S. Badillo, T. Vincent, and P. Ciuciu, Impact of the joint detection-estimation approach on random effects group studies in FMRI, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.376-380, 2011.
DOI : 10.1109/ISBI.2011.5872427

URL : https://hal.archives-ouvertes.fr/hal-00854626

M. Beal and Z. Ghahramani, The variational Bayesian EM algorithm for incomplete data: with application to scoring graphical model structures, Bayesian Statistics, vol.7, pp.453-464, 2003.

R. Casanova, S. Ryali, J. Serences, L. Yang, R. Kraft et al., The impact of temporal regularization on estimates of the BOLD hemodynamic response function: A comparative analysis, NeuroImage, vol.40, issue.4, pp.1606-1618, 2008.
DOI : 10.1016/j.neuroimage.2008.01.011

G. Celeux, F. Forbes, and N. Peyrard, EM procedures using mean field-like approximations for Markov model-based image segmentation, Pattern Recognition, vol.36, issue.1, pp.131-144, 2003.
DOI : 10.1016/S0031-3203(02)00027-4

URL : https://hal.archives-ouvertes.fr/inria-00072526

K. Friston, P. Jezzard, and R. Turner, Analysis of functional MRI time-series, Human Brain Mapping, vol.12, issue.2, pp.153-171, 1994.
DOI : 10.1002/hbm.460010207

D. A. Handwerker, J. M. Ollinger, and M. Esposito, Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses, NeuroImage, vol.21, issue.4, pp.1639-1651, 2004.
DOI : 10.1016/j.neuroimage.2003.11.029

J. Kershaw, B. A. Ardekani, and I. Kanno, Application of Bayesian inference to fMRI data analysis, IEEE Transactions on Medical Imaging, vol.18, issue.12, pp.1138-1153, 1999.
DOI : 10.1109/42.819324

S. Makni, C. Beckmann, S. Smith, and M. Woolrich, Bayesian deconvolution fMRI data using bilinear dynamical systems, NeuroImage, vol.42, issue.4, pp.1381-1396, 2008.
DOI : 10.1016/j.neuroimage.2008.05.052

S. Makni, J. Idier, T. Vincent, B. Thirion, G. Dehaene-lambertz et al., A fully Bayesian approach to the parcel-based detection-estimation of brain activity in fMRI, NeuroImage, vol.41, issue.3, pp.941-969, 2008.
DOI : 10.1016/j.neuroimage.2008.02.017

URL : https://hal.archives-ouvertes.fr/cea-00333624

S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank, Brain magnetic resonance imaging with contrast dependent on blood oxygenation., Proceedings of the National Academy of Sciences, vol.87, issue.24, pp.9868-9872, 1990.
DOI : 10.1073/pnas.87.24.9868

W. D. Penny, S. Kiebel, and K. J. Friston, Variational Bayesian inference for fMRI time series, NeuroImage, vol.19, issue.3, pp.727-741, 2003.
DOI : 10.1016/S1053-8119(03)00071-5

P. Pinel, B. Thirion, S. Mériaux, A. Jobert, J. Serres et al., Fast reproducible identification and large-scale databasing of individual functional cognitive networks, BMC Neuroscience, vol.8, issue.1, p.91, 2007.
DOI : 10.1186/1471-2202-8-91

URL : https://hal.archives-ouvertes.fr/hal-00784462

T. Vincent, L. Risser, and P. Ciuciu, Spatially Adaptive Mixture Modeling for Analysis of fMRI Time Series, IEEE Transactions on Medical Imaging, vol.29, issue.4, pp.1059-1074, 2010.
DOI : 10.1109/TMI.2010.2042064

URL : https://hal.archives-ouvertes.fr/cea-00470594

M. Woolrich and T. Behrens, Variational bayes inference of spatial mixture models for segmentation, IEEE Transactions on Medical Imaging, vol.25, issue.10, pp.1380-1391, 2006.
DOI : 10.1109/TMI.2006.880682