S. Baka, A. Clamp, and G. Jayson, A review of the latest clinical compounds to inhibit VEGF in pathological angiogenesis, Expert Opinion on Therapeutic Targets, vol.65, issue.6, pp.867-76, 2006.
DOI : 10.1158/0008-5472.CAN-04-3833

J. Folkman, E. Merler, C. Abernathy, and G. Williams, ISOLATION OF A TUMOR FACTOR RESPONSIBLE FOR ANGIOGENESIS, Journal of Experimental Medicine, vol.133, issue.2, pp.275-88, 1971.
DOI : 10.1084/jem.133.2.275

J. Holash, S. Davis, N. Papadopoulos, S. Croll, L. Ho et al., VEGF-Trap: A VEGF blocker with potent antitumor effects, Proceedings of the National Academy of Sciences, vol.99, issue.17, pp.11393-11401, 2002.
DOI : 10.1073/pnas.172398299

I. Moreira, P. Fernandes, and M. Ramos, Vascular Endothelial Growth Factor (VEGF) Inhibition - A Critical Review, Anti-Cancer Agents in Medicinal Chemistry, vol.7, issue.2, pp.223-268, 2007.
DOI : 10.2174/187152007780058687

P. Salven, H. Manpaa, A. Orpana, K. Alitalo, and H. Joensuu, Serum vascular endothelial growth factor is often elevated in disseminated cancer, Clin Cancer Res, vol.3, pp.647-51, 1997.

N. Ferrara, Vascular Endothelial Growth Factor: Basic Science and Clinical Progress, Endocrine Reviews, vol.25, issue.4, pp.581-611, 2004.
DOI : 10.1210/er.2003-0027

Q. Chu, Aflibercept (AVE0005): an alternative strategy for inhibiting tumour angiogenesis by vascular endothelial growth factors, Expert Opinion on Biological Therapy, vol.108, issue.2, pp.263-71, 2009.
DOI : 10.1200/JCO.2007.14.7116

E. Koehler, J. Sosman, L. Schwartz, D. Gultekin, J. Koutcher et al., Phase I study of intravenous vascular endothelial growth factor trap, aflibercept, in patients with advanced solid tumors, J Clin Oncol, vol.28, pp.207-221, 2009.

C. Sternberg, Systemic chemotherapy and new experimental approaches in the treatment of metastatic prostate cancer, Annals of Oncology, vol.19, issue.Supplement 7, pp.91-96, 2008.
DOI : 10.1093/annonc/mdn473

D. Mager and W. Jusko, General pharmacokinetic model for drugs exhibiting target-mediated drug disposition, Journal of Pharmacokinetics and Pharmacodynamics, vol.28, issue.6, pp.507-539, 2001.
DOI : 10.1023/A:1014414520282

D. Mager, Target-mediated drug disposition and dynamics, Biochemical Pharmacology, vol.72, issue.1, pp.1-10, 2006.
DOI : 10.1016/j.bcp.2005.12.041

D. Mager and W. Krzyzanski, Quasi-Equilibrium Pharmacokinetic Model for Drugs Exhibiting Target-Mediated Drug Disposition, Pharmaceutical Research, vol.30, issue.10, pp.1589-96, 2005.
DOI : 10.1007/s11095-005-6650-0

L. Gibiansky, E. Gibiansky, T. Kakkar, and P. Ma, Approximations of the target-mediated drug disposition model and identifiability of model parameters, Journal of Pharmacokinetics and Pharmacodynamics, vol.63, issue.5, pp.573-91, 2008.
DOI : 10.1007/s10928-008-9102-8

A. Samson, M. Lavielle, and F. Mentre, Extension of the SAEM algorithm to left-censored data in nonlinear mixed-effects model: Application to HIV dynamics model, Computational Statistics & Data Analysis, vol.51, issue.3, pp.1562-74, 2006.
DOI : 10.1016/j.csda.2006.05.007

URL : https://hal.archives-ouvertes.fr/inserm-00182360

J. Bertrand, E. Comets, and F. Mentre, Comparison of Model-Based Tests and Selection Strategies to Detect Genetic Polymorphisms Influencing Pharmacokinetic Parameters, Journal of Biopharmaceutical Statistics, vol.5, issue.6, pp.1084-102, 2008.
DOI : 10.1111/j.1525-1438.2006.00593.x

URL : https://hal.archives-ouvertes.fr/inserm-00339183

K. Brendel, E. Comets, C. Laffont, C. Laveille, and F. Mentre, Metrics for External Model Evaluation with an Application to the Population Pharmacokinetics of Gliclazide, Pharmaceutical Research, vol.91, issue.9, pp.2036-2085, 2006.
DOI : 10.1007/s11095-006-9067-5

URL : https://hal.archives-ouvertes.fr/inserm-00189557

C. Kut, M. Gabhann, F. Popel, and A. , Where is VEGF in the body? A meta-analysis of VEGF distribution in cancer, British Journal of Cancer, vol.53, issue.7, pp.978-85, 2007.
DOI : 10.1016/j.canlet.2003.09.018

S. Eppler, D. Combs, T. Henry, J. Lopez, S. Ellis et al., A target-mediated model to describe the pharmacokinetics and hemodynamic effects of recombinant human vascular endothelial growth factor in humans*, Clinical Pharmacology & Therapeutics, vol.72, issue.1, pp.20-32, 2002.
DOI : 10.1067/mcp.2002.126179

L. Gibiansky and E. Gibiansky, Target-Mediated Drug Disposition: New Derivation of the

J. Lu, R. Bruno, S. Eppler, W. Novotny, B. Lum et al., Clinical pharmacokinetics of bevacizumab in patients with solid tumors, Cancer Chemotherapy and Pharmacology, vol.28, issue.5, pp.779-86, 2008.
DOI : 10.1007/s00280-007-0664-8

P. Bhargava, J. Marshall, W. Dahut, N. Rizvi, N. Trocky et al., A phase I and pharmacokinetic study of squalamine, a novel antiangiogenic agent, in patients with advanced cancers, Clin Cancer Res, vol.7, pp.3912-3921, 2001.

N. Hayashi, Y. Tsukamoto, W. Sallas, and P. Lowe, A mechanism-based binding model for the population pharmacokinetics and pharmacodynamics of omalizumab, British Journal of Clinical Pharmacology, vol.15, issue.5, pp.548-61, 2007.
DOI : 10.1007/BF00173275

X. Yan, D. Mager, and W. Krzyzanski, Selection between Michaelis???Menten and target-mediated drug disposition pharmacokinetic models, Journal of Pharmacokinetics and Pharmacodynamics, vol.38, issue.1, pp.25-47, 2010.
DOI : 10.1007/s10928-009-9142-8