P. Aljabar, R. Heckemann, A. Hammers, J. V. Hajnal, and D. Rueckert, Classifier selection strategies for label fusion using large atlas databases. Medical image computing and computer-assisted intervention : MICCAI, International Conference on Medical Image Computing and Computer-Assisted Intervention, pp.523-531, 2007.

J. Ashburner, A fast diffeomorphic image registration algorithm, NeuroImage, vol.38, issue.1, pp.95-113, 2007.
DOI : 10.1016/j.neuroimage.2007.07.007

J. Ashburner and K. J. Friston, Voxel-Based Morphometry???The Methods, NeuroImage, vol.11, issue.6, pp.805-821, 2000.
DOI : 10.1006/nimg.2000.0582

J. Ashburner and K. J. Friston, Computing average shaped tissue probability templates, NeuroImage, vol.45, issue.2, pp.333-341, 2009.
DOI : 10.1016/j.neuroimage.2008.12.008

C. Baillard, P. Hellier, and C. Barillot, Segmentation of brain 3D MR images using level sets and dense registration, Medical Image Analysis, vol.5, issue.3, pp.185-194, 2001.
DOI : 10.1016/S1361-8415(01)00039-1

URL : https://hal.archives-ouvertes.fr/inria-00536389

K. Boesen, K. Rehm, K. Schaper, S. Stoltzner, R. Woods et al., Quantitative comparison of four brain extraction algorithms, NeuroImage, vol.22, issue.3, pp.1255-1261, 2004.
DOI : 10.1016/j.neuroimage.2004.03.010

A. Carass, J. Cuzzocreo, M. B. Wheeler, P. Bazin, S. M. Resnick et al., Simple paradigm for extra-cerebral tissue removal: Algorithm and analysis, NeuroImage, vol.56, issue.4, 1982.
DOI : 10.1016/j.neuroimage.2011.03.045

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3105165

D. L. Collins, P. Neelin, T. M. Peters, and A. C. Evans, Automatic 3D Intersubject Registration of MR Volumetric Data in Standardized Talairach Space, Journal of Computer Assisted Tomography, vol.18, issue.2, pp.192-205, 1994.
DOI : 10.1097/00004728-199403000-00005

D. L. Collins and J. C. Pruessner, Towards accurate, automatic segmentation of the hippocampus and amygdala from MRI by augmenting ANIMAL with a template library and label fusion, NeuroImage, vol.52, issue.4, pp.1355-1366, 2010.
DOI : 10.1016/j.neuroimage.2010.04.193

P. Coupé, J. Manjón, V. Fonov, J. Pruessner, M. Robles et al., Nonlocal patch-based label fusion for hippocampus segmentation. Medical image computing and computer-assisted intervention : MICCAI, International Conference on Medical Image Computing and Computer-Assisted Intervention, pp.129-136, 2010.

P. Coupé, J. Manjón, V. Fonov, J. Pruessner, M. Robles et al., Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation, NeuroImage, vol.54, issue.2, pp.940-954, 2011.
DOI : 10.1016/j.neuroimage.2010.09.018

P. Coupe, P. Yger, S. Prima, P. Hellier, C. Kervrann et al., An Optimized Blockwise Nonlocal Means Denoising Filter for 3-D Magnetic Resonance Images, IEEE Transactions on Medical Imaging, vol.27, issue.4, pp.425-441, 2008.
DOI : 10.1109/TMI.2007.906087

URL : https://hal.archives-ouvertes.fr/inserm-00169658

A. M. Dale, B. Fischl, and M. I. Sereno, Cortical Surface-Based Analysis, NeuroImage, vol.9, issue.2, pp.179-194, 1999.
DOI : 10.1006/nimg.1998.0395

L. R. Dice, Measures of the Amount of Ecologic Association Between Species, Ecology, vol.26, issue.3, pp.297-302, 1945.
DOI : 10.2307/1932409

S. F. Eskildsen and L. R. Ostergaard, Active surface approach for extraction of the human cerebral cortex from MRI. Medical image computing and computer-assisted intervention : MICCAI, International Conference on Medical Image Computing and Computer-Assisted Intervention 9, pp.823-830, 2006.

A. C. Evans, The NIH MRI study of normal brain development, NeuroImage, vol.30, issue.1, pp.184-202, 2006.
DOI : 10.1016/j.neuroimage.2005.09.068

C. Fennema-notestine, I. B. Ozyurt, C. P. Clark, S. Morris, A. Bischoff-grethe et al., Quantitative evaluation of automated skull-stripping methods applied to contemporary and legacy images: Effects of diagnosis, bias correction, and slice location, Human Brain Mapping, vol.23, issue.2, pp.99-113, 2006.
DOI : 10.1002/hbm.20161

V. Fonov, A. C. Evans, K. Botteron, C. R. Almli, R. C. Mckinstry et al., Unbiased average age-appropriate atlases for pediatric studies, NeuroImage, vol.54, issue.1, pp.313-327, 2011.
DOI : 10.1016/j.neuroimage.2010.07.033

A. F. Goldszal, C. Davatzikos, D. L. Pham, M. X. Yan, R. N. Bryan et al., An Image-Processing System for Qualitative and Quantitative Volumetric Analysis of Brain Images, Journal of Computer Assisted Tomography, vol.22, issue.5, pp.827-837, 1998.
DOI : 10.1097/00004728-199809000-00030

H. K. Hahn and H. Peitgen, The Skull Stripping Problem in MRI Solved by a Single 3D Watershed Transform, Proceedings of the Third International Conference on Medical Image Computing and Computer-Assisted Intervention, pp.134-143, 2000.
DOI : 10.1007/978-3-540-40899-4_14

S. W. Hartley, A. I. Scher, E. S. Korf, L. R. White, and L. J. Launer, Analysis and validation of automated skull stripping tools: A validation study based on 296 MR images from the Honolulu Asia aging study, NeuroImage, vol.30, issue.4, pp.1179-1186, 2006.
DOI : 10.1016/j.neuroimage.2005.10.043

R. A. Heckemann, J. V. Hajnal, P. Aljabar, D. Rueckert, and A. Hammers, Automatic anatomical brain MRI segmentation combining label propagation and decision fusion, NeuroImage, vol.33, issue.1, pp.115-126, 2006.
DOI : 10.1016/j.neuroimage.2006.05.061

J. Iglesias, C. Liu, P. Thompson, and Z. Tu, Robust Brain Extraction Across Datasets and Comparison With Publicly Available Methods, IEEE Transactions on Medical Imaging, vol.30, issue.9, pp.1617-1634, 2011.
DOI : 10.1109/TMI.2011.2138152

T. Kapur, W. E. Grimson, W. M. Wells, and R. Kikinis, Segmentation of brain tissue from magnetic resonance images, Medical Image Analysis, vol.1, issue.2, pp.109-127, 1996.
DOI : 10.1016/S1361-8415(96)80008-9

S. Keihaninejad, R. A. Heckemann, G. Fagiolo, M. R. Symms, J. V. Hajnal et al., A robust method to estimate the intracranial volume across MRI field strengths (1.5T and 3T), NeuroImage, vol.50, issue.4, pp.1427-1437, 2010.
DOI : 10.1016/j.neuroimage.2010.01.064

J. M. Lee, U. Yoon, S. H. Nam, J. H. Kim, I. Y. Kim et al., Evaluation of automated and semi-automated skull-stripping algorithms using similarity index and segmentation error, Computers in biology and medicine, pp.495-507, 2003.
DOI : 10.1016/S0010-4825(03)00022-2

L. Lemieux, G. Hagemann, K. Krakow, and F. G. Woermann, Fast, accurate, and reproducible automatic segmentation of the brain in T1-weighted volume MRI data, Magnetic Resonance in Medicine, vol.120, issue.1, pp.127-135, 1999.
DOI : 10.1002/(SICI)1522-2594(199907)42:1<127::AID-MRM17>3.0.CO;2-O

K. K. Leung, J. Barnes, M. Modat, G. R. Ridgway, J. W. Bartlett et al., Brain MAPS: An automated, accurate and robust brain extraction technique using a template library, NeuroImage, vol.55, issue.3, pp.1091-1108, 2011.
DOI : 10.1016/j.neuroimage.2010.12.067

K. K. Leung, J. Barnes, G. R. Ridgway, J. W. Bartlett, M. J. Clarkson et al., Automated cross-sectional and longitudinal hippocampal volume measurement in mild cognitive impairment and Alzheimer's disease, NeuroImage, vol.51, issue.4, pp.1345-1359, 2010.
DOI : 10.1016/j.neuroimage.2010.03.018

J. V. Manjon, J. Carbonell-caballero, J. J. Lull, G. Garcia-marti, L. Marti-bonmati et al., MRI denoising using Non-Local Means, Medical Image Analysis, vol.12, issue.4, pp.514-523, 2008.
DOI : 10.1016/j.media.2008.02.004

J. C. Mazziotta, A. W. Toga, A. Evans, P. Fox, and J. Lancaster, A Probabilistic Atlas of the Human Brain: Theory and Rationale for Its Development, The International Consortium for Brain Mapping (ICBM), 1995.
DOI : 10.1006/nimg.1995.1012

A. Mikheev, G. Nevsky, S. Govindan, R. Grossman, and H. Rusinek, Fully automatic segmentation of the brain from T1-weighted MRI using Bridge Burner algorithm, Journal of Magnetic Resonance Imaging, vol.33, issue.6, pp.1235-1241, 2008.
DOI : 10.1002/jmri.21372

S. G. Mueller, M. W. Weiner, L. J. Thal, R. C. Petersen, C. Jack et al., The Alzheimer's Disease Neuroimaging Initiative, Neuroimaging Clinics of North America, vol.15, issue.4, pp.869-877, 2005.
DOI : 10.1016/j.nic.2005.09.008

L. G. Nyul and J. K. Udupa, <title>Standardizing the MR image intensity scales: making MR intensities have tissue-specific meaning</title>, Medical Imaging 2000: Image Display and Visualization, pp.496-504, 2000.
DOI : 10.1117/12.383076

P. Xavier-de-fontes, F. Andrade-barroso, G. Coupé, P. Hellier, and P. , Real time ultrasound image denoising, Journal of Real-Time Image Processing, vol.25, issue.11, pp.15-22, 2011.
DOI : 10.1007/s11554-010-0158-5

URL : https://hal.archives-ouvertes.fr/inria-00476122

J. G. Park and C. Lee, Skull stripping based on region growing for magnetic resonance brain images, NeuroImage, vol.47, issue.4, pp.1394-1407, 2009.
DOI : 10.1016/j.neuroimage.2009.04.047

K. Rehm, K. Schaper, J. Anderson, R. Woods, S. Stoltzner et al., Putting our heads together: a consensus approach to brain/non-brain segmentation in T1-weighted MR volumes, NeuroImage, vol.22, issue.3, pp.1262-1270, 2004.
DOI : 10.1016/j.neuroimage.2004.03.011

D. E. Rex, D. W. Shattuck, R. P. Woods, K. L. Narr, E. Luders et al., A meta-algorithm for brain extraction in MRI, NeuroImage, vol.23, issue.2, pp.625-637, 2004.
DOI : 10.1016/j.neuroimage.2004.06.019

T. Rohlfing, R. Brandt, R. Menzel, C. R. Maurer, and . Jr, Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains, NeuroImage, vol.21, issue.4, pp.1428-1442, 2004.
DOI : 10.1016/j.neuroimage.2003.11.010

M. R. Sabuncu, S. K. Balci, M. E. Shenton, and P. Golland, Image-Driven Population Analysis Through Mixture Modeling, IEEE Transactions on Medical Imaging, vol.28, issue.9, pp.1473-1487, 2009.
DOI : 10.1109/TMI.2009.2017942

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2832589

S. A. Sadananthan, W. Zheng, M. W. Chee, and V. Zagorodnov, Skull stripping using graph cuts, NeuroImage, vol.49, issue.1, pp.225-239, 2010.
DOI : 10.1016/j.neuroimage.2009.08.050

S. Sandor and R. Leahy, Surface-based labeling of cortical anatomy using a deformable atlas, IEEE Transactions on Medical Imaging, vol.16, issue.1, pp.41-54, 1997.
DOI : 10.1109/42.552054

F. Segonne, A. M. Dale, E. Busa, M. Glessner, D. Salat et al., A hybrid approach to the skull stripping problem in MRI, NeuroImage, vol.22, issue.3, pp.1060-1075, 2004.
DOI : 10.1016/j.neuroimage.2004.03.032

Z. Y. Shan, G. H. Yue, and J. Z. Liu, Automated Histogram-Based Brain Segmentation in T1-Weighted Three-Dimensional Magnetic Resonance Head Images, NeuroImage, vol.17, issue.3, pp.1587-1598, 2002.
DOI : 10.1006/nimg.2002.1287

URL : http://espace.library.uq.edu.au/collection/UQ:183940

D. W. Shattuck, G. Prasad, M. Mirza, K. L. Narr, and A. W. Toga, Online resource for validation of brain segmentation methods, NeuroImage, vol.45, issue.2, pp.431-439, 2009.
DOI : 10.1016/j.neuroimage.2008.10.066

D. W. Shattuck, S. R. Sandor-leahy, K. A. Schaper, D. A. Rottenberg, and R. M. Leahy, Magnetic Resonance Image Tissue Classification Using a Partial Volume Model, NeuroImage, vol.13, issue.5, pp.856-876, 2001.
DOI : 10.1006/nimg.2000.0730

J. G. Sled, A. P. Zijdenbos, and A. C. Evans, A nonparametric method for automatic correction of intensity nonuniformity in MRI data, IEEE Transactions on Medical Imaging, vol.17, issue.1, pp.87-97, 1998.
DOI : 10.1109/42.668698

S. M. Smith, Fast robust automated brain extraction, Human Brain Mapping, vol.20, issue.3, pp.143-155, 2002.
DOI : 10.1002/hbm.10062

S. M. Smith, M. Jenkinson, M. W. Woolrich, C. F. Beckmann, T. E. Behrens et al., Advances in functional and structural MR image analysis and implementation as FSL, NeuroImage, vol.23, pp.208-219, 2004.
DOI : 10.1016/j.neuroimage.2004.07.051