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Abstract t Brah extraction is an important step in the analysis of brain images. ariability in

brain morphology andhe difference inintensity characteristicslue to imaging sequences make

the development of a general purpose brain extraction algorithm challenging. To address this

issue, we propose a new robust method (BEaf&TOjcated to produce consistent and accurate

brain extraction. Tis method is based on nonlocal segmentation embedded in a frestlution

framework. A library of 8 priors is semautomaticallyconstructed from theNIHsponsored MRI

study of normal brain development, the International Consortium for Brain Mapping,tlzad
0lZ Ju E[* ]* * E pE}u PJvP /v]8] 8]A § o X

In testing, amean Dicesimilarity coefficient of 0.9834+0.005&as obtained when performing
leaveone-out cross validatiorselecting only 20 priors from the libraryalidation using the online
Segmentation Validation Engine resulted in a top ranking position with a mean Dice coefficient of
0.9781+0.0047Robustness of BEaST is demonstrated on all baseline ADNI data, resulting in a very
low failure rate. The segmentation accuracy of the methodbétter than two widely used publicly
available methods and recent statd-the-art hybrid approaches. BEaST provides results
comparable to a recent label fusion approach, while being 40 times faster and requiring a much
smaller library of priors.

Keywords: Brain extraction, skull stripping, pabased segmentatigrmulti-resolution MRI, BET

** Data used in the preparation of this article were obtained from the Alzheimer's Didgas®imaging Initiative
(ADNI) database (www:.loni.ucla.edu/ADNI). As such, the investigators within the ADNI contributed to the design
and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report.
Complete listing of ADNI investigators is available at http://adni.loni.ucla.edu/wp
content/uploads/how_to_apply/ADNI_Authorship_List.pdf).
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1. Introduction
Brain extraction (or skull stripping) is an important step in many neuroimaging analyses, such as
registration, tissue classification, and segmtation. While methods such as the estimation of
intensity normalization fields and registration do not require perfect brain masks, other methods
such as measuring cortical thickness relywery accurate brain extraction to work propeifar
instancefailure to remove the dura may lead to an overestimation of cortical thickraassler
Kouwe et al., 2008 while removing part of the brain would lead to an underestimaitiocases
of incorrect brain extraction, subjects may be excluded from further processing, a potentially
expensive consequence foanystudies. The solution of manually correcting the braasks is
a labour intensive and tirmmnsuming taskhat is highly sensitive to interand intrarater
variability (Warfield et al., 2004

An accurate brain extraction method shoaltludeall tissue external to the brain, such as
skull, dura, ad eyes, withoutemoving any part of the brain. The number of methods proposed
to address the brain segmentation problem reflects the importance of accurate and robust brain
extraction. During the last 15 years, more than 20 brain extraction methodsdeavproposed
using a variety of techniques, such as morphological operdgt@midszal et al., 1998 emieux

et al., 1999 Mikheev etal., 2008 Park and Lee, 20Q0%andor and Leahy, 199Ward, 1999,

atlas matchindAshburner and-riston, 2000 Kapur et al., 1996 deformable surfacg®ale et

al., 1999 Smith, 2002, level setgBaillard et al., 2001Zhuang et al., 2006 histogram analysis
(Shan et al., 2002 watersheqHahn and Peitgen, 200Qgraph cutfSadananthan et al., 2010
label fusion(Leung et al., 2011 and hybrid techniqug€arass et al., 2011glesias et al., 2011
Rehm et al.,, 20Q4Rex et al., 2004Segonne et al., 200&hattuck et al., 2001 Sudies
evaluating these methotisve found varying accura¢oesen et al., 20Q04FennemaNotestine

et al., 2006 Hartley et al., 2006Lee et al., 2003 Park and Lee, 20Q%hattuck et al., 2009
While some methods are better at removing-bi@n tissue, at the cost of removing brain tissue,
others are better at including all brain tissue, at the cost of includinrgraontissugFennema
Notestine et al., 2006&hattuck et al., 2009This is a classiexample of the tradeff between
sersitivity and specificity.
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Beyond the technical issues, the brain extraction problem is further complicated by the fact that
no accepted standard exists for what to include in brain segmentation. While there is consensus
among methods that obviousmnbrain structures, such askull, dura, and eyeshould be
removed as part of the brain extraction process, there are divergent opinions on other structures
and tissues, such as the amount of es¢r@bral cerebrgpinal fluid (CSF), blood vessels, and
nerves. Some methods define the target segmentation as white matter (WM) and gray matter
(GM) only (Leung et al., 2011 while others include CSF, veins, and the optic chig&asass

et al., 2011 Smith, 2002. Depending on the objective for the subsequent analysis it is important

to remove tissues that may tenfused with brain tissue in the images.

Most brain extraction methods are developed to work ewdigjhted (T1w) magnetic resonance
images (MRI), since this is a common modality in structural neuroimaging as it provides
excellent contrast for the diffent brain tissues. In addition, the brain segmentation performed
using T1w images can be mapped to other modalities if needed. However, due to the various
acquisition sequences and scanner types, the appearance of the brain in Tlw images may vary
significantly between scans, which complicates the task of developing a brain extraction method
that works across sequences and scanners. A further complication is the anatomical variability of
the brain. Neuroimaging studies are performed on individuals atedlagh and without tissue
altered by pathologies. Therefore, existing brain extraction methods often need to be adapted
specifically for a certain type of study or, in the best case, need to be tuned to work on a certain
population. A method that works fi@ably and robustly on a variety of different brain
morphologies and acquisition sequences without requiring adjustment of parameters would
greatly reduce the need for manual intervention and exclusion of subjects in neuroimaging

studies.

Building on recent work on label fusioffljabar et al., 2007 Collins and Pruessner, 2010
Heckemann et al., 20p&he multi-atlas propagation and segmentation (MARthod(Leung

et al., 201)was adapted to brain extraction to address the problem of variability in anatomy and
acquisition, producing more robusgsultsand leading to the best currently published results
(Leung et al. 201). In label fusionapproachesmultiple atlases are selected from a library of
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previouslylabelled imagesAfter nonrigid registratios of these atlases to the target imaleir

labels aremergedthrough a label fusion procedure (e.g.; majority vote, STAPLE, @aluncu

et al.,, 2009 Warfield et al., 200¢to obtain thefinal segmentation. Tik type of method is
dependent on the accuracy of the #igid registrations. Registration errors may result in
segmentation errors, as all selected labels are typiwelghted equallyLike many of the label

fusion methods, by using a large library of labelled images (priors), MAPS compensates for
possible registration errors, which leads to superior results compared to other popular brain
extraction methods. Howevetye to thdarge library and théme consuming multiple nergid
registrations step in MAPS, the procegsitime per subject on an Intéleon CPU (X5472

3GHz) is 19 hFurthermore, in many studies it is not feasible to build a large library of priors

and the long processing time may be a bottleneck in the analysis pipeline.

A recent framework inspired by nonlocal me&nRI denoising(Buades et al., 200%oupe et

al., 2008 Manjon et al., 200Bhas been introduced to achieve the ldbgilon segmentationask.

This method has demonstrated promising segmentation results without the need-rigidnon

registrationgCoupé et al., 20)1Instead of performing the fusion of nonlinearly deforradds

structures, this method aeles the labelling of each voxel individually by comparing its

surrounding neighbourhood with patches in training subjects in whiclalie¢éof the central

voxel is known. In this paper, we present the adaptation of this pbésed segmentation

approachto perform brain extractionlhe patchbased segmentation method cannot be directly

applied to brain extraction, becauydalse positives are likely to occur as extexebral tissue

may resemble brain within the patch structure, ignthe computational complexity is high and

this becomes aignificant problem for large structures. To address these issues, we propose to

apply the patctbased segmentatiomithin a multiresolution approach textract thebrain. We

validate the performamcof the proposed method on multiple collections of Tlw MRI and

demonstrate that the method robustly and consistently extracts the brain from subjects at all ages
IURP FKLOGUHQ WR HOGHUO\ DQG IURP KHDOWK\ &8a¥E MHFWV

(AD). The main contributionof this papeiis the development of a robust procedure to identify

accurate brain masks with an extensive validation on multiple datasets acquired on different

scannersind from different populations
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2. Definition of brain ma sk
As mentioned in the introduction, no standard exists defining what should be included and
excluded when performing the brain extraction. In our study, we aim to exclude alterdbaal
tissues, which resemble GM or WM by image intensity and maytasidesequent analyses.
Such tissues include the superior sagittal sinus (may resemble GM) and the optic chiasms (may
resemble WM). Following this principle, we accept inclusion of internal CSF and CSF proximate
to the brain, as the Tlw MR signal from CSFeasily separated from ndiquid structures and
subsequent analyses may benefit from the inclusion of CSF as n¢@arass et al., 2011We

propose théollowing definition of a mask separating the brain from-hoain tissue:

Included in the mask

x All cerebral and cerebellar white matter

x All cerebral and cerebellar gray matter

X CSF in ventricles (lateral, 3rd and 4th) and the cerebellar cistern

x CSF in deepulci and along the surface of the brain and brain stem

X The brainstem (pons, medulla)

Excluded from the mask

x Skull, skin, muscles, fat, eyes, dunater bone and bone marrow
x Exterior blood vesselstspecifically the carotid arteries, the supesagittal sinus and
the transverse sinus

x Exterior nervestspecifically the optic chiasms

3. Proposed brain extraction method
The proposedrain Extraction based on nonldcSegmentatiorirechnique (BEaST), is inspired
by the patckhased segmentatidinst publishedin Coupe et al.(2010 and extendeth Coupe et
al. (201)). As done inCoupe et al.(2011), we use sum of squared differences (SSD) as the
metric forestimation ofdistance between patchédsing SSD as the similarity metric requires

that the intensy of brain tissue is consistent across subjects and imaging sequences. Therefore
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we perform intensity normalization and spatial normalization before constructing the library of
priors. Because manual brain segmentation from scratchnisexremelytime consuming
processand because some automated techniques yield reasonable resufisidt standard of
library priors is constructed using a sesmmitomatic method that involvesxtensivemanual

correction ofautomatically generatdarain masks

The following describes the normalizatiatie construction of the library containing the priors,
andthefundamental patchased segmentation method as well as our contribution of embedding
the method in a muHiesolution approach to improve segmentat@geuracyand computation

time.

3.1 Normalization
Image intensity normalizatioof the T1lw MRI datas performed by first applying the bias field
correction algorithm N3Sled et al., 1998followed by theintensity normalizatiorproposed in
Nyul and Udupa(2000. Spatial normalization ischieved by 9 degrees of freeddmear
registration(Collins et al., 1994to the publicly available ICBM52 averagéFonov et al., 2011
that defines the MNI Talairaelike stereotaxic spaceand resampledn a 193x229x193voxel
grid with isotropic 1 mmspacing A final intensity normalization is performed in stereotaxic
space by linearlgcalng the intensities to the range [0;100] using 08%9% of the voxels in
the intensityhistogramwithin an approximate stereotaxicain mask.

3.2 Construction of library

3.2.1 Datasets used

The library of segmentation priors is built fraseveraldatasets:the NIH-funded MRI study of

normal brain development (termed here MiEl Paediatric Databaser NIHPD) (Evans, 2006

(age: 548y), the International Consortium for Brain Mapping (ICBM) datal{iddazziotta et

al., 1995 (age: 18 \ DQG WKH $O]KHLPHUYV 'LVHDVH 1HXURLPDJLQ
(Mueller et al., 200p (age: 5591y). The NIHPD and ICBM databases consist of healthy
subjects, while the ADNI database, in addition to cognitive normal 0Njects, contains scans

of subjects with AD and mild cognitive impairment (MCI). This wajmostthe entire human
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life span is covered and subjects with atrophitatomy are included, which provides a

representative library of priors for performing lraixtraction.

We chose 10 random Meighted (T1w) magnetic resonance (MR) scans from each of the
NIHPD and ICBM databasesrdm the ADNI database we chose tandom T1w MR scans at
the time of screeningfrom each class (CN, MCI, AD). Itotal, our libraryconsists of 8
template MRI images with their associated brain masks described .balbwcans were

acquired using 1.5T field strength.
3.2.2 Priors construction

Ideally, one would use MRI data with manually segmented brain masks from multiple experts to
create the priors. Unfortunately, manual segmentation is heavily time cogsurnaking
between 6 and 8 per brain for a Imrisotropic volume to generate a mask that is consistent in

3D in coronal, sagittal and transverse views. Furthermore; el intrarater variability can

lead to errors in the priors. We have decided to take a more pragmatic approach where
automated tools are used to get a good estimate of the cortical surface and manual correction is
used afterwards to correct any erroighis way, we benefit from the high reproducibility of the
automated technique as well as the anatomical expertise of the manual raters. Priors were

generated using one of two strategies, depending on the source of the data.

NIHPD and ICBM The NIHPD and ICBM databases contain T2w and PDw images in addition
to Tlw images. T1lw images have high signal for the brain tissue, while T2w and PDw images
have high signal for CSF (see Fig. 1). Ydke advantage dhis fact to build the priors library

By adding ntensities from the three different sequenees obtaied an image with a very high
signal for the intracranial cavity (ICQFig. 1A), which couldbe easily extracted usintpe
widely used Brain Extraction TodBET) (Smith, 202 from the FMRIB Software Library
(FSL, http://www.fmrib.ox.ac.uk/fgl (Smith et al., 2004(Fig. 1B). From the ICC segmentatipn
we usel Fast Accurate Cortex Extraction (FACEskildsen and Ostergaard, 20@6 delineate

the boundary between GM and CSF in the cereliigy 1C). Cerebellum and brain stem were
added by notlinearly fitting masks in steotaxic space. Finally, extensive and careful manual
corrections were performed to get an optimal brain segmentation matching our de{seton
Section2) (Fig. 1D) On averagesuch corrections took betweermidd2 hper brain.
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ADNI: Priors from the AINI datalase wereonstructed using the semiitomatic segmentations
used in MAPSLeung et al., 2011 These segmentations are accurate definitions of the GM and
WM of the brain, but all interior CSF is excluded (see F&).ZTherefore, we defored a
spherical mesh initialized around the brain to fit smoothly aloadgotirder of the segmentation.

In this mannerwe obtaired a simiar definition of brain segmentation as for the NIHPD and
ICBM data. Finally, these segmentations were manually corrected in the same was @sne

for the NIHPD and ICBM datéFig. 2B).

All library priors were flipped along the mgagittal plane to increase the size of the library
utilizing the symmetric properties of the human byaielding 160 priors (original and flipped)

from the 80 semautomated segmentations described above.

3.3 Patch-based segmentation
The proposed method is an extensiontlad patchbased segmentation method described in
Coupg et al.(2011). In brief, a label is applied to a given voxel in the target image based on the
similarity of its surrounding patcR(x) to all the patche®(x)) in the librarywithin a search
volume For each voxek; of the target image, the surroundingighbourhood(y;is searched for
similar patches in thbl library images. A nonlocal means estimat¥) is used to estimate the
label atx;:

Asas A o SKTiATaOH Tay: |

RTy L——s d
v ASes A oS TATay:

(1)

wherel(Xs;) is the label of voxeks; at locationj in library images. We used(xs;) §0,1}, where
0 is background and is object (brain). The weight(x, xs;) assigned to labé(xs;) depends on
the similarity ofP(x) to P(xs;) and is computed as:

7[Aké@7A:ép@[: (2)
SKTAlgoL A o

Z K H UHs the A2norm, normalized by the number phtchelements and computed between
each intensity of the elements of the patddég) andP(x;). The parametehn of the weighting
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function is locally adapted as i@oup et al.(2011) by using the minimal distance found

between the patch undstudy and the patches of the library.

These calculations are computationally impractical if made for all patches in all library images.

Thus, to decrease computation time several strategies are used in our method.

Initialization mask: First, to reducehe size of the area to segmeam, initialization maskV is

constructed as the union of all segmentation p&omsinus the intersection of &:

| L:5e5¢ed8eh;358e5¢edeé5; 3)
The patchbased segmentation is performed within this region of int¢Rg3t) only under the
assumption that the library is representative of all brain sizes after spatial normalization. This
approach reduces the ROI by 50% compared with the union $faadtl by 85% compared with

the entire stereotaxic space (Fig. 3).

Template pre-selection Furthermore, thé\ closest images from the library are selected based
on their similarity to the target image within the defined ROI (initialization mask, see Eq. 3). The
similarity is calculated as the SSD between the target and each of the template images in the

library.

Patch pre-selection Finally, to reduce the number of patches to consider, preselectithe of

most similarpatches is done as proposedGoupe et al.(2011) using the patch mean and
variance The main idea is that similar patches should have similar means and similar variances.
Thus, patches that are dissimilar with regard to mean and variance are not used in the weighted

estimation We use the structural similaritgg measuréWang et al., 2004

6 ORD ,,6 0K
0Q 6 D H o} peo’ (@)
S Il
where is the mean andis the standard deviation of the patches centered on xoxed voxel
Xsjat location in templates. Only patches from the library wids> 0.95, when compared to the

patch under consideration, are selected for the nonlocal means estimator &t voxel
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3.4 Multi -resolution framework
In order to obtain optimal performance for brain extraction, the patch size needs to be large
compared to the patch sizes usedsegmensmaller structures such as the hippocampuos.
example, a small patch in the dura nnegemble gray matter of the brain as the T1 intensities of
these structures often are simil@hus, aarge patch sizancluding more structural information
is needed to avoid inclusion of extarebral tissue, such as durafat This is computatiorly
impractical in thestereotaxicresolution. Therefore, we suggest embedding the geskhd
segmentationvithin a multiresolution framework, which provides the opportunitettectively

havespatiallylarge patch sizes while still being computatiopaitactical.

In brief, the multiresolution framework enables propagation of segmentation across lsgale
using the resulting segmentation at the previous scale to initialize the segmentation at the current

scale

The library images, labels, initialization mask, and target image at the stereotaxic reddlution
are all resampled to a lower resolutidff ™nd the patchased segmentation is performed. The
nonlocal means estimater " ¥x) at the V™ Yesolution § propagated to a higher resolution
VMIN by upsampling using trilinear interpolation. The estimator functiol (X) can be
considered as the confidence level of which label to assign the voxel. Values close to O are likely
background, while values de to 1 are likely object. We define a confidence levi assign

labels to the voxels at each scale. Voxels with (%) < . are labelled background, and voxels
with w™ (%) ! i.) are labelled object. Segmentation of thizge sets ofvoxels isconsidered

final, and they are excluded from further processing. VoxelswitHX) in the range [ i]

are propagated and processed at a higher resolMibH']. This procedure is repeated until the
resolution of the stereotaxic spadeis reachedin this mannerthe initialization mask of each
resolution step is limited to the voxels with uncertain segmentation at the previous step (Fig. 3).
This greatly reduces the computational cost. At the stereotaxic resolution, segmentatia is don
by thresholding the estimatay(x) at0.5.

During experiments, we used three resoluti(ns 2) with isotropic voxel spacingespectively

of 4 mm, 2 mm, and 1 mm (stereotaxic space resolution) (see Fig. 3). We empirically chose



Eskildsen et al., 2011

confidence level. andvariable patch size and search area depending on the resolutidialit=e

1).

Voxel size (mm)

Patch siz€voxels)

Search are@voxels)

4x4x4

3x3%3

3x3%3

0.2

2%x2%2

3x3x%3

9x9x9

0.2

Ix1x1

5x5%5

13x13x13

11

Table 1.Patch size, search area, and confidence legkbsen for the three resolutions

4. Validation

In our validation of the proposed method we used the Dice similarity coefficient ((DH¢e)

1945 adapted to binary images when comparing to the gold standard brain sagmsent
described above. The DSC defined asio—fi, whereA is the set of voxels in the proposed
segmentation anB LV WKH VHW RI

Furthermore, we calculated the false positive rate (FPR?—CQE—E and the false negative rate
<

¢

(FNR) asl,E%, where FP is the set of false positive voxels, Méldet of true negative voxels,
<

¢

FN the set of false negative voxels, and TP the set of true positive voxels.

YR[HOV LQ WKH UHIHUHQFH

VHJP

To visualize errors, we generated false positive and false negative images for each segmentation

using the gold standard. These error images weseaged and the resulting image intensities

were projected onto the three principal planes (axial, coronal, sagittal) using mean intensity

projection in a manner similar to that done in Segmentation Validation Efffivatuck et al.,

2009.

4.1 Leave-one-out cross validation

To evaluate the robustness and tbeusacy of BEaST, & measured the segmentation accuracy
in a leaveoneout cross validation (LOOCV) fagon. Each of the 80 library images was
processed with the remaining 1mages as prior§l58 after midsagittal flipping) and the

resulting segmentatowas compared tthe manually corrected labels in the library. In this



Eskildsen et al., 2011 12

experimentwe varied the number of selected priors from the library to evaluate the impéct of

on segmentation accuradyuring our experimenty varied from 2 to 40.

4.2 Comparison to other methods
A comparison to BETSmith, 2002 and VBM8 fttp://dbm.neuro.urjena.de/vbndownload)
was performedWe chose to compare with BET, as BET is publicly available, widely used, and
has been shown to perform well in several recent brain extraction compg&aass et al.,
2017 Iglesias et al., 2031 eung et al., 201 The choice of VBM8 was based on its availability
and the fact that it is thieighestranking publicly available method in the archive of the online
Segmentation Validation Engine for brain segmentatig8hattuck et al., 2009

(http://sve.loni.ucla.edu/archive/

BET iteratively deforms an ellipsoid mesh, initialized inside the brain, to the GM/CSF boundary.
The target of BET is very similar to our definition of the optimal brain segmentatio®éstien

2). We use®BET version 2.1from FSL version 4.1. Since BEJerforms better with robust brain
center estimation and when the neck is not visible in the irfiggsias et al., 20)1we applied

BET on the normalized and stereotaxically aligned images with default parameters.

VBMS8 performs the brain extraction by thresholding the tissue probability map in stereotaxic
space, generateding the SPM frameworfdshburner, 2007/Ashburner and Friston, 20)%nd
followed by repeated morphological openings to removebram tissues connected by thin
bridges.We used release 419 of VBM8, which was the latest version by the time afgwBii
experiments, we found that VBM8 provided better results when initialized with native images in
contrast to stereotactically registered images. In order to perform the best fair comparison, this
method was thus applied in native space.

BET and VBMS8 vere applied on the entire library of scans and DSCs, FPRs, and FNRs were

calculated using the gold standard segmentations.

4.3 Independent validation
Comparing the results of BEa$d gold standard segmentations, which are also used as priors, a
bias may be introduced that affect the results in favour of BE&Gch a comparison effectively

demonstrates that the method can provide results similar to our definition. However, when
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comparing to methods with no priors, a bias is introduced. Therefe&rgyesformed validation
using an independent test set available in the oggmentation Validationrgine (SVE) of

brain segmentation metho{Shattuck et al., 2009The test set consists of 40 Tlw MRI scans
(20 males and 20 femalemge range 1940). The web service allows ¢hcomparison of results

with handcorrected brain masks. ThBSC, sensitivity (SEN), and specificity (SPE) are
calculated automatically, where SEN and SPE are related to FNR and FPR by: SENR1

and SPE=%} FPR. The web service contains an archive of all uploaded results, which enables

segmentation methods to be objectively benchmarked and coniqgdvesbn each other

4.4 Robustness
Finally, we evaluated the robustness of BEa&i1d compared it to BEDy applyingthe method
to all 1.5T T1w baseline ADNI data (200 AD, 408 MCI, and 232 CAlstrict manualquality
FRQWURO SURFHGXUH zZzDV FDUULHG RXW WR ODEHO WKH UH
the individual brain masknet the definition given irSedion 2 and whether the maskas
sufficient for further processing in a cortical surface analysis sMdgks from BEaST and BET
were rated in a blinded fashion (i.e., the rater did not know which of the 1680 masks came from
which procedure. This way, tHailure rate of BEaST was compared to tladure rate of BET
on the same data. A comparison to BET was chosen as BET demonstrated better compliance

with our brain mask definition (s&&ection2) than VBMS8 during our validation experiments.

5. Results

5.1 Leave-one-out cross validation

Figure 4 shows the DSCfor increasing number of priors selected from the librahen
compared to the gold standarls shown inCoupé et al(201]), increasing the number of
selected priors improves the segmenptataccuracywith the average DSC increasing from
0.9797(N=2) to 0.9856(N=40). In our experiment, accuracy is high even when using only very
few selected priors. Increasing the number of selected @ppeardo make the segmentations
more consisterds the standard deviation is reduced from 0.00¥2) to 0.0049 N=40). The
results show a single persistent outlier that does not benefit from incréasiihg outlier is the

segmentation of the youngest (age=6y) subject in the dataset. The remh\dHIFIg subjects in
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the dataset are aged from 7y to 18y. This suggests that the maturation of the brain and skull alters
WKH VWUXFWXUDO DSSHDUDQFH LQ WKH 7 Z VFDQV 7KXV
VFDQ LV ORZ ZLWKLQ Wd¢Nddad iotiiztdase th@ aimber Bfisirhilakpatches.

Though the experiment showed an increase of accuracy with incrégswegchoseN=20 far

further experimentas the higher accuracy comes at a cost of longer computatiarFigoee 5a

shows the segmentation accuracy within the different groups used in the expefonéht20.

With an average DSC d@i.991, the accuracy on ICBM data is significantly highlfpx0.001,
two-tailed ttest)than the accuraoyf the other groups tested. Timgay be due to the fact thidie

10 ICBM data sets evaluated here were acquired on a single scanner, andréhusore
homogeneous than the other groups, which lead to higher redundancy and better matches of

patches during the segmentation prodesshis group of example data

5.2 Comparison to other methods
In Table 2, the DSC, FPR, and FNR are provided for BET, VBM8, and BEHaS20) when
tested on the three different datasets used in our study. BET yielded very high DSC for ICBM
and NIHPD, while the resultare more mixed on ADNI as indicated by the high standard
deviation and the increased rates of false positives and false negatives. VBMS8 provided slightly
lower DSC on ICBM and NIHPDvith similar FPR and FNR distributiong/hich are visualized
in Fig. 6. Oh the ADNI dataset, VBM8 provided on average DSC valaeger than those
obtained byBET and is more consistent in its segmentation. In fact, VBM8 never results in
catastrophic segmentations, which BET has a tendency to do from time to time (this can be
observed on the false positives map in Fig. 6¢, top row). BEaST yielded consistently high DSC
on all data with generally balanced FPR and FNR that were significantly lower than the other
methods except for the FN#t ICBM and ADNI, where VBMS8 provides simail FNR values.
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ICBM NIHPD ADNI
Method DSC FPR% | FNR % DSC FPR% | FNR % DSC FPR % FNR %
BET 0.975+0.003| 1.28+0.22| 0.45x0.13| 0.975+0.003| 1.33%£0.15| 0.24£0.05| 0.944+0.115| 3.81+12.7| 2.71+1.25
VBMS 0.967+0.0@ | 1.6%0.13 | 0.55x0.07| 0.972+0.00 | 1.32:0.21 | 0.84+0.23| 0.963+0.005 | 1.88:043 | 0.92+0.46
BEaST 0.990+0.002[ 0.41+0.12| 0.49+0.12| 0.981+0.005| 1.02+0.27| 0.20£0.07| 0.985+0.011| 0.53+0.40| 0.91+0.40

BEaST compared to other mettsfg-values

BET 1.44x10° | 9.39x1CP | 328x10" | 2.59x10° | 4.43x10° | 4.62x10° | 6.66x1C° | 5.01x1C? | 2.19x10®
VBMS8 6.35x10° | 3.91x10° | 2.13x10" | 9.46x10° | 6.48x10° | 2.09x10° | 1.81x10” | 1.12x10% | 8.57x10'

Table 2. Average DSC, FPR, and FNR for the methods tested on the different data sets used. The
best resultérom each colummreunderlined Two bottom rows: fvalues for twetailed paired-
test comparing BEaST and respectively BET and VB®Ignificant (p<0.05) results are shown

in italic and highly significant (p<0.01) results are shown in bold.

Figure7 shows typical exampb of brairmasks obtained by BEWBMS8 and BEaST on the five
different groups tested here (NIHPD, ICBM, ADSN, ADNI-MCI, ADNI-AD). On NIHPD

and ICBM data, BET behadeuite well with only minor segmentation errors, such as inclusion
of the transverseirsus and part of the eye sockets. On ADNI data, more serious &reoes
found using BET. These include inclusion of dura aratrow of the skullvhile gyri are often

cut off in atrophic brainsYBM8 had a tendency to perform oveegmentations on all groups
and sometimes includedura proximate to the brain, carotid arteries, ocular fat / muscle, and
parts of the eyesOn the positive side, VBM8 rarely removes part of the brain due to the
consigent oversegmentation (see Fig. BBEaST generally providea more consistent and

robust segmentation without serious errors.

Figure 5bd showthe resultigg DSCs, FPRs, and FNR§ BEaSTcompared to BEBnd VBM8

We measured the segmentation oufpuBEaSTat each resolution by thresholding the nonlocal
means estimator at 0.8s shown, the accuracy increases along with scale, and at 2 mm voxel
sizes (requiring about 152min) BEaST hasalready significantly (p=0.01, paireetdst) higher
median (ad meanpccuracythan BET (Fig. 5b). The difference in DSBstween the techniques
may seem sall. However, when measuring D3 the context of whole brain segmentations,
small changes in the coefficient correspond to large changes in va@sndemonsttad in

(Rohlfing et al., 200% In our case a change of 0.01 irBOcorresponds to about 3M cn?
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depending on brain size and the false positiviedse negatives ratio. This wohe is relatively

large when compared to the size of the structures, which are usually measured in neuroimaging
studies(e.g.; the size of the human hippocampus is about 3.3.¢fhe varying bias of the DSC

when segmenting structures of different sig@ehlfing et al., 2004in our case is considered

low, as the brains have been spatially normalized. The FPRs and FNRs shown in-dFig. 5c
illustrate the large effect of a sdhdifference in DSC. Compared to VBMS, the FPR is reduced

by 74% using BEaST, and FNR is reduced by 67% compared to BET. Because of the consistent
oversegmentation, VBM8 has an FNdfmilar to BEaST at the highest resoluti@ven though

the results of BT have a similar median FPR compared to the FPR of BEaST, the FPR of BET
is significantly (p=0.05) different from the FPR of BEaST.

5.3 Independent Validation
Images from the independent tedataset from the Segmentation Validation Engiveere
normalizedin the same waywsthe library images. Validationf BEaST(N=20) using thetest
dataset resulted in a mean D®€0.978%0.0047 with FPR of 1.13%0.35% and FNR of
0.60%t0.25% (seehttp://sve.loniucla.edu/archive/study/?id=24At the time of writing, this

result was the best of all the methods published on the websiteSMadP a second place with a
DSCof 0.97620.0021followed by VBM8 with a DSC of 0.976@:0025 When compared with
BEaST, the differences inresultswith these two other techniquese statistically significant
(p<0.03, paired-test).

5.4 Robustness
After careful, blinded quality control of th2x840 baseline ADNI dataolumes from BEaST
(N=20) and BET 59 images processed twiBEaST vere found to beaccepable for further
cortical surface analysiwhile only 125 images processed with BETene accepble This
corresponds to failure rate of 29% for BEaST and 85% fBET. Figure8 shows examples of
segmentations that failed the quality control. As seen from the figure, if any part ofrtive co

was removed or any part tife dura was included by the segmentation, the result was rejected.

Performing a second pass with BEafiN=20) using the 599 accepted segmentations with

corresponding images as prioesyd reapplying BEaST (with the subject's MRI left out of the
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template library)the failure rate was reduced tb0% corresponding to 86 scans (see Fig. 8 for
examples of improvementafter second pass). Many of these persistently failing scans had
motion or Gibbs ringing artifacts, and some had parts of the brain present outside the
initialization mask. No catastrophic errors were detected and the manual corrections needed for
passinghe brain masks were small. In fact, for other types of analyses, such as segmentations of
deep brain structures, all brain masks produced by BEaST would pass the quality control.

5.5 Computation time
In our experimentswith 20 images selected from themphtelibrary, the total ppcessing time
using a single thread on an Intébrei7-950 processor at.B6 GHz was less than 30 min per
subject. With 10 images, the processing time was less than 20 min per subject. By contrast,
without the multiresolutionstep but using the initialization mask, the processing time was
around 320 min. Removing the initialization mask increased the processing time to 42 h. The
average processing timef BET and VBM8 wereabout respectively2.5 min and 12 min,
including the spatial and intensity normalizatiédbtaining the segmentation of BEaST ahi
voxel sizes takes about @in including the spatial and intensity normalization, and the
corresponding DSCaresignificantly (p<0.03higher thareitherBET or VBM8 (Fig. 5b) This
suggests that fast lowresolution resultmay be available for certain analyses that do not require
a highly detailed maskCompared to MAPS, which yields similar accuracy as BEaST, the
processing time of BEaST is about 40 times shamesimilar hardware.

6. Discussion
The leaveoneout crossvalidation showed that the segmentation accuracy is consisteglly
(average DS@or N=20: 0.9834:0.0053 and that selecting more pridrem the library increase
the accuracy.However, there is a traddf between the number of selected priors and
segmentation accuracy, why we chose toNe20 for our validation.The results showed a
higher accuracy on ICBM dataompared to the other groups testédis may be caused by the
fact thati) all ICBM images were acquired using the same scanner,ijaitde anatomical
variability within this groupmay besmaller than the other groups studied. This suggests that the

accuracy may be improved by extending the number of priors for thepgrwith higher
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anatomical variabilityand multisite acquisitions Although the results show that only a
relatively small library is needed, the library still needs to be represenvhiiiethe datdor the

patchbased segmentation to work optitgal

The excellent results on ICBM and NIHPD suggest that using an unbalanced library of priors
does notmpair the segmentation accuracy of the data, which is underrepresented in the library.
We used only 10 priors from each of these databases in the litmtatg,using 60 priors from

the ADNI database. The template ysdection seems sufficiently robust to select the appropriate

priors.

The chosen patch sizes and search areas seem appropriate for segmenting the brain. The choice
RI . ZDV FKRVBIQOMPSHQHEDOO\ WKH FKRLFH R-bff. FDQ E!
between computation time and segmentation accuracy. However, performing the segmentations
only at the highest resolution may result in false positives as illustrated in Fig. 3, bottom row.
Thus,the aim of the low resolution segmentation is to exclude dura and other tissues with similar
LQWHQVLW\ FRPSRVLWLRQV DV WKRVH IRXQG ZLWKLQ WKH E!
achieved this.

6.1 Comparison to publicly available methods
Our comparison to other popular brain extraction methods showed that BET and VBM8 provides
very good results for scans of normal individuals, while pathological data seems to impose a
problem for these methods. BET has widely been the preferred braictiextrenethod for
almost 10 years, and for many purposes BET is still sufficient. The simplicity of the method
without the need for priors or registration is appealing. However, the emergence of large
databases with thousands of images with and withoublogth calls for flexible and robust
brain extraction methods. This can be achieved by using label fusion methods as demonstrated in
(Leung et al., 20D1and our study.

Testing on all baseline ADNI data demonstrated that BEaST reducéalthie rate from 85%

to 29% when compared to BET. These highure rates were caed by a very strict quality
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control, where a brain segmentation was discarded if any error according to the definition
(Section2) was discovered. Aailure rate of 29% is still unacceptable. However, after a second
pass, where the accepted segmentatiegre included into the library of priors, tifelure rate

was reduced to 20, which is acceptable as the manual corrections needed are small. A third
pass may have passed a few more brain masks. However, as the errors seemed to stem from
either image artacts or insufficient initialization mask (or insufficient linear registration), a third

pass was not attempted. Learning from priors enables iterative proc¢oooestrapping)for
propagating the segmentation definition, where failure rates can be obtained. This cannot be

achieved by segmentation methods without priors, such as BET and VBMS.

Compared to BET and VBM8BEaST produced less thahalf of the segmentation ersr
increasing the averad@SC from respectively0.9522 and).9647 to 0.9834 In terms of speed,

BET is faster than BEaST, if the segmentations are performed at the highest resolution.
However, stopping the processing at 2 mm voxel sizes results in computation times similar to
BET, while still obtainingsignificantly (p=0.01, paired twdailed ttest) higher segmentation
accuracyCompared to the combined atlas and morphological approach in VBMS8, BEaST Yyields
superior segmentation results on all data tested in the study. The error maps (Fig. 6) show that
VBMBS8 consisteny oversegments the brain compared to our definition. BET behaves similarly,
but with less ovesegmentations. To be fair, such segmentations may be useful in many cases
and thus should not be considered as erroneous. However, for the application dfsofaca
analysis, it is crucial to not include proximate dura in the brain segmentation, as this may lead to
oversegmentations of the cortex and in turn to overestimations of cortical thickmessler
Kouwe et al., 2008

A limitation of the quantitative comparison is that the DSC does not necessarily say anything
about whether the resulting segmentationsisficient for the subsequent processing. For
example, many false negatives may be due to only removing CSF from the surface of the brain
compared to the gold standard. As such, these discrepancies are not fatal errors for the

subsequent processing.
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The hgh DSC of BEaST compared to VBM8 and BET in the LOOCV can be explained by the
fact that BEaST learns from the priors, while the other methods have no segmentation priors.
This means that BEaST delivers segmentations we can expect to match the defihiteothis

is not the case for BET and VBMS8hus the results of BEaST are biased toward the
segmentations of the priors and the DSC may be artificially high in the LOOCV. That is why the
independent validation using the SVE was necessary.

The bias towardhe priorsillustrates the flexibility of the patehased approach. If another
definition is needed, the right priors just need to be available for BEaST to provide consistent
segmentations on new data. This is also a limitation of BEaST in its curremt\¢hile other
pathologies, which do not significantly change the appearance of the brain tissues, such as
fronto-temporal dementia, should be consistently segmented with the current library of BEaST,
other pathologies, such as tumors and lesions, magseng problem for the segmentation. Over
time, a library representative for the large variety of brains may be constructed to overcome this

limitation in the future.

6.2 Comparison to state of the art
In terms of Dice overlapgesultsobtained by BEaS&are better than those reported from recent
hybrid brain extraction approach@3arass et al2011; Iglesias et al., 20)Jandsimilar tothose
from a label fusion approactMAPS (Leung et al., 2011 In the label fusion approach, the
library is more than 1@imes largerandthe processing timabout 40 times longer. The short
processing time in BEaST (<30 min) results from only needing linear registrations and the
advantage of using the ROI in the mulgsolution strategy. The current implementation runs as
a single threadHowever, the nonlocal means calculations can easily be parallelized and
implemented to explothe common multcore CPUs and eveBPU processingPalhano Xavier
de Fontes et al., 201 1which will decrease processing time significangpssibly making it

close toreal time

Using the online segmentation validation eng(®hattuck et al., 20Q09we obtained a truly

objective measure of the performance of BEaST. AmmB&C of 0.9781 is significantly
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(p=0.03, paired -test) better than the best score by MARG9767). An advantage of the
nonlocal means approach is the possibility to use the redundancy in the image priors. While
conventional label fusion approaches pdavia ondo-one mapping between the image under
study and the image priors, the nonlocal means approach providest@mary mapping to
support the segmentation decision at each voxel. That iawdatively small number of library
priors are needed ithe patchbased segmentationompared to conventional label fusion
approachesThis makes it feasible to distribute the method as downloadable software. We intend
to make BEaST available onlir{attp://www.bic.mni.mcgill.ca/BEaS)Tincluding the libraryif

permission to redistribute the dai@n be obtained.

As in conventionallabel fusion, thenonlocal meansapproach enables the segmentation of
different targets simultaneously. For example, the intracranial cavity may be obtained by
generating priors using appropriate methods, such asmié-modal approach used as
intermediate step to obtain the brain segmentation pfwrshe ICBM and NIHPD datasets

Also, separation of cerebellum and brain stem from the cerebrum may be achieved with high

accuracy if theappropriatestructural priorsare available.

Recent work by Wang et a{2011) showed that several segmentation algorithms perform
systematic errors, which can be corrected using a wrdggsed learning method. In thiidy,

BET was used to demonstrate the wragmesed approach, which improved the average DSC
from 0.948 to 0.964. This similarity is still lower than the average similarity obtained by BEaST.
There are no indications that the accuracy of BEaST can bevetpising the wrappdrased
learning approach, as the error maps of BEaST show no systematic error (Fig. 6). The false
positives and false negatives are uniformly distributed across the brain. The segmentations of

VBM8 may benefit from the wrapper approaels these exhibit consistent ossegmentations.

All images used in this study were acquired using scanners with 1.5T field strengths. Though the
results demonstrated robustness towards aiiéti acquisition, the sensitivity to scanner field
strength renains to be investigated. As shown(iKeihaninejad et al., 20)0the scanner field

strength has significarimpact on intracranial cavity segmentations. A similar effect can be
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expected for brain extractions. However, our results indicate that extending the library with
appropriate templates (in this case images from 3T scanners) may deal with a potesnfldlibia

is supported by the results obtained by MARBung et al., 200)1on data from scanners with
1.5T and 3T field strengths.

7. Conclusion
In conclusion, we have proposed a new brain extraction method, BEaST, based on nonlocal
segmentation embeddedthin a multiresolution framework. The accuracy of the method is
higher than BET VBMS8, and recent hybrid approachasd similar to that of a recent label
fusion methodVIAPS, while being much faster and requiring a smaller library of pridssng
all baseline ADNI data, the study demonstrated that the nonlocal segjprengarobust and

consistent if the right priors are available.
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Figures

{8 lﬂ- &“v“«‘
C) FACE mask D) Final mask

Fig. 1. Construction of library priors using multiple modalities. A) Intensities from T1w, T2w,

and PDw images are added. B) BE9mith, 2002)is used to produce an ICC mask. C) FACE
(Eskildsen anddstergaard, 20Q6is used to delineate the cortical boundary and produce a
cerebrum mask. D) Cerebellum and brain stem are added by stereotaxic masks, and the mask is
manually corrected.

[A) GM/WM mask B) Adapted mask

Fig. 2. Adaptation of library priors using deformable surface. A) SertomaticGM/WM mask
as used by MAP@.eung et al., 2011 B) Adapted mask generated by deforming a surface mesh
to the boundary of the GM/WM mask and manually corrected.
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NLM estimator  Segmentation

Voxel size:
4 mm

Voxel count:
25,742

Proc. time:
0.17 min

Dice: 0.97
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Voxel count:
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Dice: 0.98
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28.5 min

Dice: 0.99
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Proc. time:
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Fig. 3. The multiresolution segmentation process (re@) tompared to a singlresolution
approach (row 4). Column 1: Initialization mask. Column 2: Nonlocal m@gisl) estimator

map. Column 3: Segmentation by thresholding the NLM estimator and adding the intersection
mask. Processing times are accumulated time from initialization. Notice the inclusion of dura in
the single resolution approach.
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Fig. 4. Box-whisker plotof Dice similarity coefficient of segmentations using an increasing
number of priors from the library. Experiment performed by leaveout using the library of
80 priors (10 NIHPD, 10 ICBM, 60 ADNI)The boxes indicate the lower quartile, the median
andthe upper quartile. The whiskers indicate respectively the smallest and largest observation
excluding the outliers. Observations deviating more than two standard deviations from the mean
are considered outliers and are marked as circles.
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Fig. 5 a) Accuray of BEaST segmentation within groupseasured using Dice similarity
coefficient b) Segmentation accuracy measured at varying voxelwige88EaSTcompared to
accuracy of BETand VBM8& c) False positive rate and d) false negative rate for BET, VBMS,
and BEaST at varying voxel sizeBhe notches in the bewhisker plots indicate the interquartile

range and suggest statistically significant difference between the medians where the notches do

not overlap.
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BEaST false positives " BEaST false positives BEaST false positives

BEaST false negatives BEaST false negatives BEaST false negatives

Fig. 6 Falsepositive and falsemegative maps$or BET, VBMS8, and BEaST on NIHPD, ICBM

and ADNI data All the error maps are displayed with the same scale. BET provided errors
mainly located in the cerebral falx and medial templaiaé structures. On the ADNI data, BET
had a few catastrophic failures, i is visible in the false positive image. VBMended to
produce a systematic oveegmention compared to the used manual gold stantaederrors
obtained by BEaST wermore uniformly distributed indicating n@ystematic segmentation
errors.



Eskildsen et al., 2011 33

Fig. 7. Typical results using BETVBM8 and BEaST on the five test group#ie figure shows

sagittal slices and 3D renderings of the segmentat@@slsmnl1-2: BET segmentation. Column

3-4: VBM8 segmentation. Column@ BEaST segmentation. Blue voxels are oyaiag

voxels in the segmentation compared to the gold standard. Green voxels are false positives and
red voxels are false negatives.
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Fig. 8. Examples of ADNI brain masks produced by BEaST not passing the quality control in the
first pass (first row) and gssing the quality control after second pass (second row). Left
segmentation is discarded due to cortex clipping, while right segmentation is discarded due to
inclusion of dura as indicated by the arrows. After second pass these errors are removed.



