process., Applied Physiology, Nutrition, and Metabolism, vol.34, issue.3, pp.336-339, 2009.
DOI : 10.1139/H09-013

R. Ventura-clapier, E. De-sousa, and V. Veksler, Metabolic Myopathy in Heart Failure, Physiology, vol.17, issue.5, pp.191-196, 2002.
DOI : 10.1152/nips.01392.2002

V. A. Saks, O. Kongas, M. Vendelin, and L. Kay, Role of the creatine/phosphocreatine system in the regulation of mitochondrial respiration, Acta Physiologica Scandinavica, vol.1102, issue.4, pp.635-641, 2000.
DOI : 10.1063/1.365919

URL : https://hal.archives-ouvertes.fr/inserm-00391336

S. Bose, S. French, F. J. Evans, F. Joubert, and R. S. Balaban, Metabolic Network Control of Oxidative Phosphorylation, Journal of Biological Chemistry, vol.278, issue.40, pp.39155-39165, 2003.
DOI : 10.1074/jbc.M306409200

M. Scheibye-knudsen and B. Quistorff, Regulation of mitochondrial respiration by inorganic phosphate; comparing permeabilized muscle fibers and isolated mitochondria prepared from type-1 and type-2 rat skeletal muscle, European Journal of Applied Physiology, vol.292, issue.Suppl-95, pp.279-287, 2009.
DOI : 10.1007/s00421-008-0901-9