Digital expression profiling of novel diatom transcripts provides insight into their biological functions. - Inserm - Institut national de la santé et de la recherche médicale Access content directly
Journal Articles Genome Biology Year : 2010

Digital expression profiling of novel diatom transcripts provides insight into their biological functions.

Uma Maheswari
  • Function : Author
  • PersonId : 911236
Jean-Louis Petit
  • Function : Author
  • PersonId : 911238
Betina M Porcel
  • Function : Author
  • PersonId : 1058697
Andrew Allen
  • Function : Author
  • PersonId : 911239
Jean-Paul Cadoret
  • Function : Author
  • PersonId : 911240
Alessandra de Martino
  • Function : Author
  • PersonId : 911241
Marc Heijde
  • Function : Author
  • PersonId : 860768
Raymond Kaas
  • Function : Author
  • PersonId : 911242
Julie La Roche
  • Function : Author
  • PersonId : 911243
Pascal Lopez
Agnès Meichenin
  • Function : Author
  • PersonId : 911244
Micaela Schnitzler Parker
  • Function : Author
  • PersonId : 911246
E Virginia Armbrust
  • Function : Author
  • PersonId : 911248
Jean Weissenbach
  • Function : Author
  • PersonId : 911249
Michaël Katinka
  • Function : Author
  • PersonId : 911250

Abstract

BACKGROUND: Diatoms represent the predominant group of eukaryotic phytoplankton in the oceans and are responsible for around 20% of global photosynthesis. Two whole genome sequences are now available. Notwithstanding, our knowledge of diatom biology remains limited because only around half of their genes can be ascribed a function based onhomology-based methods. High throughput tools are needed, therefore, to associate functions with diatom-specific genes. RESULTS: We have performed a systematic analysis of 130,000 ESTs derived from Phaeodactylum tricornutum cells grown in 16 different conditions. These include different sources of nitrogen, different concentrations of carbon dioxide, silicate and iron, and abiotic stresses such as low temperature and low salinity. Based on unbiased statistical methods, we have catalogued transcripts with similar expression profiles and identified transcripts differentially expressed in response to specific treatments. Functional annotation of these transcripts provides insights into expression patterns of genes involved in various metabolic and regulatory pathways and into the roles of novel genes with unknown functions. Specific growth conditions could be associated with enhanced gene diversity, known gene product functions, and over-representation of novel transcripts. Comparative analysis of data from the other sequenced diatom, Thalassiosira pseudonana, helped identify several unique diatom genes that are specifically regulated under particular conditions, thus facilitating studies of gene function, genome annotation and the molecular basis of species diversity. CONCLUSIONS: The digital gene expression database represents a new resource for identifying candidate diatom-specific genes involved in processes of major ecological relevance.
Fichier principal
Vignette du fichier
gb-2010-11-8-r85.pdf (1017.56 Ko) Télécharger le fichier
GB-2010-11-8-R85-S1.XLS (35 Ko) Télécharger le fichier
GB-2010-11-8-R85-S10.PDF (1.37 Mo) Télécharger le fichier
GB-2010-11-8-R85-S11.PDF (927.29 Ko) Télécharger le fichier
GB-2010-11-8-R85-S12.PDF (1.4 Mo) Télécharger le fichier
GB-2010-11-8-R85-S13.XLS (220.5 Ko) Télécharger le fichier
GB-2010-11-8-R85-S2.PDF (1.37 Mo) Télécharger le fichier
GB-2010-11-8-R85-S3.XLS (44 Ko) Télécharger le fichier
GB-2010-11-8-R85-S4.XLS (29 Ko) Télécharger le fichier
GB-2010-11-8-R85-S5.PDF (1.09 Mo) Télécharger le fichier
GB-2010-11-8-R85-S6.XLS (37.5 Ko) Télécharger le fichier
GB-2010-11-8-R85-S7.XLS (75.5 Ko) Télécharger le fichier
GB-2010-11-8-R85-S8.JPEG (204.26 Ko) Télécharger le fichier
GB-2010-11-8-R85-S9.XLS (49 Ko) Télécharger le fichier
gb-2010-11-8-r85.xml (214.09 Ko) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Format : Other
Format : Other
Format : Other
Format : Other
Format : Other
Format : Other
Format : Other
Format : Other
Format : Other
Format : Other
Format : Other
Format : Other
Format : Other
Format : Other

Dates and versions

inserm-00627911 , version 1 (29-09-2011)

Identifiers

Cite

Uma Maheswari, Kamel Jabbari, Jean-Louis Petit, Betina M Porcel, Andrew Allen, et al.. Digital expression profiling of novel diatom transcripts provides insight into their biological functions.. Genome Biology, 2010, 11 (8), pp.R85. ⟨10.1186/gb-2010-11-8-r85⟩. ⟨inserm-00627911⟩
2170 View
536 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More