B. Bean, The action potential in mammalian central neurons, Nature Reviews Neuroscience, vol.538, issue.6, pp.451-465, 2007.
DOI : 10.1038/nrn2148

H. Kuba, T. Ishii, and H. Ohmori, Axonal site of spike initiation enhances auditory coincidence detection, Nature, vol.17, issue.2, pp.1069-1072, 2006.
DOI : 10.1038/nature05347

M. Grubb and J. Burrone, Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability, Nature, vol.9, issue.7301, pp.1070-1074, 2010.
DOI : 10.1038/nature09160

H. Kuba, Y. Oichi, and H. Ohmori, Presynaptic activity regulates Na+ channel distribution at the axon initial segment, Nature, vol.277, issue.7301, pp.1075-1078, 2010.
DOI : 10.1038/nature09087

T. Boiko, A. Van-wart, J. Caldwell, S. Levinson, J. Trimmer et al., Functional specialization of the axon initial segment by isoform-specific sodium channel targeting, J Neurosci, vol.23, pp.2306-2313, 2003.

S. Jenkins and V. Bennett, Ankyrin-G coordinates assembly of the spectrin-based membrane skeleton, voltage-gated sodium channels, and L1 CAMs at Purkinje neuron initial segments, The Journal of Cell Biology, vol.143, issue.5, pp.739-746, 2001.
DOI : 10.1083/jcb.200109026

A. Van-wart, J. Trimmer, and G. Matthews, Polarized distribution of ion channels within microdomains of the axon initial segment, The Journal of Comparative Neurology, vol.143, issue.2, pp.339-352, 2007.
DOI : 10.1002/cne.21173

J. Garrido, P. Giraud, E. Carlier, F. Fernandes, A. Moussif et al., A Targeting Motif Involved in Sodium Channel Clustering at the Axonal Initial Segment, Science, vol.300, issue.5628, pp.2091-2094, 2003.
DOI : 10.1126/science.1085167

G. Lemaillet, B. Walker, and S. Lambert, Identification of a Conserved Ankyrin-binding Motif in the Family of Sodium Channel ?? Subunits, Journal of Biological Chemistry, vol.278, issue.30, pp.27333-27339, 2003.
DOI : 10.1074/jbc.M303327200

E. Kordeli, S. Lambert, and V. Bennett, AnkyrinG. A new ankyrin gene with neural-specific isoforms localized at the axonal initial segment and node of Ranvier, J Biol Chem, vol.270, pp.2352-2359, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00005407

M. Inda, J. Defelipe, and A. Munoz, Voltage-gated ion channels in the axon initial segment of human cortical pyramidal cells and their relationship with chandelier cells, Proceedings of the National Academy of Sciences, vol.103, issue.8, pp.2920-2925, 2006.
DOI : 10.1073/pnas.0511197103

M. Kole, J. Letzkus, and G. Stuart, Axon Initial Segment Kv1 Channels Control Axonal Action Potential Waveform and Synaptic Efficacy, Neuron, vol.55, issue.4, pp.633-647, 2007.
DOI : 10.1016/j.neuron.2007.07.031

URL : http://doi.org/10.1016/j.neuron.2007.07.031

A. Lorincz and Z. Nusser, Cell-Type-Dependent Molecular Composition of the Axon Initial Segment, Journal of Neuroscience, vol.28, issue.53, pp.14329-14340, 2008.
DOI : 10.1523/JNEUROSCI.4833-08.2008

E. Goldberg, B. Clark, E. Zagha, M. Nahmani, A. Erisir et al., K+ Channels at the Axon Initial Segment Dampen Near-Threshold Excitability of Neocortical Fast-Spiking GABAergic Interneurons, Neuron, vol.58, issue.3, pp.387-400, 2008.
DOI : 10.1016/j.neuron.2008.03.003

Y. Ogawa, I. Horresh, J. Trimmer, D. Bredt, E. Peles et al., Postsynaptic Density-93 Clusters Kv1 Channels at Axon Initial Segments Independently of Caspr2, Journal of Neuroscience, vol.28, issue.22, pp.5731-5739, 2008.
DOI : 10.1523/JNEUROSCI.4431-07.2008

J. Devaux, K. Kleopa, E. Cooper, and S. Scherer, KCNQ2 Is a Nodal K+ Channel, Journal of Neuroscience, vol.24, issue.5, pp.1236-1244, 2004.
DOI : 10.1523/JNEUROSCI.4512-03.2004

Z. Pan, T. Kao, Z. Horvath, J. Lemos, J. Sul et al., A Common Ankyrin-G-Based Mechanism Retains KCNQ and NaV Channels at Electrically Active Domains of the Axon, Journal of Neuroscience, vol.26, issue.10, pp.2599-2613, 2006.
DOI : 10.1523/JNEUROSCI.4314-05.2006

H. Chung, Y. Jan, and J. Ly, Polarized axonal surface expression of neuronal KCNQ channels is mediated by multiple signals in the KCNQ2 and KCNQ3 C-terminal domains, Proceedings of the National Academy of Sciences, vol.103, issue.23, pp.8870-8875, 2006.
DOI : 10.1073/pnas.0603376103

Y. Ogawa, J. Oses-prieto, M. Kim, I. Horresh, E. Peles et al., ADAM22, A Kv1 Channel-Interacting Protein, Recruits Membrane-Associated Guanylate Kinases to Juxtaparanodes of Myelinated Axons, Journal of Neuroscience, vol.30, issue.3, pp.1038-1048, 2010.
DOI : 10.1523/JNEUROSCI.4661-09.2010

M. Traka, L. Goutebroze, N. Denisenko, M. Bessa, A. Nifli et al., Association of TAG-1 with Caspr2 is essential for the molecular organization of juxtaparanodal regions of myelinated fibers, The Journal of Cell Biology, vol.18, issue.6, pp.1161-1172, 2003.
DOI : 10.1083/jcb.84.2.261

S. Poliak, D. Salomon, H. Elhanany, H. Sabanay, B. Kiernan et al., channels in myelinated axons depends on Caspr2 and TAG-1, The Journal of Cell Biology, vol.19, issue.6, pp.1149-1160, 2003.
DOI : 10.1126/science.283.5406.1343

M. Savvaki, T. Panagiotaropoulos, A. Stamatakis, I. Sargiannidou, P. Karatzioula et al., Impairment of learning and memory in TAG-1 deficient mice associated with shorter CNS internodes and disrupted juxtaparanodes, Molecular and Cellular Neuroscience, vol.39, issue.3, pp.478-490, 2008.
DOI : 10.1016/j.mcn.2008.07.025

M. Savvaki, K. Theodorakis, L. Zoupi, A. Stamatakis, S. Tivodar et al., The Expression of TAG-1 in Glial Cells Is Sufficient for the Formation of the Juxtaparanodal Complex and the Phenotypic Rescue of Tag-1 Homozygous Mutants in the CNS, Journal of Neuroscience, vol.30, issue.42, pp.13943-13954, 2010.
DOI : 10.1523/JNEUROSCI.2574-10.2010

J. Dupree, J. Girault, and B. Popko, Axo-Glial Interactions Regulate the Localization of Axonal Paranodal Proteins, The Journal of Cell Biology, vol.19, issue.6, pp.1145-1152, 1999.
DOI : 10.1016/0896-6273(95)90012-8

M. Bhat, J. Rios, Y. Lu, G. Garcia-fresco, W. Ching et al., Axon-Glia Interactions and the Domain Organization of Myelinated Axons Requires Neurexin IV/Caspr/Paranodin, Neuron, vol.30, issue.2, pp.369-383, 2001.
DOI : 10.1016/S0896-6273(01)00294-X

M. Boyle, E. Berglund, K. Murai, L. Weber, E. Peles et al., Contactin Orchestrates Assembly of the Septate-like Junctions at the Paranode in Myelinated Peripheral Nerve, Neuron, vol.30, issue.2, pp.385-397, 2001.
DOI : 10.1016/S0896-6273(01)00296-3

S. Poliak, L. Gollan, D. Salomon, E. Berglund, R. Ohara et al., Localization of Caspr2 in myelinated nerves depends on axon-glia interactions and the generation of barriers along the axon, J Neurosci, vol.21, pp.7568-7575, 2001.

N. Denisenko-nehrbass, K. Oguievetskaia, L. Goutebroze, T. Galvez, H. Yamakawa et al., Protein 4.1B associates with both Caspr/paranodin and Caspr2 at paranodes and juxtaparanodes of myelinated fibres, European Journal of Neuroscience, vol.248, issue.2, pp.411-416, 2003.
DOI : 10.1046/j.1460-9568.2003.02441.x

I. Horresh, V. Bar, J. Kissil, and E. Peles, Organization of Myelinated Axons by Caspr and Caspr2 Requires the Cytoskeletal Adapter Protein 4.1B, Journal of Neuroscience, vol.30, issue.7, pp.2480-2489, 2010.
DOI : 10.1523/JNEUROSCI.5225-09.2010

R. Burke, Spinal Cord: Ventral Horn, The Synaptic Organization of the Brain. Edited by: Shepherd GM, pp.79-123
DOI : 10.1093/acprof:oso/9780195159561.003.0003

A. Duflocq, L. Bras, B. Bullier, E. Couraud, F. Davenne et al., Nav1.1 is predominantly expressed in nodes of Ranvier and axon initial segments, Molecular and Cellular Neuroscience, vol.39, issue.2, pp.180-192, 2008.
DOI : 10.1016/j.mcn.2008.06.008

L. Greene, A new neuronal intermediate filament protein, Trends in Neurosciences, vol.12, issue.6, pp.228-230, 1989.
DOI : 10.1016/0166-2236(89)90127-6

C. Houser, G. Crawford, R. Barber, P. Salvaterra, and J. Vaughn, Organization and morphological characteristics of cholonergic neurons: an immunocytochemical study with a monoclonal antibody to choline acetyltransferase, Brain Research, vol.266, issue.1, pp.97-119, 1983.
DOI : 10.1016/0006-8993(83)91312-4

M. Rasband, The axon initial segment and the maintenance of neuronal polarity, Nature Reviews Neuroscience, vol.64, issue.8, pp.552-562, 2010.
DOI : 10.1038/nrn2852

A. Friese, J. Kaltschmidt, D. Ladle, M. Sigrist, and T. Jessell, Gamma and alpha motor neurons distinguished by expression of transcription factor Err3, Proceedings of the National Academy of Sciences, vol.106, issue.32, pp.13588-13593, 2009.
DOI : 10.1073/pnas.0906809106

K. Rhodes, B. Strassle, M. Monaghan, Z. Bekele-arcuri, M. Matos et al., Association and colocalization of the Kvbeta1 and Kvbeta2 beta-subunits with Kv1 alpha-subunits in mammalian brain K+ channel complexes, J Neurosci, vol.17, pp.8246-8258, 1997.

I. Vabnick, J. Trimmer, T. Schwarz, S. Levinson, D. Risal et al., Dynamic potassium channel distributions during axonal development prevent aberrant firing patterns, J Neurosci, vol.19, pp.747-758, 1999.

F. Fukamauchi, O. Aihara, Y. Wang, K. Akasaka, Y. Takeda et al., TAG-1-Deficient Mice Have Marked Elevation of Adenosine A1 Receptors in the Hippocampus, Biochemical and Biophysical Research Communications, vol.281, issue.1, pp.220-226, 2001.
DOI : 10.1006/bbrc.2001.4334

I. Horresh, S. Poliak, S. Grant, D. Bredt, M. Rasband et al., Multiple Molecular Interactions Determine the Clustering of Caspr2 and Kv1 Channels in Myelinated Axons, Journal of Neuroscience, vol.28, issue.52, pp.14213-14222, 2008.
DOI : 10.1523/JNEUROSCI.3398-08.2008

A. Mcgee, J. Topinka, K. Hashimoto, R. Petralia, S. Kakizawa et al., PSD-93 knock-out mice reveal that neuronal MAGUKs are not required for development or function of parallel fiber synapses in cerebellum, J Neurosci, vol.21, pp.3085-3091, 2001.

A. Baines, The spectrin???ankyrin???4.1???adducin membrane skeleton: adapting eukaryotic cells to the demands of animal life, Protoplasma, vol.273, issue.22, pp.99-131, 2010.
DOI : 10.1007/s00709-010-0181-1

L. Gollan, H. Sabanay, S. Poliak, E. Berglund, B. Ranscht et al., Retention of a cell adhesion complex at the paranodal junction requires the cytoplasmic region of Caspr, The Journal of Cell Biology, vol.19, issue.7, pp.1247-1256, 2002.
DOI : 10.1016/S0169-328X(99)00139-4

S. Conradi and S. Skoglund, Observations on the ultrastructure of the initial motor axon segment and dorsal root boutons on the motoneurons in the lumbosacral spinal cord of the cat during postnatal development, Acta Physiol Scand, vol.333, pp.53-76, 1969.

M. Hausser, G. Stuart, C. Racca, and B. Sakmann, Axonal initiation and active dendritic propagation of action potentials in substantia nigra neurons, Neuron, vol.15, issue.3, pp.637-647, 1995.
DOI : 10.1016/0896-6273(95)90152-3

C. Morgan, Axons of sacral preganglionic neurons in the cat: I. Origin, initial segment, and myelination, Journal of Neurocytology, vol.30, issue.6, pp.523-544, 2001.
DOI : 10.1023/A:1015649419346

D. Lee, A. Jensen, M. Schiefer, C. Morgan, and W. Grill, Structural mechanisms to produce differential dendritic gains, Brain Research, vol.1033, issue.2, pp.117-127, 2005.
DOI : 10.1016/j.brainres.2004.11.034

W. Hu, C. Tian, T. Li, M. Yang, H. Hou et al., Distinct contributions of Nav1.6 and Nav1.2 in action potential initiation and backpropagation, Nature Neuroscience, vol.117, issue.8, pp.996-1002, 2009.
DOI : 10.1016/j.neuron.2004.12.048

A. Rush, S. Dib-hajj, and S. Waxman, 1.6, expressed in mouse spinal sensory neurones, The Journal of Physiology, vol.87, issue.3, pp.803-815, 2005.
DOI : 10.1113/jphysiol.2005.083089

URL : https://hal.archives-ouvertes.fr/in2p3-00024730

D. Kernell, The Motoneuron and its Muscle Fibers, 2006.

M. Manuel, C. Iglesias, M. Donnet, F. Leroy, C. Heckman et al., Fast Kinetics, High-Frequency Oscillations, and Subprimary Firing Range in Adult Mouse Spinal Motoneurons, Journal of Neuroscience, vol.29, issue.36, pp.11246-11256, 2009.
DOI : 10.1523/JNEUROSCI.3260-09.2009

C. Meehan, N. Sukiasyan, M. Zhang, J. Nielsen, and H. Hultborn, Intrinsic Properties of Mouse Lumbar Motoneurons Revealed by Intracellular Recording In Vivo, Journal of Neurophysiology, vol.103, issue.5, pp.2599-2610, 2010.
DOI : 10.1152/jn.00668.2009

D. Brown and G. Passmore, Neural KCNQ (Kv7) channels, British Journal of Pharmacology, vol.37, issue.8, pp.1185-1195, 2009.
DOI : 10.1111/j.1476-5381.2009.00111.x

URL : https://hal.archives-ouvertes.fr/hal-00013264

M. Shah, M. Migliore, I. Valencia, E. Cooper, and D. Brown, Functional significance of axonal Kv7 channels in hippocampal pyramidal neurons, Proceedings of the National Academy of Sciences, vol.105, issue.22, pp.7869-7874, 2008.
DOI : 10.1073/pnas.0802805105

Y. Li, C. Cheng, Y. Li, O. Shimada, and S. Atsumi, Beyond the initial axon segment of the spinal motor axon: fasciculated microtubules and polyribosomal clusters, Journal of Anatomy, vol.33, issue.6, pp.535-542, 2005.
DOI : 10.1007/BF00335680

G. Patino and L. Isom, Electrophysiology and beyond: Multiple roles of Na+ channel ?? subunits in development and disease, Neuroscience Letters, vol.486, issue.2, pp.53-59, 2010.
DOI : 10.1016/j.neulet.2010.06.050

M. Rasband, Clustered K+ channel complexes in axons, Neuroscience Letters, vol.486, issue.2, pp.101-106, 2010.
DOI : 10.1016/j.neulet.2010.08.081

D. Karnak, S. Lee, and B. Margolis, Identification of Multiple Binding Partners for the Amino-terminal Domain of Synapse-associated Protein 97, Journal of Biological Chemistry, vol.277, issue.48, pp.46730-46735, 2002.
DOI : 10.1074/jbc.M208781200

T. Shingai, W. Ikeda, S. Kakunaga, K. Morimoto, K. Takekuni et al., Implications of Nectin-like Molecule-2/IGSF4/RA175/SgIGSF/TSLC1/SynCAM1 in Cell-Cell Adhesion and Transmembrane Protein Localization in Epithelial Cells, Journal of Biological Chemistry, vol.278, issue.37, pp.35421-35427, 2003.
DOI : 10.1074/jbc.M305387200

M. Yageta, M. Kuramochi, M. Masuda, T. Fukami, H. Fukuhara et al., Direct association of TSLC1 and DAL-1, two distinct tumor suppressor proteins in lung cancer, Cancer Res, vol.62, pp.5129-5133, 2002.

B. Gao and L. Ziskind-conhaim, Development of ionic currents underlying changes in action potential waveforms in rat spinal motoneurons, J Neurophysiol, vol.80, pp.3047-3061, 1998.

E. Buttermore, J. Dupree, J. Cheng, X. An, L. Tessarollo et al., The Cytoskeletal Adaptor Protein Band 4.1B Is Required for the Maintenance of Paranodal Axoglial Septate Junctions in Myelinated Axons, Journal of Neuroscience, vol.31, issue.22, pp.8013-8024, 2011.
DOI : 10.1523/JNEUROSCI.1015-11.2011

C. Cifuentes-diaz, F. Chareyre, M. Garcia, J. Devaux, M. Carnaud et al., Protein 4.1B Contributes to the Organization of Peripheral Myelinated Axons, PLoS ONE, vol.12, issue.9, p.25043, 2011.
DOI : 10.1371/journal.pone.0025043.s006