D. Berg and M. Youdim, Role of Iron in Neurodegenerative Disorders, Topics in Magnetic Resonance Imaging, vol.17, issue.1, pp.5-17, 2006.
DOI : 10.1097/01.rmr.0000245461.90406.ad

R. Vidal, M. Delisle, and B. Ghetti, Neurodegeneration Caused by Proteins with an Aberrant Carboxyl-Terminus, Journal of Neuropathology & Experimental Neurology, vol.63, issue.8, pp.787-800, 2004.
DOI : 10.1093/jnen/63.8.787

A. Curtis, C. Fey, C. Morris, L. Bindoff, P. Ince et al., Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease, Nature Genetics, vol.28, issue.4, pp.350-354, 2001.
DOI : 10.1038/ng571

R. Vidal, B. Ghetti, M. Takao, C. Brefel-courbon, E. Uro-coste et al., Gene, Journal of Neuropathology & Experimental Neurology, vol.63, issue.4, pp.363-380, 2004.
DOI : 10.1093/jnen/63.4.363

URL : https://hal.archives-ouvertes.fr/hal-00807351

M. Mancuso, G. Davidzon, R. Kurlan, R. Tawil, E. Bonilla et al., Hereditary Ferritinopathy: A Novel Mutation, Its Cellular Pathology, and Pathogenetic Insights, Journal of Neuropathology & Experimental Neurology, vol.64, issue.4, pp.280-294, 2005.
DOI : 10.1093/jnen/64.4.280

E. Ohta, T. Nagasaka, K. Shindo, S. Toma, K. Nagasaka et al., NEUROFERRITINOPATHY IN A JAPANESE FAMILY WITH A DUPLICATION IN THE FERRITIN LIGHT CHAIN GENE, Neurology, vol.70, issue.Issue 16, Part 2, pp.1493-1494, 2008.
DOI : 10.1212/01.wnl.0000310428.74624.95

D. Devos, P. Tchofo, I. Vuillaume, A. Destée, S. Batey et al., Clinical features and natural history of neuroferritinopathy caused by the 458dupA FTL mutation, Brain, vol.132, issue.6, p.109, 2009.
DOI : 10.1093/brain/awn274

A. Kubota, A. Hida, Y. Ichikawa, Y. Momose, J. Goto et al., A novel ferritin light chain gene mutation in a Japanese family with neuroferritinopathy: Description of clinical features and implications for genotype-phenotype correlations, Movement Disorders, vol.40, issue.16, Part 2, pp.441-445, 2009.
DOI : 10.1002/mds.22435

F. Ory-magne, C. Brefel-courbon, P. Payoux, S. Debruxelles, I. Sibon et al., Clinical phenotype and neuroimaging findings in a French family with hereditary ferritinopathy (FTL498-499InsTC), Movement Disorders, vol.75, issue.11, pp.1676-1683, 2009.
DOI : 10.1002/mds.22669

E. Theil, The Ferritin Family of Iron Storage Proteins, Adv Enzymol Relat Areas Mol Biol, vol.85, pp.421-449, 1990.
DOI : 10.1002/9780470123096.ch7

P. Harrison and P. Arosio, The ferritins: molecular properties, iron storage function and cellular regulation, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1275, issue.3, pp.161-203, 1996.
DOI : 10.1016/0005-2728(96)00022-9

P. Rucker, F. Torti, and S. Torti, Role of H and L Subunits in Mouse Ferritin, Journal of Biological Chemistry, vol.271, issue.52, pp.33352-33357, 1996.
DOI : 10.1074/jbc.271.52.33352

M. Baraibar, A. Barbeito, B. Muhoberac, and R. Vidal, Iron-mediated Aggregation and a Localized Structural Change Characterize Ferritin from a Mutant Light Chain Polypeptide That Causes Neurodegeneration, Journal of Biological Chemistry, vol.283, issue.46, pp.31679-31689, 2008.
DOI : 10.1074/jbc.M805532200

M. Baraibar, B. Muhoberac, H. Garringer, T. Hurley, and R. Vidal, Unraveling of the E-helices and Disruption of 4-Fold Pores Are Associated with Iron Mishandling in a Mutant Ferritin Causing Neurodegeneration, Journal of Biological Chemistry, vol.285, issue.3, pp.1950-1956, 2010.
DOI : 10.1074/jbc.M109.042986

R. Vidal, L. Miravalle, X. Gao, A. Barbeito, M. Baraibar et al., Expression of a Mutant Form of the Ferritin Light Chain Gene Induces Neurodegeneration and Iron Overload in Transgenic Mice, Journal of Neuroscience, vol.28, issue.1, pp.60-67, 2008.
DOI : 10.1523/JNEUROSCI.3962-07.2008

A. Barbeito, H. Garringer, M. Baraibar, X. Gao, M. Arredondo et al., Abnormal iron metabolism and oxidative stress in mice expressing a mutant form of the ferritin light polypeptide gene, Journal of Neurochemistry, vol.5, issue.4, pp.1067-1078, 2009.
DOI : 10.1111/j.1471-4159.2009.06028.x

J. Riemer, H. Hoepken, H. Czerwinska, S. Robinson, and R. Dringen, Colorimetric ferrozine-based assay for the quantitation of iron in cultured cells, Analytical Biochemistry, vol.331, issue.2, pp.370-375, 2004.
DOI : 10.1016/j.ab.2004.03.049

W. Breuer, S. Epsztejn, P. Millgram, and I. Cabantchik, Transport of iron and other transition metals into cells as revealed by a fluorescent probe, Am J Physiol, vol.268, pp.1354-1361, 1995.

W. Breuer, S. Epsztejn, and Z. Cabantchik, Iron Acquired from Transferrin by K562 Cells Is Delivered into a Cytoplasmic Pool of Chelatable Iron(II), Journal of Biological Chemistry, vol.270, issue.41, pp.24209-24215, 1995.
DOI : 10.1074/jbc.270.41.24209

B. Andriopoulos, S. Hegedusch, J. Mangin, H. Riedel, U. Hebling et al., Sustained Hydrogen Peroxide Induces Iron Uptake by Transferrin Receptor-1 Independent of the Iron Regulatory Protein/Iron-responsive Element Network, Journal of Biological Chemistry, vol.282, issue.28, pp.20301-20308, 2007.
DOI : 10.1074/jbc.M702463200

S. Kim and P. Ponka, Control of Transferrin Receptor Expression via Nitric Oxide-mediated Modulation of Iron-regulatory Protein 2, Journal of Biological Chemistry, vol.274, issue.46, pp.33035-33042, 1999.
DOI : 10.1074/jbc.274.46.33035

S. Mueller and K. Pantopoulos, [32] Activation of iron regulatory protein-1 by oxidative stress, Methods Enzymol, vol.348, pp.324-337, 2002.
DOI : 10.1016/S0076-6879(02)48651-X

R. Vidal, M. Delisle, O. Rascol, and B. Ghetti, Hereditary ferritinopathies In Neurodegeneration. The Molecular Pathology of Dementia and Movement Disorders.. 2 edition

X. Deng, R. Vidal, and E. Englander, Accumulation of oxidative DNA damage in brain mitochondria in mouse model of hereditary ferritinopathy, Neuroscience Letters, vol.479, issue.1, pp.44-48, 2010.
DOI : 10.1016/j.neulet.2010.05.025

A. Alkhateeb and J. Connor, Nuclear ferritin: A new role for ferritin in cell biology, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1800, issue.8, pp.1800793-1800800, 2010.
DOI : 10.1016/j.bbagen.2010.03.017

A. Smith, P. Carthew, J. Francis, R. Edwards, and D. Dinsdale, Characterization and accumulation of ferritin in hepatocyte nuclei of mice with iron overload, Hepatology, vol.11, issue.6, pp.1399-1405, 1990.
DOI : 10.1002/hep.1840120622

T. Linsenmayer, C. Cai, J. Millholland, K. Beazley, and J. Fitch, Nuclear ferritin in corneal epithelial cells: tissue???specific nuclear transport and protection from UV???damage, Progress in Retinal and Eye Research, vol.24, issue.2, pp.139-159, 2005.
DOI : 10.1016/j.preteyeres.2004.08.004

K. Thompson, M. Fried, Z. Ye, P. Boyer, and J. Connor, Regulation, mechanisms and proposed function of ferritin translocation to cell nuclei, J Cell Sci, vol.115, pp.2165-2177, 2002.

B. Muhoberac, M. Baraibar, and R. Vidal, Iron loading-induced aggregation and reduction of iron incorporation in heteropolymeric ferritin containing a mutant light chain that causes neurodegeneration, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1812, issue.4
DOI : 10.1016/j.bbadis.2010.10.010

M. Hentze, M. Muckenthaler, and N. Andrews, Balancing Acts, Cell, vol.117, issue.3, pp.285-297, 2004.
DOI : 10.1016/S0092-8674(04)00343-5

M. Hentze and L. Kühn, Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress., Proceedings of the National Academy of Sciences, vol.93, issue.16, pp.8175-8182, 1996.
DOI : 10.1073/pnas.93.16.8175

L. Garrick, K. Dolan, M. Romano, and M. Garrick, Non-transferrin-bound iron uptake in Belgrade and normal rat erythroid cells, Journal of Cellular Physiology, vol.273, issue.3, pp.349-358, 1999.
DOI : 10.1002/(SICI)1097-4652(199903)178:3<349::AID-JCP9>3.0.CO;2-R

J. Salazar, N. Mena, S. Hunot, A. Prigent, D. Alvarez-fischer et al., Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson's disease, Proceedings of the National Academy of Sciences, vol.105, issue.47, pp.18578-83, 2008.
DOI : 10.1073/pnas.0804373105

O. Kakhlon and Z. Cabantchik, The labile iron pool: characterization, measurement, and participation in cellular processes1 1This article is part of a series of reviews on ???Iron and Cellular Redox Status.??? The full list of papers may be found on the homepage of the journal., Free Radical Biology and Medicine, vol.33, issue.8, pp.1037-1046, 2002.
DOI : 10.1016/S0891-5849(02)01006-7

. Barbeito, http://www.molecularneurodegeneration.com/content, Molecular Neurodegeneration, vol.551, p.5050, 2010.

A. Cozzi, E. Rovelli, G. Frizzale, A. Campanella, M. Amendola et al., Oxidative stress and cell death in cells expressing L-ferritin variants causing neuroferritinopathy, Neurobiology of Disease, vol.37, issue.1, pp.77-85, 2010.
DOI : 10.1016/j.nbd.2009.09.009

L. Zecca, M. Youdim, P. Riederer, J. Connor, and R. Crichton, Iron, brain ageing and neurodegenerative disorders, Nature Reviews Neuroscience, vol.41, issue.11, pp.863-873, 2004.
DOI : 10.1016/S0006-2952(99)00079-9

Y. Ke and Z. Qian, Brain iron metabolism: Neurobiology and neurochemistry, Progress in Neurobiology, vol.83, issue.3, pp.149-173, 2007.
DOI : 10.1016/j.pneurobio.2007.07.009

L. Sayre, G. Perry, and M. Smith, Redox metals and neu rodegenerative disease, Current Opinion in Chemical Biology, vol.3, issue.2, pp.220-225, 1999.
DOI : 10.1016/S1367-5931(99)80035-0

J. Laskey, I. Webb, H. Schulman, and P. Ponka, Evidence that transferrin supports cell proliferation by supplying iron for DNA synthesis, Experimental Cell Research, vol.176, issue.1, pp.87-95, 1988.
DOI : 10.1016/0014-4827(88)90123-1

I. Reynolds and T. Hastings, Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation, J Neurosci, vol.15, pp.3318-3327, 1995.