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Abstract

Background: Monitoring the time course of mortality by cause is a key public health issue. However, several

mortality data production changes may affect cause-specific time trends, thus altering the interpretation. This paper

proposes a statistical method that detects abrupt changes ("jumps”) and estimates correction factors that may be

used for further analysis.

Methods: The method was applied to a subset of the AMIEHS (Avoidable Mortality in the European Union, toward

better Indicators for the Effectiveness of Health Systems) project mortality database and considered for six

European countries and 13 selected causes of deaths. For each country and cause of death, an automated jump

detection method called Polydect was applied to the log mortality rate time series. The plausibility of a data

production change associated with each detected jump was evaluated through literature search or feedback

obtained from the national data producers.

For each plausible jump position, the statistical significance of the between-age and between-gender jump

amplitude heterogeneity was evaluated by means of a generalized additive regression model, and correction

factors were deduced from the results.

Results: Forty-nine jumps were detected by the Polydect method from 1970 to 2005. Most of the detected jumps

were found to be plausible. The age- and gender-specific amplitudes of the jumps were estimated when they

were statistically heterogeneous, and they showed greater by-age heterogeneity than by-gender heterogeneity.

Conclusion: The method presented in this paper was successfully applied to a large set of causes of death and

countries. The method appears to be an alternative to bridge coding methods when the latter are not

systematically implemented because they are time- and resource-consuming.

Background
The study of cause-specific mortality time series is one

of the main sources of information for public health

monitoring [1-3]. However, while demonstrative and

striking use can be made of such trends when commu-

nicating with the general public, many concerns relating

to the data production process have to be addressed.

More specifically, it is necessary to evaluate, and, if

necessary, correct artifacts due to data production

changes that may bias the interpretation of time trends

over a study period.

The production processes for mortality databases have

been similar in many industrialized countries (particu-

larly in Western Europe) since the end of World War II.

When a death occurs, a medical certificate based on the

international form recommended by the World Health

Organization (WHO) [4] is filled in by a physician. The

physician reports the causes of death that directly led or

contributed to the death on the death certificate. The

death certificate is then forwarded to a national (e.g.,

France) or regional (e.g., Germany) coding office, where

it is coded using the International Classification of
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Diseases (ICD). The ICD has been regularly reviewed

and improved since the end of the 19th century [5]. For

each death, an underlying cause of death is selected in

compliance with the ICD rules. The underlying cause is

the most commonly used in statistical analyses.

Underlying cause coding is a complex process and

thus implies potential between-coder coding differences.

These differences may produce coding discrepancies

over time and space. This is why, in addition to ICD

revisions, coding may induce variations in the causes of

death by period, region, or country. This situation has

resulted in countries using increasingly automated cod-

ing systems (ACS).

Variations in mortality trends may also be related to

changes in death certification (death certificates, certifi-

cation habits, diagnoses, etc.). However, the changes are

often diffuse and take place over long periods of time,

making them harder to take into account. Moreover, the

methods of analyzing actual historical variations in mor-

tality by cause of death and taking into account data

production process changes are essentially related to

changes in the coding process. Of these methods, three

main kinds can be distinguished: bridge coding, concor-

dance table and cause recombination, and time series

analysis-based methods.

Bridge coding

The bridge coding method is used when there is a major

change in the coding process (ICD version change or

switch from a manual to an automatic coding system).

The method consists of coding a large set of death certi-

ficates twice, applying the rules prevailing before and

after the change. The ratios of numbers of death calcu-

lated by cause category before and after the change,

called “comparability ratios,” generate information for

trend analyses and characterization of “jumps” in mor-

tality time series. However, analyses of long-period time

series do not necessarily use comparability ratios [1,6].

Bridge coding analyses have been carried out in the

United States and England and Wales for each ICD

change since the eighth version of the ICD (ICD-8)

[7-12]. Bridge coding analysis was also used and gener-

ated detailed results for the change from ICD-9 to ICD-

10 in some countries (Scotland, Sweden, Italy, Spain,

France, and Canada) [13-18]. However, to the authors’

knowledge, most European countries have not imple-

mented bridge coding to assess ICD changes. Compar-

ability ratios are heterogeneous between country, most

likely because of variations in intra-group composition

of causes of death, reporting practices, and ICD coding

interpretation. Therefore, it is unlikely that a compar-

ability ratio for one country can be inferred from the

results of other countries.

Concordance table and cause recombination

The concordance table and cause recombination

approach consists of determining the most consistent

cause categories, under medical consideration, for two

successive ICD revisions. Analysis of mortality using the

resulting categories is then theoretically influenced little

by coding changes. This approach typically only works

well when considering the coding of any particular

cause reported on the death certificate. It is often not

effective when considering changes in the rules for

selecting the underlying cause of death, especially when

such rule changes favor the selection of one cause over

another. It is often impossible to recombine codes to

fully account for these changes.

The method was used on French, Dutch, and Swedish

data [19-21]. This approach, complex and time-consum-

ing when it is applied to a single country, is even more

difficult to use in the context of an international study

[22].

Time series analysis

The time series analysis method consists of looking for

sustainable jumps, evaluating their statistical signifi-

cance and amplitude, and possibly smoothing the time

series by adjusting the data with correction factors.

The method is easy to document, even when the

volume of data considered is large (many countries,

many causes of death, etc.). Furthermore, the method

is necessary when the time of the change in the data

production process is unknown [23]. To the authors’

knowledge, the detection of jumps in mortality data

has rarely been undertaken [22,24], but, in particular

for Janssen et al’s work [22], has given rise to fruitful

international public health studies [25-28]. However,

the methods used in these studies did not take advan-

tage of the recent development of automated jump

detection methods in indexed data analysis (by time or

other variables) [29-31]. Interest in the automatic jump

detection method resides in its ability to avoid the sub-

jectivity of visual detection or a priori selection of

jump positions.

The aim of this paper is to propose a complement to

a time series analysis method that was previously devel-

oped by Janssen et al. [22], allowing detection of sus-

tainable jumps attributable to changes in data

production and development of correction factors by

age and gender in order to enable subsequent epidemio-

logical analyses. The method is then applied to a wide

range of different mortality time series: 13 causes of

death for each of six European countries participating in

the AMIEHS (Avoidable Mortality in the European

Union, toward better Indicators for the Effectiveness of

Health Systems) project http://amiehs.lshtm.ac.uk/.
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Methods
General approach

The following step-by-step approach was adopted:

1. Given a list of selected causes of death, the ICD

codes to be considered were determined by nosologists

based on the correspondence table method, while main-

taining the medical consistency of the list of codes for

the various ICD revisions.

2. An automated jump detection method was applied

to the mortality rate time series for each of the selected

causes of death.

3. For documented jumps (e.g., ICD changes), the

available comparability ratios were compared to the

amplitude of the estimated jumps. For nondocumented

jumps, general information feedback was requested from

the national data producers.

4. For documented or plausible jump positions, the

statistical significance of the between-age and between-

gender jump amplitude heterogeneity was evaluated by

means of a regression model, and correction factors

were deduced from the results.

Mortality data

The mortality data were derived from the AMIEHS pro-

ject dataset. Six countries were included in the analysis:

Spain, France, the Netherlands, Germany, Sweden, and

England and Wales (considered together). In order to

simplify presentation, Estonia, which is participating in

the AMIEHS project, has not been considered in this

paper because Estonia used a specific coding system

until 1994. The study period is 1970 to 2005. While

causes of death are usually coded with four-digit ICD

codes, the AMIEHS dataset only contains three-digit

codes for practical reasons. Some precision in the char-

acterization of causes has thus been lost.

Generally, deaths are coded using the same ICD revi-

sion in each calendar year. The dates of the ICD revisions

used by each European country are presented in table 1.

Code allocation

For 13 causes of death selected in the AMIEHS project,

the method of allocating the ICD-8, ICD-9, and ICD-10

codes was as follows:

• When the cause was included in the Eurostat 65

causes shortlist [32], the codes defined by Eurostat

were retained.

• For other causes, two nosologists independently

selected the optimal three-digit codes. Then, a final

choice was made in order to minimize the coding-

related jumps in cause of death-specific time series

analysis. Table 2 shows the related codes.

The automatic jump detection method

The Polydect method [33] was applied to yearly log

mortality rate time series for each country and cause of

death.

Given that mortality analyses are often based on mul-

tiplicative assumptions, log-linear generalized models

were used. Thus, the time series jump detection method

was applied to the log mortality rates.

Let Ot, be the number of deaths during year t, pt be

the number of person-years, and Lt = log

(

Ot

pt

)

be the

log mortality rate time series. The occurrence of jumps

in the log mortality rate time series may be expressed as

follows:

log
(

E(Ot)
)

= log(pt)

+g(t) +
∑

t’∈S

dt’ · 1(t>t’),

Table 1 Dates of ICD change and automatic coding

system (ACS) implementation for six of the AMIEHS

European countries

Country ICD-8 ICD-9 ICD-10 ACS

England and Wales 1968 1979 2001 1993

France 1968 1979 2000 2000

Germany 1968 1979 1998 2008

Netherlands 1969 1979 1996

Spain 1968 1980 1999

Sweden 1969 1987 1997 1987

Table 2 ICD-8, ICD-9 and ICD-10 codes for the 13

selected causes of death

Cause ICD-8 ICD-9 ICD-10

Cerebrovascular disease 430-438 430-438 I60-I69

Conditions originating in the perinatal
period

760-779 760-779 P00-P96

Congenital heart disease 746 745-746 Q20-
Q24

Heart failure 428-429 428-429 I50-I51

Hodgkin’s disease 201 201 C81

Hypertension 400-404 401-404 I10-I13

Ischemic heart disease 410-414 410-414 I20-I25

Malignant colorectal neoplasm 153-154 153-154 C18-C21

Malignant neoplasm of cervix uteri 180 180 C53

Malignant neoplasm of testes 186 186 C62

Peptic ulcer 531,
532

531,
532

K25-K26

Renal failure 593,
792

584-586 N17-
N19

Rheumatic heart disease 390-398 390-398 I00-I09
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In which g is a continuous function, S is the set of

jump locations, and {dt,t Î S} are the corresponding

jump magnitudes.

In this model, g, S, and {dt, t Î S} are all assumed

unknown.

The method consists of three main steps:

1. A left and right limit of E(Lt) were estimated for

each point t using two local polynomial smoothers,

denoted Pl(t) and Pr(t), fitted on [t - h, t) and (t, t + h],

respectively, where h is the bandwidth for the estimation

to be estimated in further steps. If t ∉ S, and the jumps

location are distant from at least h, then, given that g is

continuous, we expect E(P1(t)) = E(Pr(t)) = g(t). Else, if t

Î S, we expect E(P1(t)) = g(t) and E(Pr(t)) = g(t)+dt.

The noise sof the Lt process is estimated as:

σ̂ =

∑

t
min

(

(

Lt − Pl(t)
)2

,
(

Lt − Pr(t)
)2

)

T − 1

The polynomial kernel of the smoothers could, a

priori, be constant, linear, or quadratic, depending on

the number of observations and the curvature level of

the time series. Since, in the present case, the number

of observations was not greater than 40, and the time

series was expected to be quite stable, a linear kernel

was selected.

2. Considering M(t) = Pr(t)-P1(t), jump points were

defined as points where the signal-to-noise ratio

∣

∣M(t)
∣

∣

σ̂

was higher than a threshold C
a
.

C
a
was chosen such that, if t is not a jump point,

P

(
∣

∣M(t)
∣

∣

σ̂

> Cα

)

≤ α . The analytic calculation of C
a
is

given elsewhere [33]. In the following steps, a was set to

10-5, a low value, in order to avoid as many as possible

false positive jumps.

Then, S =

{

t :

∣

∣M(t)
∣

∣

σ̂

> Cα

}

and
{

d̂t = M(t), t ∈ Ŝ
}

were directly estimated. When several jumps were

detected in a time range less than the bandwidth, only

the jump that maximized M(t) was retained.

3. The bandwidth h was estimated by minimizing the

Hausdorff distance [29], defined as:

dH(S, Ŝ; h) =

max

{

sup
t1∈Ŝ

inf
t2∈Ŝ

|t1 − t2| , inf
t1∈Ŝ

sup
t2∈Ŝ

|t1 − t2|

}

,

in which dH(S, Ŝ; h) was calculated through a boot-

strap procedure, setting B, the number of batches used,

equal to 1000. A full description of this method is given

elsewhere [33].

For a given jump i, the multiplicative factor MFi
between before and after the jump period was calculated

as:

MFi = exp (di) ,

in which di is the amplitude of the jump.

Age- and gender-heterogeneity test

Age categories were defined as the tertile of the cause-

specific death counts.

Generally, when considering J different population

groups (age and gender), a generalized additive model

(GAM) with an overdispersed Poisson distribution is

used [34,35]. The model has the following form:

log
(

E
(

Ot,j

))

= log
(

pt,j

)

+gj(t) +
∑

t’∈S

dt’,j · 1(t>t’),

in which j is one of the J groups, gj are continuous

functions fitted by a thin plate penalized regression

spline, S is the set of jump locations, and {dt,j, t ∉ S} are

the corresponding jump magnitudes for group j.

S is supposed known, and the aim is to test for each t

Î S:

H0:dt,1 = · · · = dt,J

Backward variable selection was used to suppress, suc-

cessively, age and gender from the model if their respec-

tive effects on the jump amplitude were not statistically

significant at the 5% level, using Wald’s test.

The MGCV (Multiple smoothing parameter estima-

tion by Generalized Cross Validation) R package was

used for this purpose [36].

Correction factors

Correction factors were calculated for all confirmed

jumps.

The correction factors were calculated for use in sub-

sequent analyses, not discussed in this article, with a

log-linear model of general form:

log
(

E(Ot)
)

=

log(pt) + ct + f(Xt),

in which t is the year between T1 and T2 (respectively

equal to 1970 and 2005 in this study); ct is the correc-

tion factor and f(Xt) could be any function of indepen-

dent variables to be estimated.

The correction factors were set so that the last values

of the corrected mortality rates were equal to the exact
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mortality rates, i.e., cT2
= 0 . This choice was based on

the supposed superior quality and between-country

comparability of the most recent year’s data.

The foregoing results in the following definition of the

correction factors ct:

For t Î [T1, T2],

ct =
∑

t’∈S,t’<t

dt’ −
∑

t’∈S

dt’

= −
∑

t’∈S,t’≥t

dt’.

The estimate of ct was then directly obtained from the

estimates of S and dt detailed earlier.

A corrected version of the log mortality rate was then

obtained as:

Lcor
t = Lt − ct

Results
Jump detection

By applying the jump detection method to all of the

time series, a set of jumps was obtained (table 3). Most

of the jumps detected were concomitant with a known

coding change (ICD updates or change from a manual

to an automatic coding system). Some of the jumps (e.

g., for heart failure and rheumatic heart disease) were of

great amplitude and almost systematically observed in

each country. For the former East Germany, most of the

changes were concomitant with the reunification of

Germany.

The answers from data producers, contacted to deter-

mine whether the jump was related to a data production

issue, were consistent between countries. Most (exclud-

ing the “No answer,” 42 out of 44) of the detected

jumps were confirmed to be related to a coding change.

The three-digit coding constraint was given as an expla-

nation for some jumps (rheumatic heart disease in

France, ischemic heart disease in Spain, etc.), especially

when countries chose specific codes (as in Spain for

malignant colorectal neoplasm). The 1990 and 1991

jumps in East Germany were related to a complete

change of coding staff. However, most of the coding

changes are not documented by a literature reference.

Given the large proportion of confirmed jumps, we

decided to exclude from subsequent treatment the

jumps for which we received a negative answer from

data producers.

It was possible to compare a few of the multiplicative

factors with the comparative ratios generated by bridge

coding studies corresponding to ICD-9 to ICD-10

changes (table 4). In particular, the large multiplicative

factors (e.g., for rheumatic heart disease) had no related

comparative ratios. Some coding changes were not

detected by the jump detection method (Hodgkin’s dis-

ease in England and Wales and Sweden and renal failure

in England and Wales). However, none of the detected

jumps were found unrelated to a coding change.

Corrected mortality rate time series

Considering some of the most clear-cut time series, the

profile of the corrected time series is quite different

from that of the uncorrected series (Figure 1). It is note-

worthy that the corrected curves do not reduce the gen-

eral trends at the jump positions, which would have

been the case if constant rather than linear kernel

smoothing was chosen. Rather, they prolong the trends,

even if the jump is in the opposite direction of the gen-

eral trend.

Concerning hypertension in the Netherlands, we

observe a trend shift between the periods before and

after the corrected jumps. Such trend shift is not taken

into account by the current method.

Estimates of jump amplitudes by age and gender

With regard to the jump amplitude heterogeneity test by

age and gender, only 19 out of 47 jumps were not statis-

tically significantly heterogeneous (table 5). Five of the

jumps were heterogeneous by gender, 15 by age, and

eight by age and gender simultaneously. While the jump

amplitudes are of the same order by gender, even when

statistically heterogeneous, they are of different orders

when considered by age group. This was particularly

marked for rheumatic heart disease and heart failure.

Discussion
The originality of the methodology reported herein

mainly resides in its ability to detect jumps automati-

cally using the Polydect method, without a priori or

visual investigation for jump positions. In addition,

application of the method to a large dataset is less time-

consuming and less human-dependent than any other

known method.

Some methodological choices were made, such as the

choice of a linear kernel smoother and the choice of the

probability a of detecting fake jumps. Considering a

constant kernel smoother or different values of a

slightly affected the final set of detected jumps and only

for time series in which the jump amplitudes were of an

order comparable to that of the overall noise of the time

series. Choosing a low value of a insured a better accu-

racy in the jump’s amplitude estimation, which is more

statistically stable when the jump is of much larger

amplitude than the overall noise of the time series.

According to the visual inspection of time series graphs

and comparable bridge coding results, a jump’s
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Table 3 Jumps in the log mortality rate time series for the 13 selected causes of death from 1970 to 2006 identified

by the Polydect method

Country Underlying cause of death Year of the
jump

Multiplicative
factor1

Data producer
confirmation

Proposed jump
cause2

England and
Wales

Cerebrovascular disease 2001 1.24 Yes ICD-10

Conditions originating in the perinatal
period

1986 0.09 No answer No

Conditions originating in the perinatal
period

2001 2.78 Yes ACS

Heart failure 1979 3.59 Yes ICD-9

Heart failure 1984 0.74 Yes No

Heart failure 1993 1.61 Yes ACS

Renal failure 1979 2.90 Yes ICD-9

Renal failure 1993 2.33 Yes ACS

Rheumatic heart disease 1979 0.63 Yes ICD-9

Rheumatic heart disease 2001 0.77 Yes ICD-10

France Heart failure 1979 1.99 Yes ICD-9

Hypertension 1979 0.71 Yes ICD-9

Hypertension 1998 1.26 Yes Death certificate

Malignant colorectal neoplasm 1979 0.92 Yes ICD-9

Malignant colorectal neoplasm 2000 0.94 No ICD-10

Peptic ulcer 1979 0.74 Yes ICD-9

Peptic ulcer 2000 0.63 Yes ICD-10

Rheumatic heart disease 1979 0.36 Yes ICD-9

Rheumatic heart disease 2000 1.54 Yes ICD-10

East Germany Cerebrovascular disease 1991 1.45 Yes Reunion

Conditions originating in the perinatal
period

1991 0.46 Yes Reunion

Heart failure 1990 1.85 Yes Reunion

Heart failure 1991 0.52 Yes Reunion

Hypertension 1991 0.51 Yes Reunion

Ischemic heart disease 1991 1.43 Yes Reunion

Malignant colorectal neoplasm 1991 1.21 Yes Reunion

Rheumatic heart disease 1998 1.14 Yes ICD-10

West Germany Heart failure 1979 1.65 Yes IC-D9

Hodgkin’s disease 1994 0.59 No No

Ischemic heart disease 1979 0.87 Yes ICD-9

Rheumatic heart disease 1979 0.51 Yes ICD-9

Netherlands Heart failure 1979 1.54 Yes ICD-9

Heart failure 1996 0.76 No answer ICD-10

Hypertension 1980 0.65 Yes No

Renal failure 1979 0.75 No answer ICD-9

Rheumatic heart disease 1992 5.40 No answer No

Rheumatic heart disease 1996 0.13 No answer ICD-10

Spain Conditions originating in the perinatal
period

1975 2.94 Yes Definition change

Heart failure 1980 1.41 Yes ICD-9

Ischemic heart disease 1980 0.93 Yes ICD-9

Malignant colorectal neoplasm 1980 0.78 Yes ICD-9

Renal failure 1980 1.73 Yes ICD-9

Sweden Heart failure 1987 5.55 Yes ICD-9

Malignant neoplasm of testes 1974 1.33 Yes No

Malignant neoplasm of testes 1979 0.74 Yes No
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amplitude estimates were reliable enough to be used in

subsequent analyses.

The codes used in this study to characterize the con-

ditions were not chosen to be used in all contexts.

Indeed, they were allocated with the constraint of being

comparable between three versions of the ICD and

based on three-digit codes. Taking each ICD individually

would certainly have led us to select other codes.

The method is designed to detect sustained jumps.

Therefore, it is not sensitive to the occurrence of one-

year outliers in time series data and it does not necessi-

tate considering them separately, unlike other methods

[22].

However, the proposed method is not able to detect

and correct for nonabrupt data production changes. For

example, if a new death certificate form, impacting certi-

fication practice and final coding, slowly spread through

the population (as was the case in France between 1997

and 1999), the impact on yearly death counts would

occur over several years. But, to the authors’ knowledge,

no general method is able to correct time-spread data

production changes.

When comparable, the multiplicative factors obtained

from bridge coding studies and time series methods

were similar [11,15-17,37,38].

The purpose of this article is not to challenge bridge

coding studies. However, bridge coding studies are not

implemented in all countries, and it would be very diffi-

cult and costly to do so retrospectively for every data

production change. The time series analysis methods

proposed herein provide a reliable way of correcting

data production changes affecting death count time

trends.

Given the indirect manner in which data production

changes are identified, the method necessitates feedback

from data producers in order to confirm and explain the

plausibility of the changes. Without that additional

information, the automatic method would blindly cor-

rect any detected jumps, some of which may be related

to real abrupt and sustained variations in the mortality

risk. However, it is not always straightforward for a data

producer to obtain a broad overview of past coding pro-

cess methods in the producer’s country. The reasons for

the occurrence of some of the oldest jumps may have

Table 3 Jumps in the log mortality rate time series for the 13 selected causes of death from 1970 to 2006 identified

by the Polydect method (Continued)

Renal failure 1987 0.69 Yes ICD-9

Renal failure 1997 1.23 Yes ICD-10

Rheumatic heart disease 1982 0.08 Yes Coding change

Rheumatic heart disease 1987 15.33 Yes ICD-9

1: multiplicative factor of the mortality rate between the period before and after the detected jump
2: new coding, implementation of which may have caused the jump

Table 4 Comparative ratios (CR) between bridge coding and multiplicative factors (MF) estimated by the jump

detection method for ICD-9 to ICD-10 coding change

France England and Wales Sweden Spain

Underlying cause of death CR MF CR MF CR MF CR MF

Cerebrovascular disease 0.97 1.00 1.13 1.13 1.03 1.00 - 1.00

Conditions originating in the perinatal period 1.03 1.00 - 2.24 1.02 1.00 - 1.00

Congenital heart disease - 1.00 - 1.00 - 1.00 - 1.00

Heart failure - 1.00 - 1.00 - 1.00 - 1.00

Hodgkin’s disease - 1.00 1.06 1.00 1.13 1.00 - 1.00

Hypertension - 1.00 - 1.00 - 1.00 - 1.00

Ischemic heart disease 1.03 1.00 1.01 1.00 1.00 1.00 1.00 1.00

Malignant colorectal neoplasm 0.97 0.94 1.01 1.00 0.99 1.00 1.00 1.00

Malignant neoplasm of cervix uteri 0.92 1.00 1.00 1.00 1.00 1.00 - 1.00

Malignant neoplasm of testes - 1.00 0.99 1.00 - 1.00 - 1.00

Peptic ulcer - 0.63 1.00 1.00 - 1.00 - 1.00

Renal failure - 1.00 1.08 1.00 - 1.23 - 1.00

Rheumatic heart disease - 1.54 - 0.77 - 1.00 - 1.00

CR: Comparative ratios obtained from bridge coding, calculated as the ratio of numbers of death calculated by cause category before and after the ICD change

MF: Multiplicative factor of the mortality rate between the period before and after the ICD change, equal 1.00 when no jump was detected

-: CR not available
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been lost. Therefore, the decision to take into account

or not any detected jump that is not confirmed by the

data producer will depend on the degree of confidence

that the jump is not attributable to a production change.

Some jumps are of great amplitude (e.g., rheumatic

heart disease). This may be observed when the cause

considered is highly likely to be the result of other

causes [10,23]. In that case, the death count time trend

is very sensitive to changes in coding rules (e.g., ICD-

10 rule 3). However, the absence of high-amplitude

jumps is not sufficient to ensure the interpretability of

time trends. Time trends for some conditions like

hypertension, heart failure, and renal failure have to be

interpreted cautiously. Indeed, the approach chosen

was to only consider the underlying cause of death,

and these specific causes may be selected as underly-

ing, due to lack of additional information about the

real underlying cause on the death certificate. In these

England and Wales France

Spain The Netherlands

Figure 1 Examples of corrected mortality rate (per 100,000 people) time series.
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Table 5 Multiplicative factor by age and gender, if statistically heterogeneous, for each detected jump

Country Underlying cause of death Year Gender2 Multiplicative factor1

Age tertile3

1st 2nd 3rd

Cerebrovascular disease 2001 Both 1.13

Conditions originating in the perinatal period 1986 Both 0.10

2001 Both 2.24

England and Wales Heart failure 1979 Male 4.78 3.86 3.34

Female 4.22 3.41 2.95

1984 Both 0.60 0.72 0.77

1993 Both 1.83 1.58 1.37

Renal failure 1979 Both 2.59

1993 Both 2.93 1.53 1.50

Rheumatic heart disease 1979 Male 0.54 0.50 0.39

Female 0.82 0.75 0.59

2001 Both 0.87 0.94 0.75

Heart failure 1979 Both 1.91

Hypertension 1979 Male 0.63

Female 0.70

1998 Both 1.14 1.10 1.25

France Malignant colorectal neoplasm 1979 Both 0.91

Peptic ulcer 1979 Both 0.75

2000 Both 0.61

Rheumatic heart disease 1979 Male 0.39 0.32 0.22

Female 0.62 0.51 0.35

2000 Both 1.53

Cerebrovascular disease 1991 Both 1.40

Conditions originating in the perinatal period 1991 Both 0.52

Heart failure 1990 Both 1.71 1.46 1.27

1991 Both 0.72

East Germany Hypertension 1991 Male 0.45 0.51 0.58

Female 0.52 0.58 0.67

Ischemic heart disease 1991 Male 1.14 1.21 1.30

Female 1.22 1.30 1.40

Malignant colorectal neoplasm 1991 Male 1.14 1.17 1.32

Female 1.04 1.07 1.20

Rheumatic heart disease 1998 Male 0.92

Female 1.25

Heart failure 1979 Both 1.60

West Germany Ischemic heart disease 1979 Male 0.98 0.92 0.76

Female 0.93 0.88 0.72

Rheumatic heart disease 1979 Male 0.46

Female 0.69

Heart failure 1979 Male 2.15 1.33 1.23

Female 1.86 1.15 1.06

1996 Both 0.64 0.77 0.82

Netherlands Hypertension 1980 Both 0.95 0.81 0.70

Renal failure 1979 Both 0.41 0.72 0.63

Rheumatic heart disease 1992 Both 0.89 2.76 5.32

1996 Both 0.42
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cases, mortality time trends could be influenced by

other conditions or slowly diffused certification

changes. A multiple cause approach considering each

cause mentioned on the death certificate could bring

very different results.

Large jumps may also be observed when a country

uses very specific codes. In this study, for practical rea-

sons, it was decided to use the same codes for all the

countries. However, the same general method could

have been applied to specific codes for each country.

In any event, time trends for causes with large ampli-

tude jumps, even after correction, are to be interpreted

with caution.

For some causes, jump amplitude was markedly het-

erogeneous by age. This result has already been

observed in bridge coding studies [11,16]. This result

could be attributed to three factors: first, for some

causes, subcause structure is different by age, and each

subcause is differentially impacted by production

change; second, older age mortality is more frequently

associated with multiple pathologies, and the selection

of one of these as the underlying cause may change

with coding rules; third, in certain cases, the same death

certificate may be interpreted differently depending on

the age of the deceased, and this difference may also

depend on the coding rules used.

Conclusions
The method presented in this paper was successfully

applied to a large set of causes of death and countries.

The set of causes considered is heterogeneous in terms

of frequency of occurrence (e.g., more than a 100-fold

difference between the frequencies of cerebrovascular

disease and malignant neoplasm of the testes) and sensi-

tivity to coding change (no sensitivity for congenital

heart disease and high sensitivity for heart failure).

In the future, it would be of interest to investigate the

extent to which such a time series approach could be

used in a spatial approach to some specific causes. The

hypotheses would then be that a large and clear-cut dis-

continuous change in cause-specific death count, coin-

ciding with a country’s border, is attributable to data

production discrepancies rather than to real underlying

mortality risk variations.
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Table 5 Multiplicative factor by age and gender, if statistically heterogeneous, for each detected jump (Continued)

Spain Conditions originating in the perinatal period 1975 Male 2.85

Female 3.08

Heart failure 1980 Both 1.46

Ischemic heart disease 1980 Both 0.94

Malignant colorectal neoplasm 1980 Male 0.84

Female 0.75

Renal failure 1980 Both 1.66 1.57 1.24

Heart failure 1987 Both 3.57 7.55 7.99

Malignant neoplasm of testes 1974 Both 1.40

1979 Both 0.41 0.72 0.88

Sweden Renal failure 1987 Both 0.65

1997 Both 1.59 0.88 1.23

Rheumatic heart disease 1982 Both 0.12

1987 Both 5.71 7.20 14.27

1: Multiplicative factor of the mortality rate between the period before and after the detected jump
2,3: Multiplicative factor estimated by age and gender, if statistically heterogeneous at the 5% level. Age and gender categorical variables were selected with a

backward procedure.
3: Age categories were defined by country and cause of death in order to include a third of the number of deaths
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