J. Tatum, G. Kelloff, R. Gillies, J. Arbeit, J. Brown et al., Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy, International Journal of Radiation Biology, vol.3, issue.1, pp.699-757, 2006.
DOI : 10.1002/1097-0142(20000601)88:11<2606::AID-CNCR25>3.0.CO;2-W

M. Raichle, A. Macleod, A. Snyder, W. Powers, D. Gusnard et al., A default mode of brain function, Proceedings of the National Academy of Sciences, vol.98, issue.2, pp.676-682, 2001.
DOI : 10.1073/pnas.98.2.676

X. Cheng, J. Mao, R. Bush, D. Kopans, R. Moore et al., Breast cancer detection by mapping hemoglobin concentration and oxygen saturation, Applied Optics, vol.42, issue.31, pp.6412-6421, 2003.
DOI : 10.1364/AO.42.006412

T. Davis, K. Kwong, R. Weisskoff, and B. Rosen, Calibrated functional MRI: Mapping the dynamics of oxidative metabolism, Proceedings of the National Academy of Sciences, vol.95, issue.4, pp.1834-1839, 1998.
DOI : 10.1073/pnas.95.4.1834

R. Hoge, J. Atkinson, B. Gill, G. Crelier, S. Marrett et al., Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex, Proceedings of the National Academy of Sciences, vol.96, issue.16, pp.9403-9408, 1999.
DOI : 10.1073/pnas.96.16.9403

H. An and L. W. , Quantitative Measurements of Cerebral Blood Oxygen Saturation Using Magnetic Resonance Imaging, Journal of Cerebral Blood Flow & Metabolism, vol.61, pp.1225-1236, 2000.
DOI : 10.1097/00004647-200008000-00008

N. Fujita, M. Shinoharab, H. Tanakaa, K. Yutania, H. Nakamuraa et al., Quantitative mapping of cerebral deoxyhemoglobin content using MR imaging, NeuroImage, vol.20, issue.4, pp.2071-2083, 2003.
DOI : 10.1016/j.neuroimage.2003.06.002

X. He and D. Yablonskiy, Quantitative BOLD: Mapping of human cerebral deoxygenated blood volume and oxygen extraction fraction: Default state, Magnetic Resonance in Medicine, vol.48, issue.1, pp.115-126, 2007.
DOI : 10.1002/mrm.21108

H. An and W. Lin, Cerebral oxygen extraction fraction and cerebral venous blood volume measurements using MRI: Effects of magnetic field variation, Magnetic Resonance in Medicine, vol.41, issue.5, pp.958-966, 2002.
DOI : 10.1002/mrm.10148

H. An, Q. Liu, Y. Chen, and W. Lin, Evaluation of MR-Derived Cerebral Oxygen Metabolic Index in Experimental Hyperoxic Hypercapnia, Hypoxia, and Ischemia, Stroke, vol.40, issue.6, pp.2165-2172, 2009.
DOI : 10.1161/STROKEAHA.108.540864

X. He, M. Zhu, and D. Yablonskiy, Validation of oxygen extraction fraction measurement by qBOLD technique, Magnetic Resonance in Medicine, vol.4, issue.4, pp.882-888, 2008.
DOI : 10.1002/mrm.21719

P. Kiselev, V. Kiselev, and S. Posse, Analytical model of susceptibility-induced MR signal dephasing: Effect of diffusion in a microvascular network, Magnetic Resonance in Medicine, vol.81, issue.3, pp.499-509, 1999.
DOI : 10.1002/(SICI)1522-2594(199903)41:3<499::AID-MRM12>3.0.CO;2-O

A. Sukstanskii and D. Yablonskiy, Effects of Restricted Diffusion on MR Signal Formation, Journal of Magnetic Resonance, vol.157, issue.1, pp.92-105, 2002.
DOI : 10.1006/jmre.2002.2582

H. Yablonskiy, D. Yablonskiy, and E. Haacke, Theory of NMR signal behavior in magnetically inhomogeneous tissues: The static dephasing regime, Magnetic Resonance in Medicine, vol.7, issue.6, pp.749-763, 1994.
DOI : 10.1002/mrm.1910320610

W. Spees, D. Yablonskiy, M. Oswood, and J. Ackerman, Water proton MR properties of human blood at 1.5 Tesla: Magnetic susceptibility,T1,T2,T*2, and non-Lorentzian signal behavior, Magnetic Resonance in Medicine, vol.39, issue.4, pp.533-542, 2001.
DOI : 10.1002/mrm.1072

M. Silvennoinen, C. Clingman, X. Golay, R. Kauppinen, and P. Van-zijl, Comparison of the dependence of bloodR2 andR2* on oxygen saturation at 1.5 and 4.7 Tesla, Magnetic Resonance in Medicine, vol.43, issue.1, pp.47-60, 2003.
DOI : 10.1002/mrm.10355

Q. Yang, G. Williams, R. Demeure, T. Mosher, and M. Smith, Removal of local field gradient artifacts in T2*-weighted images at high fields by gradient-echo slice excitation profile imaging, Magnetic Resonance in Medicine, vol.32, issue.3, pp.402-409, 1998.
DOI : 10.1002/mrm.1910390310

I. Troprès, L. Lamalle, M. Péoc-'h, R. Farion, Y. Usson et al., In vivo assessment of tumoral angiogenesis, Magnetic Resonance in Medicine, vol.88, issue.Suppl, pp.533-541, 2004.
DOI : 10.1002/mrm.20017

G. Zaharchuk, Theoretical Basis of Hemodynamic MR Imaging Techniques to Measure Cerebral Blood Volume, Cerebral Blood Flow, and Permeability, American Journal of Neuroradiology, vol.28, issue.10, pp.1850-1858, 2007.
DOI : 10.3174/ajnr.A0831

T. Q. Duong and K. S. , In vivo MR measurements of regional arterial and venous blood volume fractions in intact rat brain, Magnetic Resonance in Medicine, vol.42, issue.3, pp.393-402, 2000.
DOI : 10.1002/(SICI)1522-2594(200003)43:3<393::AID-MRM11>3.0.CO;2-K

O. Petersen, Lectures notes on human physiology, 2007.

O. Y. Grinberg, H. Hou, M. A. Roche, J. Merlis, S. A. Grinberg et al., Modeling of the Response of ptO2 in Rat Brain to Changes in Physiological Parameters, Adv exp med biol, vol.566, pp.111-118, 2005.
DOI : 10.1007/0-387-26206-7_16

I. Troprès, S. Grimault, A. Vaeth, E. Grillon, C. Julien et al., Vessel size imaging, Magnetic Resonance in Medicine, vol.45, issue.3, pp.397-408, 2001.
DOI : 10.1002/1522-2594(200103)45:3<397::AID-MRM1052>3.3.CO;2-V

L. Klassen and R. Menon, NMR Simulation Analysis of Statistical Effects on Quantifying Cerebrovascular Parameters, Biophysical Journal, vol.92, issue.3, pp.1014-1021, 2007.
DOI : 10.1529/biophysj.106.087965

O. Grinberg, H. Hou, M. Roche, J. Merlis, S. Grinberg et al., Modeling of the Response of ptO2 in Rat Brain to Changes in Physiological Parameters, 2005.
DOI : 10.1007/0-387-26206-7_16

M. Jenkinson, Fast, automated,N-dimensional phase-unwrapping algorithm, Magnetic Resonance in Medicine, vol.16, issue.1, pp.193-197, 2003.
DOI : 10.1002/mrm.10354

S. Valable, B. Lemasson, R. Farion, M. Beaumont, C. Segebarth et al., study, NMR in Biomedicine, vol.90, issue.3, pp.1043-1056, 2008.
DOI : 10.1002/nbm.1278

URL : https://hal.archives-ouvertes.fr/inserm-00861168

D. M. Hueber, M. A. Franceschini, M. H. Zhang, Q. Ballesteros, J. Fantini et al., Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument???, Physics in Medicine and Biology, vol.46, issue.1, pp.41-62, 2001.
DOI : 10.1088/0031-9155/46/1/304

C. Kurth and B. Uher, Cerebral hemoglobin and optical pathlength influence near-infrared spectroscopy measurement of cerebral oxygen saturation, 1997.

L. Henson, C. Calalang, J. Temp, and D. Ward, Accuracy of a Cerebral Oximeter in Healthy Volunteers under Conditions of Isocapnic Hypoxia, Anesthesiology, vol.88, issue.1, pp.58-65, 1998.
DOI : 10.1097/00000542-199801000-00011

H. Watzman, C. Kurth, L. Montenegro, J. Rome, J. Steven et al., Arterial and Venous Contributions to Near-infrared Cerebral Oximetry, Anesthesiology, vol.93, issue.4, pp.947-953, 2000.
DOI : 10.1097/00000542-200010000-00012

T. Truong, D. Chakeres, D. Scharre, D. Beversdorf, and P. Schmalbrock, Blipped multi gradient-echo slice excitation profile imaging (bmGESEPI) for fastT2* measurements with macroscopicB0 inhomogeneity compensation, Magnetic Resonance in Medicine, vol.23, issue.6, pp.1390-1395, 2006.
DOI : 10.1002/mrm.20916

G. Glover, 3D z-shim method for reduction of susceptibility effects in BOLD fMRI, Magnetic Resonance in Medicine, vol.39, issue.2, pp.290-299, 1999.
DOI : 10.1002/(SICI)1522-2594(199908)42:2<290::AID-MRM11>3.0.CO;2-N

P. Vaupel, O. Thews, and M. Hoeckel, Treatment Resistance of Solid Tumors, Medical Oncology, vol.18, issue.4, pp.243-259, 2001.
DOI : 10.1385/MO:18:4:243

J. Marques, R. Maddage, V. Mlynarik, and R. Gruetter, On the origin of the MR image phase contrast: An in vivo MR microscopy study of the rat brain at 14.1??T, NeuroImage, vol.46, issue.2, pp.345-352, 2009.
DOI : 10.1016/j.neuroimage.2009.02.023

J. Duyn, P. Van-gelderen, T. Li, J. De-zwart, A. Koretsky et al., High-field MRI of brain cortical substructure based on signal phase, Proceedings of the National Academy of Sciences, vol.104, issue.28, pp.11796-11801, 2007.
DOI : 10.1073/pnas.0610821104

E. Haacke, N. Cheng, M. House, Q. Liu, J. Neelavalli et al., Imaging iron stores in the brain using magnetic resonance imaging, Magnetic Resonance Imaging, vol.23, issue.1, pp.1-25, 2005.
DOI : 10.1016/j.mri.2004.10.001

K. Zhong, J. Leupold, D. Von-elverfeldt, and O. Speck, The molecular basis for gray and white matter contrast in phase imaging, NeuroImage, vol.40, issue.4, pp.1561-1566, 2008.
DOI : 10.1016/j.neuroimage.2008.01.061

A. F. Frøhlich, L. Østergaard, and V. Kiselev, Theory of susceptibility-induced transverse relaxation in the capillary network in the diffusion narrowing regime, Magnetic Resonance in Medicine, vol.54, issue.3
DOI : 10.1002/mrm.20394

P. R. Seevinck, J. H. Seppenwoolde, J. Zwanenburg, . Jm, J. Nijsen et al., 2*-based quantification of holmium-loaded microspheres: Theory and experiment, Magnetic Resonance in Medicine, vol.54, issue.6, pp.1466-1476, 2008.
DOI : 10.1002/mrm.21785

H. An and L. W. , Impact of intravascular signal on quantitative measures of cerebral oxygen extraction and blood volume under normo- and hypercapnic conditions using an asymmetric spin echo approach, Magnetic Resonance in Medicine, vol.46, issue.4, pp.708-716, 2003.
DOI : 10.1002/mrm.10576

M. Beaumont, B. Lemasson, R. Farion, C. Segebarth, C. Rémy et al., Characterization of Tumor Angiogenesis in Rat Brain Using Iron-Based Vessel Size Index MRI in Combination with Gadolinium-Based Dynamic Contrast-Enhanced MRI, %) Air Challenge Variations = (Air- Challenge)/Air Air Challenge lSO 2 (%) BVf (%) lSO 2 (%) BVf (%) ?lSO 2 (%) ?BVf (%) Group A (n=6) 39.6±2.9 42.3±3.5, 2009.
DOI : 10.1002/nbm.881

URL : https://hal.archives-ouvertes.fr/inserm-00410316