F. Tremblay, S. Brule, H. Um, S. Li, Y. Masuda et al., Identification of IRS-1 Ser-1101 as a target of S6K1 in nutrient- and obesity-induced insulin resistance, Proceedings of the National Academy of Sciences, vol.104, issue.35, pp.14056-6117709744, 2007.
DOI : 10.1073/pnas.0706517104

D. Bolster, S. Crozier, S. Kimball, and L. Jefferson, AMP-activated Protein Kinase Suppresses Protein Synthesis in Rat Skeletal Muscle through Down-regulated Mammalian Target of Rapamycin (mTOR) Signaling, Journal of Biological Chemistry, vol.277, issue.27, pp.23977-80, 2002.
DOI : 10.1074/jbc.C200171200

D. Thomson and S. Gordon, Diminished overload-induced hypertrophy in aged fast-twitch skeletal muscle is associated with AMPK hyperphosphorylation, Journal of Applied Physiology, vol.98, issue.2, pp.557-64, 2004.
DOI : 10.1152/japplphysiol.00811.2004

D. Thomson and S. Gordon, Impaired overload-induced muscle growth is associated with diminished translational signalling in aged rat fast-twitch skeletal muscle, The Journal of Physiology, vol.265, issue.1, pp.291-305, 2006.
DOI : 10.1113/jphysiol.2006.107490

S. Paturi, A. Gutta, S. Kakarla, A. Katta, E. Arnold et al., Impaired overload-induced hypertrophy in obese Zucker rat slow-twitch skeletal muscle, Journal of Applied Physiology, vol.108, issue.1, pp.7-1310, 2009.
DOI : 10.1152/japplphysiol.00330.2009

S. Gordon, J. Lake, C. Westerkamp, and D. Thomson, Does AMP-Activated Protein Kinase Negatively Mediate Aged Fast-Twitch Skeletal Muscle Mass?, Exercise and Sport Sciences Reviews, vol.36, issue.4, pp.179-86, 2008.
DOI : 10.1097/JES.0b013e3181877e13

A. Fu, A. Ng, C. Depatie, N. Wijesekara, Y. He et al., Loss of Lkb1 in Adult ?? Cells Increases ?? Cell Mass and Enhances Glucose Tolerance in Mice, Cell Metabolism, vol.10, issue.4, pp.285-95, 2009.
DOI : 10.1016/j.cmet.2009.08.008

Z. Granot, A. Swisa, J. Magenheim, M. Stolovich-rain, W. Fujimoto et al., LKB1 Regulates Pancreatic ?? Cell Size, Polarity, and Function, Cell Metabolism, vol.10, issue.4, pp.296-308, 2009.
DOI : 10.1016/j.cmet.2009.08.010

A. Edinger and C. Thompson, Akt Maintains Cell Size and Survival by Increasing mTOR-dependent Nutrient Uptake, Molecular Biology of the Cell, vol.13, issue.7, pp.2276-88, 2002.
DOI : 10.1091/mbc.01-12-0584

A. Hahn-windgassen, V. Nogueira, C. Chen, J. Skeen, N. Sonenberg et al., Akt Activates the Mammalian Target of Rapamycin by Regulating Cellular ATP Level and AMPK Activity, Journal of Biological Chemistry, vol.280, issue.37, pp.32081-32090, 2005.
DOI : 10.1074/jbc.M502876200

P. Dennis, A. Jaeschke, M. Saitoh, B. Fowler, S. Kozma et al., Mammalian TOR: A Homeostatic ATP Sensor, Science, vol.294, issue.5544, pp.1102-1107, 2001.
DOI : 10.1126/science.1063518

H. Zong, J. Ren, L. Young, M. Pypaert, J. Mu et al., AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation, Proceedings of the National Academy of Sciences, vol.99, issue.25, pp.15983-15990, 2002.
DOI : 10.1073/pnas.252625599

R. Lee-young, S. Griffee, S. Lynes, D. Bracy, J. Ayala et al., Skeletal Muscle AMP-activated Protein Kinase Is Essential for the Metabolic Response to Exercise in Vivo, Journal of Biological Chemistry, vol.284, issue.36, pp.23925-23959, 2009.
DOI : 10.1074/jbc.M109.021048

D. Klein, H. Pilegaard, J. Treebak, T. Jensen, B. Viollet et al., Lack of AMPK??2 enhances pyruvate dehydrogenase activity during exercise, AJP: Endocrinology and Metabolism, vol.293, issue.5, pp.1242-1251, 2007.
DOI : 10.1152/ajpendo.00382.2007

S. Wullschleger, R. Loewith, and M. Hall, TOR Signaling in Growth and Metabolism, Cell, vol.124, issue.3, pp.471-84, 2006.
DOI : 10.1016/j.cell.2006.01.016

L. Lantier, R. Mounier, J. Leclerc, M. Pende, M. Foretz et al., Coordinated maintenance of muscle cell size control by AMP-activated protein kinase, The FASEB Journal, vol.24, issue.9, pp.3555-6110, 2010.
DOI : 10.1096/fj.10-155994

URL : https://hal.archives-ouvertes.fr/inserm-00484177

S. Mcgee, K. Mustard, D. Hardie, and K. Baar, Normal hypertrophy accompanied by phosphoryation and activation of AMP-activated protein kinase ??1 following overload in LKB1 knockout mice, The Journal of Physiology, vol.99, issue.6, pp.1731-1772, 2008.
DOI : 10.1113/jphysiol.2007.143685

R. Mounier, L. Lantier, J. Leclerc, A. Sotiropoulos, M. Pende et al., Important role for AMPK??1 in limiting skeletal muscle cell hypertrophy, The FASEB Journal, vol.23, issue.7, pp.2264-73, 2009.
DOI : 10.1096/fj.08-119057

URL : https://hal.archives-ouvertes.fr/inserm-00363209

P. Cheng, Y. Lee, K. Law, C. Lin, and M. Yen, The involvement of AMP-activated protein kinases in the anti-inflammatory effect of nicotine in vivo and in vitro, Biochemical Pharmacology, vol.74, issue.12, pp.1758-65, 2007.
DOI : 10.1016/j.bcp.2007.08.004

D. Gwinn, D. Shackelford, D. Egan, M. Mihaylova, A. Mery et al., AMPK Phosphorylation of Raptor Mediates a Metabolic Checkpoint, Molecular Cell, vol.30, issue.2, pp.214-240, 2008.
DOI : 10.1016/j.molcel.2008.03.003

D. Hardie, AMPK: a key regulator of energy balance in the single cell and the whole organism, International Journal of Obesity, vol.91, pp.7-12, 2008.
DOI : 10.1038/sj.ijo.0802629

K. Inoki, T. Zhu, and K. Guan, TSC2 Mediates Cellular Energy Response to Control Cell Growth and Survival, Cell, vol.115, issue.5, pp.577-9010, 2003.
DOI : 10.1016/S0092-8674(03)00929-2

D. Hardie and K. Sakamoto, AMPK: A Key Sensor of Fuel and Energy Status in Skeletal Muscle, Physiology, vol.21, issue.1, pp.48-60, 2005.
DOI : 10.1152/physiol.00044.2005

O. Palacios, J. Carmona, S. Michan, K. Chen, Y. Manabe et al., Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1?? in skeletal muscle, Aging, vol.1, issue.9, pp.771-8320157566, 2009.
DOI : 10.18632/aging.100075

V. Aguilar, S. Alliouachene, A. Sotiropoulos, A. Sobering, Y. Athea et al., S6 Kinase Deletion Suppresses Muscle Growth Adaptations to Nutrient Availability by Activating AMP Kinase, Cell Metabolism, vol.5, issue.6, pp.476-87, 2007.
DOI : 10.1016/j.cmet.2007.05.006

C. Bentzinger, K. Romanino, D. Cloetta, S. Lin, J. Mascarenhas et al., Skeletal Muscle-Specific Ablation of raptor, but Not of rictor, Causes Metabolic Changes and Results in Muscle Dystrophy, Cell Metabolism, vol.8, issue.5, pp.411-435, 2008.
DOI : 10.1016/j.cmet.2008.10.002

Y. Long, Z. Cheng, K. Copps, and M. White, Insulin Receptor Substrates Irs1 and Irs2 Coordinate Skeletal Muscle Growth and Metabolism via the Akt and AMPK Pathways, Molecular and Cellular Biology, vol.31, issue.3, pp.430-471, 2011.
DOI : 10.1128/MCB.00983-10

M. Ohanna, A. Sobering, T. Lapointe, L. Lorenzo, C. Praud et al., Atrophy of S6K1???/??? skeletal muscle cells reveals distinct mTOR effectors for cell cycle and size control, Nature Cell Biology, vol.279, issue.3, pp.286-941572304910, 1038.
DOI : 10.1093/emboj/17.22.6649

V. Risson, L. Mazelin, M. Roceri, H. Sanchez, V. Moncollin et al., Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy Gain-of-function R225Q mutation in AMP-activated protein kinase gamma3 subunit increases mitochondrial biogenesis in glycolytic skeletal muscle, J Cell Biol J Biol Chem, vol.187, issue.283, pp.859-7435724, 2008.

P. Atherton, J. Babraj, K. Smith, J. Singh, M. Rennie et al., Selective activation of AMPK-PGC- 1alpha or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation, FASEB J, vol.19, pp.786-815716393, 2005.

S. Um, F. Frigerio, M. Watanabe, F. Picard, J. M. Sticker et al., Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity, Nature, vol.15, issue.7005, pp.200-205, 2004.
DOI : 10.1038/nature01137

D. Williamson, Normalizing a hyperactive mTOR initiates muscle growth during obesity, Aging, vol.3, issue.2, pp.83-421386136, 2011.
DOI : 10.18632/aging.100290

J. Drake, S. Alway, J. Hollander, and D. Williamson, AICAR treatment for 14 days normalizes obesity-induced dysregulation of TORC1 signaling and translational capacity in fasted skeletal muscle, AJP: Regulatory, Integrative and Comparative Physiology, vol.299, issue.6, pp.1546-54, 2010.
DOI : 10.1152/ajpregu.00337.2010

M. Krebs, B. Brunmair, A. Brehm, M. Artwohl, J. Szendroedi et al., The Mammalian Target of Rapamycin Pathway Regulates Nutrient-Sensitive Glucose Uptake in Man, Diabetes, vol.56, issue.6, pp.1600-710, 2007.
DOI : 10.2337/db06-1016

M. Blagosklonny and M. Hall, Growth and aging: a common molecular mechanism, Aging, vol.1, issue.4, pp.357-6220157523, 2009.
DOI : 10.18632/aging.100040

Z. Demidenko and M. Blagosklonny, Quantifying pharmacologic suppression of cellular senescence: prevention of cellular hypertrophy versus preservation of proliferative potential, Aging, vol.1, issue.12, pp.1008-1620157583, 2009.
DOI : 10.18632/aging.100115

M. Blagosklonny, Calorie restriction: Decelerating mTOR-driven aging from cells to organisms (including humans), Cell Cycle, vol.9, issue.4, pp.683-691, 2010.
DOI : 10.4161/cc.9.4.10766

S. Wohlgemuth, A. Seo, E. Marzetti, H. Lees, and C. Leeuwenburgh, Skeletal muscle autophagy and apoptosis during aging: Effects of calorie restriction and life-long exercise, Experimental Gerontology, vol.45, issue.2, pp.138-186, 2010.
DOI : 10.1016/j.exger.2009.11.002

V. Lira, D. Brown, A. Lira, A. Kavazis, Q. Soltow et al., Nitric oxide and AMPK cooperatively regulate PGC-1?? in skeletal muscle cells, The Journal of Physiology, vol.99, issue.18, pp.3551-6610, 2010.
DOI : 10.1113/jphysiol.2010.194035

T. Toyoda, T. Hayashi, L. Miyamoto, S. Yonemitsu, M. Nakano et al., Possible involvement of the ??1 isoform of 5'AMP-activated protein kinase in oxidative stress-stimulated glucose transport in skeletal muscle, AJP: Endocrinology and Metabolism, vol.287, issue.1, pp.166-7310, 2003.
DOI : 10.1152/ajpendo.00487.2003

T. Toyoda, S. Tanaka, K. Ebihara, H. Masuzaki, K. Hosoda et al., Low-intensity contraction activates the ??1-isoform of 5'-AMP-activated protein kinase in rat skeletal muscle, AJP: Endocrinology and Metabolism, vol.290, issue.3, pp.583-90, 2005.
DOI : 10.1152/ajpendo.00395.2005

T. Jensen, P. Schjerling, B. Viollet, J. Wojtaszewski, and E. Richter, AMPK alpha1 activation is required for stimulation of glucose uptake by twitch contraction , but not by H 2 O 2 , in mouse skeletal muscle, PLoS ONE, vol.3, 2008.

T. Egawa, T. Hamada, X. Ma, K. Karaike, N. Kameda et al., Caffeine activates preferentially ??1-isoform of 5???AMP-activated protein kinase in rat skeletal muscle, Acta Physiologica, vol.91, issue.Pt 1, pp.227-265, 2011.
DOI : 10.1111/j.1748-1716.2010.02169.x

K. Sakamoto, E. Zarrinpashneh, G. Budas, A. Pouleur, A. Dutta et al., Deficiency of LKB1 in heart prevents ischemia-mediated activation of AMPKalpha2 but not AMPKalpha1

K. Sakamoto, A. Mccarthy, D. Smith, K. Green, G. Hardie et al., Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction, The EMBO Journal, vol.108, issue.10, pp.1810-1830, 2005.
DOI : 10.1038/sj.emboj.7600667

K. Röckl, M. Hirshman, J. Brandauer, N. Fujii, L. Witters et al., Skeletal Muscle Adaptation to Exercise Training, Diabetes, vol.56, issue.8, pp.2062-910, 2007.
DOI : 10.2337/db07-0255

S. Jørgensen, J. Nielsen, J. Birk, G. Olsen, B. Viollet et al., The ??2-5'AMP-Activated Protein Kinase Is a Site 2 Glycogen Synthase Kinase in Skeletal Muscle and Is Responsive to Glucose Loading, Diabetes, vol.53, issue.12, pp.3074-81, 2004.
DOI : 10.2337/diabetes.53.12.3074

S. Jørgensen, B. Viollet, F. Andreelli, C. Frosig, J. Birk et al., Knockout of the ??2 but Not ??1 5'-AMP-activated Protein Kinase Isoform Abolishes 5-Aminoimidazole-4-carboxamide-1-??-4-ribofuranosidebut Not Contraction-induced Glucose Uptake in Skeletal Muscle, Journal of Biological Chemistry, vol.279, issue.2, pp.1070-914573616, 2004.
DOI : 10.1074/jbc.M306205200

J. Treebak, S. Glund, A. Deshmukh, D. Klein, Y. Long et al., AMPK-Mediated AS160 Phosphorylation in Skeletal Muscle Is Dependent on AMPK Catalytic and Regulatory Subunits, Diabetes, vol.55, issue.7, pp.2051-810, 2006.
DOI : 10.2337/db06-0175

S. Lessard, Z. Chen, M. Watt, M. Hashem, J. Reid et al., Chronic rosiglitazone treatment restores AMPK??2 activity in insulin-resistant rat skeletal muscle, AJP: Endocrinology and Metabolism, vol.290, issue.2, pp.251-258, 2005.
DOI : 10.1152/ajpendo.00096.2005

M. Abbott, A. Edelman, and L. Turcotte, CaMKK is an upstream signal of AMP-activated protein kinase in regulation of substrate metabolism in contracting skeletal muscle, AJP: Regulatory, Integrative and Comparative Physiology, vol.297, issue.6, pp.1724-3210, 2009.
DOI : 10.1152/ajpregu.00179.2009

N. Fujii, T. Hayashi, M. Hirshman, J. Smith, S. Habinowski et al., Exercise Induces Isoform-Specific Increase in 5???AMP-Activated Protein Kinase Activity in Human Skeletal Muscle, Biochemical and Biophysical Research Communications, vol.273, issue.3, pp.1150-1155, 2000.
DOI : 10.1006/bbrc.2000.3073

R. Lee-young, G. Koufogiannis, B. Canny, and G. Mcconell, Acute Exercise Does Not Cause Sustained Elevations in AMPK Signaling or Expression, Medicine & Science in Sports & Exercise, vol.40, issue.8, pp.1490-1494, 2008.
DOI : 10.1249/MSS.0b013e318173a037

T. Stephens, Z. Chen, B. Canny, B. Michell, B. Kemp et al., Progressive increase in human skeletal muscle AMPK??2 activity and ACC phosphorylation during exercise, American Journal of Physiology - Endocrinology And Metabolism, vol.282, issue.3, pp.688-9411832374, 2002.
DOI : 10.1152/ajpendo.00101.2001

R. Reznick, H. Zong, J. Li, K. Morino, I. Moore et al., Aging-Associated Reductions in AMP-Activated Protein Kinase Activity and Mitochondrial Biogenesis, Cell Metabolism, vol.5, issue.2, pp.151-157, 2007.
DOI : 10.1016/j.cmet.2007.01.008