1471-2164-10-403 1471-2164 Research article <p>Transcriptional profiling reveals developmental relationship and distinct biological functions of CD16+ and CD16- monocyte subsets</p> Ancuta Petronela petronela.ancuta@umontreal.ca Liu Kuang-Yu kuangyu.liu@gmail.com Misra Vikas vikas_misra@dfci.harvard.edu Wacleche Sue Vanessa vanessa.sue.wacleche@umontreal.ca Gosselin Annie annie.gosselin.chum@gmail.com Zhou Xiaobo XZhou@tmhs.org Gabuzda Dana dana_gabuzda@dfci.harvard.edu

CRCHUM, Université de Montréal, INSERM Unit 743, Montréal, Québec, Canada

Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA

Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA

Bioinformatics Core and Department of Radiology, The Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, TX 77030, USA

BMC Genomics 1471-2164 2009 10 1 403 http://www.biomedcentral.com/1471-2164/10/403 10.1186/1471-2164-10-403 19712453
8 4 2009 27 8 2009 27 8 2009 2009 Ancuta et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background

Human peripheral blood monocytes (Mo) consist of subsets distinguished by expression of CD16 (FCγRIII) and chemokine receptors. Classical CD16- Mo express CCR2 and migrate in response to CCL2, while a minor CD16+ Mo subset expresses CD16 and CX3CR1 and migrates into tissues expressing CX3CL1. CD16+ Mo produce pro-inflammatory cytokines and are expanded in certain inflammatory conditions including sepsis and HIV infection.

Results

To gain insight into the developmental relationship and functions of CD16+ and CD16- Mo, we examined transcriptional profiles of these Mo subsets in peripheral blood from healthy individuals. Of 16,328 expressed genes, 2,759 genes were differentially expressed and 228 and 250 were >2-fold upregulated and downregulated, respectively, in CD16+ compared to CD16- Mo. CD16+ Mo were distinguished by upregulation of transcripts for dendritic cell (DC) (SIGLEC10, CD43, RARA) and macrophage (MΦ) (CSF1R/CD115, MafB, CD97, C3aR) markers together with transcripts relevant for DC-T cell interaction (CXCL16, ICAM-2, LFA-1), cell activation (LTB, TNFRSF8, LST1, IFITM1-3, HMOX1, SOD-1, WARS, MGLL), and negative regulation of the cell cycle (CDKN1C, MTSS1), whereas CD16- Mo were distinguished by upregulation of transcripts for myeloid (CD14, MNDA, TREM1, CD1d, C1qR/CD93) and granulocyte markers (FPR1, GCSFR/CD114, S100A8-9/12). Differential expression of CSF1R, CSF3R, C1QR1, C3AR1, CD1d, CD43, CXCL16, and CX3CR1 was confirmed by flow cytometry. Furthermore, increased expression of RARA and KLF2 transcripts in CD16+ Mo coincided with absence of cell surface cutaneous lymphocyte associated antigen (CLA) expression, indicating potential imprinting for non-skin homing.

Conclusion

These results suggest that CD16+ and CD16- Mo originate from a common myeloid precursor, with CD16+ Mo having a more MΦ – and DC-like transcription program suggesting a more advanced stage of differentiation. Distinct transcriptional programs, together with their recruitment into tissues via different mechanisms, also suggest that CD16+ and CD16- Mo give rise to functionally distinct DC and MΦ in vivo.

Background

Peripheral blood monocytes (Mo) originate from hematopoietic progenitor cells in bone marrow and play important roles in innate and adaptive immunity due to their ability to differentiate into macrophages (MΦ) and dendritic cells (DC) 1234567. The heterogeneity and plasticity of MΦ and DC result from their differentiation in specific tissue microenvironments 8910. The expression of CD16 (FcγRIII) distinguishes two Mo subsets in peripheral blood of healthy individuals: a major CD16- subset (80–95%) and a minor CD16+ subset (5–15%) 11. Compared to classical CD16- Mo, CD16+ Mo exhibit a more MΦ-like morphology, produce higher levels of TNF and IL-1 1213, have higher antigen presenting potential 141516, and differentiate into DC upon transendothelial migration in vitro 17. CD16+ Mo express CX3CR1 and migrate in response to CX3CL1 1819, a membrane-bound chemokine expressed on inflamed endothelial cells, while CD16- Mo express CD62L and CCR2 and migrate in response to CCL2 1820, which mediates Mo migration from bone marrow and recruitment to inflammatory sites 221. CD16+ Mo produce IL-6, CCL2, and matrix metalloproteinase-9 upon interaction with CX3CL1-expressing endothelial cells 22 and activate resting T-cells for HIV infection by producing CCR3 and CCR4 ligands 23. Together, these findings suggest that CD16+ and CD16- Mo are recruited into different anatomic sites under constitutive or inflammatory conditions, and play distinct functional roles in immunity and disease pathogenesis.

A dramatic increase in circulating CD16- Mo has been reported in inflammatory pathologies such as sepsis, HIV infection, tuberculosis, and asthma 112425. Studies of patients infected with Mycobacterium leprae demonstrated that CD16+ and CD16- Mo differentiate into DC-SIGN+ MΦ and CD1b+DC-SIGN- DC, respectively, and the presence of CD1b+DC-SIGN- DC in M. leprae lesions was associated with healing 26. An increased frequency of CD16+ Mo was associated with non-healing Leishmania chagasi lesions 27. Thus, CD16+ and CD16- Mo differentiation into MΦ or DC subpopulations with distinct phenotypes influences host defenses in infectious disease. Consequently, there is interest in developing therapeutic strategies that target specific Mo subpopulations 682829.

Mo heterogeneity is conserved across mammalian species 781930. In mice, Gr1+CX3CR1low Mo (homolog of human CD16- Mo) are recruited into the peritoneal cavity or draining lymph nodes under inflammatory conditions by mechanisms dependent on CCR2 and CD62L, and subsequently differentiate into DC 19313233. In contrast, Gr1-CX3CR1high (homolog of human CD16+ Mo) are constitutively recruited into peripheral tissues including spleen, gut, lungs, and brain 19. Gr1-CX3CR1high patrol vascular endothelium by mechanisms involving LFA-1 and CX3CR1, and are rapidly recruited into inflamed tissues where they differentiate into MΦ expressing the transcription factors cMaf and MafB and transiently producing TNF-α 33. Studies in CX3CR1/ApoE double knockout mice suggest that CX3CR1high Mo play a critical role in development of atherosclerotic lesions 3435. CX3CR1+ Mo may be precursors for lamina propria DC, which depend on CX3CR1 to form transepithelial dendrites, enabling direct sampling of luminal antigens 36. Furthermore, adoptive transfer studies in rats demonstrated that CCR2lowCX3CR1high Mo are constitutively recruited into the gut where they give rise to intestinal lymph DC 37. Studies on the origin of myeloid pulmonary DC demonstrated that Ly-6ChighCCR2highCX3CR1low Mo differentiate into CD103+ DC 3839), whereas Ly-6ClowCCR2lowCX3CR1high Mo give rise to CD11bhigh DC 3940. Thus, CX3CR1high and CX3CR1low Mo subsets play distinct functional roles under constitutive and inflammatory conditions.

The developmental relationship between Mo subsets is poorly understood. In mice, Mo recently emigrating from bone marrow exhibit a Ly-6Chigh phenotype and gradually downregulate Ly-6C 41. Mo acquire CD16 expression upon exposure to M-CSF 42, TGF-β 1743, or IL-10 44, and upregulate CX3CR1 expression upon CCL2 stimulation via CCR2 45. Mo differentiation is associated with decreased CCR2 expression and increased CCL2 production 46. Engrafted Gr1highCX3CR1low Mo in peripheral blood traffic to the bone marrow, differentiate into Gr1lowCX3CR1high Mo, and contribute to mucosal, but not splenic, generation of DC 5. These findings suggest that human CD16+ Mo and mouse Ly-6ClowCCR2lowCX3CR1high Mo differentiate from CD16- Mo and Gr1-Ly-6ChighCCR2highCX3CR1low Mo, respectively.

Here, we investigate the developmental and functional relationship between CD16+ and CD16- Mo subsets. Whole genome transcriptome analysis suggests that these Mo subsets originate from a common myeloid precursor, with CD16+ Mo being at a more advanced stage of differentiation and having a more MΦ – and DC-like transcription program. Upregulation of the transcription factors RARA and KLF2 in CD16+ Mo coincided with the absence of cutaneous lymphocyte associated antigen (CLA) expression, indicating potential imprinting for non-skin homing in CD16+ Mo. These results define distinct transcriptional profiles of CD16- and CD16+ Mo subsets suggesting different stages of myeloid differentiation, new markers to distinguish these Mo subpopulations, and unique roles in immune responses and inflammatory diseases.

Methods

Antibodies

Fluorochrome-conjugated Abs used for FACS analysis were CD14, CD16, CD19, CD16b, CD66b, CD56, and CD3 (Beckman Coulter); M-DC8 and CD1c (Miltenyi), HLA-DR, CD114, C3aR, CD1d and CD43 (BD Pharmingen), CD115 (R&D Systems), CD93/C1qR1 (Chemicon International), and CXCL16 (R&D Systems). Matched isotype controls were from the same source as the Abs.

Flow cytometry analysis

Blood from healthy individuals was collected with informed consent and IRB approval from Dana-Farber Cancer Institute. PBMC isolated from peripheral blood by Ficoll-Paque gradient density centrifugation were stained with fluorochrome-conjugated Abs and analyzed by multi-color flow cytometry (BD FACSCalibur or LSRII).

Monocyte sorting

Monocytes (Mo) were isolated by negative selection using magnetic immunobeads (Monocyte Isolation Kit II, Miltenyi) as described 1847. The purity of sorted Mo was >98%, as determined by FACS analysis indicating the expression of CD14 and HLA-DR (monocyte markers) and absence of CD1c (DC marker), CD56 (NK cell marker), CD19 (B cell marker), CD3 (T cell marker), and CD16b and CD66b (neutrophil markers) expression. CD16+ and CD16- Mo fractions were further isolated using CD16 magnetic immunobeads (Miltenyi) with >85% and >95% purity for CD16+ and CD16- Mo fractions, respectively, as determined by FACS analysis after staining with CD16 Abs 23. Mo fractions isolated under RNase free conditions were stored in Trizol at -80°C for subsequent RNA extraction.

RNA isolation and microarray analysis

Total RNA from Mo pellets was isolated by Trizol extraction and purified using RNeasy columns (Qiagen). The quality of RNA was assessed by visualization of intact bands corresponding to 18S and 28S rRNA on formaldehyde agarose gels. Total RNA (10 μg) from matched CD16+ and CD16- Mo samples isolated from 4 different healthy donors was quality tested using an Agilent 2100 Bioanalyzer chip, reverse transcribed, and hybridized on the GeneChip® Human Genome U133 Plus 2.0 Array (Affymetrix), which includes 54,000 probe sets on a single array (i.e., 47,000 transcripts and variants, including 38,500 well-characterized human genes). Primary data analysis performed using GeneSpring software (Biopolymer core facility, Harvard Medical School) generated Excel spreadsheets with relative gene expression values for the 4 matched CD16+ and CD16- Mo subsets.

Microarray data analysis

A total of 16,328 probe sets were detected in these 8 samples (present calls, defined as probe sets detected in at least 3 samples). Normalization was performed as described 48 to account for variation between microarrays. Missing value estimation was performed using a modified KNN algorithm 4950. T-test was used to identify probe sets differentially expressed in CD16+ and CD16- Mo (p < 0.05). These genes were sorted according to their t-statistics and fold change ratios, which were calculated by computing the mean expression in CD16+ and CD16- Mo. Clustering analysis using fuzzy-c-means 5051 was performed based on the genes selected by F-test (n = 2,759 probe sets). False discovery rates (FDR) 52 were estimated using dChip software (build date: Jan 27 2009) 53 by performing 100 random permutations using all 8 samples with p-values < 0.05, expression ratio cut-off = 2.0-fold, and present call cut-off of 20%, yielding a median FDR of 0.07. Expression ratios for differentially expressed probe sets were calculated in CD16+ versus CD16- Mo (cut-off 2-fold; p < 0.05). Heat maps for biological function categories were generated by dChip software using signal values from each of the 8 samples for genes that were > 2-fold upregulated or downregulated in CD16+ Mo compared to CD16- Mo. The entire microarray dataset and technical information requested by Minimum Information about a Microarray Experiment (MIAME) are available at the Gene Expression Omnibus (GEO) database under accession number GSE16836 (Transcriptional profiling of CD16+ and CD16- peripheral blood monocytes from healthy individuals) http://www.ncbi.nlm.nih.gov/geo.

Gene set enrichment analysis (GSEA)

Gene set enrichment analysis (GSEA) and Molecular Signature DataBase (MSigDB) http://www.broad.mit.edu were used to identify differentially expressed gene sets 54. GSEA is a computational method that determines whether an a priori defined set of genes shows statistically significant concordant differences between two biological states (e.g. phenotypes). MSigDB contains more than 3000 gene sets for use with GSEA. An enrichment score (ES) that represents the difference between the observed and expected rankings from phenotype correlation was calculated for every gene set. A nominal p-value for the specific ES was then estimated from an empirical permutation-based null distribution that preserves the complex correlation structure of the gene expression data. Multiple testing was corrected via the FDR, with FDR less than 10% considered statistically significant.

Quantitative Real time RT-PCR

One step SYBR Green real time RT-PCR (Qiagen) was carried out in an iCycler BioRad EN270 PCR machine according to manufacturer's recommendations. Absolute quantification of target gene expression was performed using a 10-fold serial dilution of purified PCR products as described 55. Briefly, 25–50 ng total RNA was reverse transcribed in 25 μl 1× SYBR Green mix (Qiagen) containing 0.5 μM primers, and 10 nM fluorescein calibration dye (Bio-Rad). Agarose gel electrophoresis was used to determine the size of amplification products (100–200 bp) and allowed cDNA purification (QIAquick Gel Extraction Kit; Qiagen) for standard curve preparation (i.e., 200, 20, 2, 0.2, and 0.02 fg cDNA). Primers spanning one or multiple exons were purchased from Qiagen (i.e., SIGLEC10, MafB, C1QR, C3AR1, CDKN1C, CSF1R, CSF3R, FcγRIII, TNFRSF8, ICAM-2 QuantiTect primer sets). Samples without template and reverse transcriptase were used as negative controls. The concentration of each gene was normalized to the 28S ribosomal RNA (RRN28S) internal control 55. Each RT-PCR reaction was performed in triplicate.

Results

Distinct gene expression profiles in CD16+ and CD16- monocytes

To define transcriptional profiles of monocyte subsets in vivo, we performed genome wide transcriptome analysis of matched CD16+ and CD16- Mo subsets in peripheral blood of four healthy individuals. We identified 2,759 probe sets that were differentially expressed and 13,569 genes that were similarly expressed in these Mo subsets (Figure 1A) (GEO database accession number GSE16836, http://www.ncbi.nlm.nih.gov/geo). Clustering analysis separated the 8 samples into 2 groups that perfectly matched CD16+ and CD16- Mo, with 1,402 genes downregulated and 1,357 genes upregulated in CD16+ compared to CD16- Mo (Figure 1B). Calculation of expression ratios for 2,759 differentially expressed probe sets showed that 250 probe sets were downregulated (corresponding to 166 genes and 23 unknown transcribed sequences) and 228 probe sets were upregulated (corresponding to 153 genes and 19 unknown transcribed sequences) in CD16+ compared to CD16- Mo (cut-off 2-fold; p < 0.05) (Figure 1C–D, Additional files 1, 2). These 2-fold lists of differentially expressed genes included known markers for CD16+ (i.e., FCGR3A/CD16, CX3CR1, ITGAL/LFA-1, and CD31/PECAM1) and CD16- Mo (i.e., CD14, CCR2, SELL/CD62L, FCGR1/CD64) 181920 (Additional files 1, 2), providing initial validation of microarray results. Signature transcripts for other blood cell lineages were absent in both CD16+ and CD16- Mo (i.e., CD3 and CD8 for T cells, CD56 for NK cells, CD19 for B cells, and DC-SIGN and CD1c for DC), consistent with results obtained by flow cytometry demonstrating the purity of sorted Mo (>98%) and absence of DC (i.e., CD1c), NK cell (i.e., CD56), B cell (i.e., CD19), T cell (i.e., CD3), neutrophil (i.e., CD16b and CD66b) markers on CD16+ and CD16- Mo. The difference in relative expression of some probe sets for donor #1 probably reflects normal donor-to-donor variability, since post-sort cell viability, RNA quality, and MicroArray Quality Controls were similar for the four donors. A more stringent analysis was performed where in addition to a cut-off >2-fold and p-value < 0.05, probe sets with expression levels >3-fold higher than background were selected; by this approach, we identified 132 downregulated and 183 upregulated probe sets in CD16+ compared to CD16- Mo (data not shown). These genes were further selected for those with the highest levels of expression (>10,000 AU (arbitrary units), cut-off >2-fold; p-value < 0.05) and two lists of top genes were generated, with 30 and 31 transcripts upregulated in CD16+ and CD16- Mo, respectively (Tables 1 and 2). Other genes were differentially expressed with a difference <2-fold. In CD16+ compared to CD16- Mo, downregulated markers included the early myeloid markers CD13 (2,971 ± 1,753 versus 5,656 ± 2,392; ratio 0.53, p-value < 0.05) and CD33 (1,860 ± 703 versus 3,478 ± 686; ratio 0.52, p-value < 0.05). Thus, despite a high level of transcriptional similarity (approximately 83%), a subset of probe sets were significantly downregulated (n = 250) or upregulated (n = 228) in CD16+ compared to CD16- Mo, suggesting that these Mo subsets represent different stages of myeloid differentiation and have distinct biological functions in vivo.

<p>Additional file 1</p>

Table S1. Genes upregulated in CD16+ compared to CD16- monocytes. Calculation of expression ratios for the 2,759 differentially expressed probe sets showed upregulation of 228 probe sets (corresponding to 153 genes and 19 unknown transcribed sequences) in CD16+ compared to CD16- Mo (cut-off 2-fold; p < 0.05).

Click here for file

<p>Additional file 2</p>

Table S2. Genes downregulated in CD16+ compared to CD16- monocytes. Calculation of expression ratios for the 2,759 differentially expressed probe sets showed downregulation of 250 probe sets (corresponding to 166 genes and 23 unknown transcribed sequences) in CD16+ compared to CD16- Mo (cut-off 2-fold; p < 0.05).

Click here for file

<p>Table 1</p>

Top genes upregulated in CD16+ compared to CD16- Mo

CD16+ Mo AU


Gene Symbol

CD16+/CD16- Ratio

p-value

Mean

SD

GeneTitle


FCGR3A

20,1

0,000

36975

6660

Fc fragment of IgG, low affinity IIIa, receptor for (CD16)

CDKN1C

18,4

0,000

23838

5132

cyclin-dependent kinase inhibitor 1C (p57, Kip2)

MTSS1

5,7

0,000

12285

2678

metastasis suppressor 1

SIGLEC10

4,8

0,000

10657

3068

sialic acid binding Ig-like lectin 10

IFITM1

4,5

0,026

13823

10613

interferon induced transmembrane protein 1 (9–27)

HMOX1

3,5

0,000

16791

4339

heme oxygenase (decycling) 1

TAGLN

3,2

0,000

11950

3480

Transgelin

TCF7L2

3,0

0,000

16772

4608

transcription factor 7-like 2 (T-cell specific, HMG-box)

MS4A7

2,8

0,000

22645

6376

membrane-spanning 4-domains, subfamily A, member 7

CSF1R

2,8

0,000

22838

6537

colony stimulating factor 1 receptor

NAP1L1

2,8

0,000

34370

5546

nucleosome assembly protein 1-like 1

IFITM2

2,5

0,000

58835

17536

interferon induced transmembrane protein 2 (1-8D)

SOD1

2,5

0,000

11300

2491

superoxide dismutase 1

IFITM3

2,5

0,022

40793

15947

interferon induced transmembrane protein 3 (1-8U)

LST1

2,5

0,000

42904

13661

leukocyte specific transcript 1

CX3CR1

2,4

0,041

25882

11806

chemokine (C-X3-C motif) receptor 1

LILRB1

2,4

0,000

15534

4951

leukocyte immunoglobulin-like receptor, subfamily B, member 1

PSCDBP

2,3

0,000

12459

2539

pleckstrin homology, Sec7 and coiled-coil domains, binding protein

ITGAL

2,3

0,000

13269

3384

integrin, alpha L (antigen CD11A)

C6orf187

2,3

0,022

14752

5263

chromosome 6 open reading frame 187

KLF2

2,3

0,000

23783

7614

Kruppel-like factor 2 (lung)

WARS

2,3

0,000

18466

5567

tryptophanyl-tRNA synthetase

MAFB

2,3

0,000

16707

5853

v-maf musculoaponeurotic fibrosarcoma oncogene homolog B

GCH1

2,2

0,022

10956

3586

GTP cyclohydrolase 1 (dopa-responsive dystonia)

CD97

2,2

0,000

10566

3203

CD97 antigen

CTSC

2,2

0,000

10079

2619

cathepsin C

PIK3AP1

2,1

0,000

16825

4941

phosphoinositide-3-kinase adaptor protein 1

MAIL

2,1

0,000

15859

4883

molecule possessing ankyrin repeats induced by lipopolysaccharide

LYN

2,1

0,000

19388

3520

v-yes-1 Yamaguchi sarcoma viral related oncogene homolog

BCL2A1

2,1

0,022

11110

5056

BCL2-related protein A1

PECAM1

2,0

0,000

22679

7106

platelet/endothelial cell adhesion molecule (CD31 antigen)

Shown are differentially expressed genes (>2-fold higher in CD16+ compared to CD16- Mo) with the highest expression levels (>10,000 AU). AU, arbitrary units.

<p>Table 2</p>

Top genes upregulated in CD16- compared to CD16+ Mo

CD16- Mo AU


Gene Symbol

CD16+/CD16- Ratio

p-value

Mean

SD

GeneTitle


S100A12

0,1

0,000

32609

4915

S100 calcium binding protein A12 (calgranulin C)

CSPG2

0,2

0,000

44600

1191

chondroitin sulfate proteoglycan 2 (versican)

CD14

0,2

0,000

29424

2503

CD14 antigen

CD36

0,2

0,000

10283

2743

CD36 antigen (collagen type I receptor, thrombospondin receptor)

CD99

0,2

0,000

11219

925

CD99 antigen

DREV1

0,3

0,000

16902

2260

DORA reverse strand protein 1

CSF3R

0,3

0,000

15383

2884

colony stimulating factor 3 receptor (granulocyte)

FLJ22662

0,3

0,000

24777

3886

hypothetical protein FLJ22662

MS4A6A

0,3

0,000

17295

2171

membrane-spanning 4-domains, subfamily A, member 6A

ITGAM

0,3

0,000

10344

2182

integrin, alpha M (complement component receptor 3)

SELL

0,3

0,038

18878

6604

selectin L (lymphocyte adhesion molecule 1)

CRTAP

0,4

0,000

13026

934

cartilage associated protein

S100A9

0,4

0,000

91116

15677

S100 calcium binding protein A9 (calgranulin B)

GPX1

0,4

0,000

35555

1707

glutathione peroxidase 1

PLP2

0,4

0,000

10014

1672

proteolipid protein 2 (colonic epithelium-enriched)

S100A8

0,4

0,000

114633

17191

S100 calcium binding protein A8 (calgranulin A)

PPBP

0,4

0,025

10279

3787

pro-platelet basic protein (chemokine (C-X-C motif) ligand 7)

FPR1

0,4

0,000

23743

4367

formyl peptide receptor 1

EGFL5

0,4

0,000

10378

1126

EGF-like-domain, multiple 5

MNDA

0,4

0,000

26939

7235

myeloid cell nuclear differentiation antigen

KCTD12

0,4

0,000

21488

1640

potassium channel tetramerisation domain containing 12

DKFZp434L142

0,4

0,000

10904

1594

hypothetical protein DKFZp434L142

GRN

0,5

0,000

22341

2163

granulin

LYZ

0,5

0,038

86499

26260

lysozyme (renal amyloidosis)

APLP2

0,5

0,000

23441

2191

amyloid beta (A4) precursor-like protein 2

ALDH2

0,5

0,000

14898

1814

aldehyde dehydrogenase 2 family (mitochondrial)

HIF1A

0,5

0,000

14221

3447

hypoxia-inducible factor 1, alpha subunit

TALDO1

0,5

0,000

21276

2781

transaldolase 1

IRF2BP2

0,5

0,000

21329

4404

interferon regulatory factor 2 binding protein 2

EVI2A

0,5

0,000

10200

1342

ecotropic viral integration site 2A

AMICA

0,5

0,000

10160

945

adhesion molecule AMICA

DPYD

0,5

0,000

10049

1957

dihydropyrimidine dehydrogenase

Shown are differentially expressed genes (>2-fold higher in CD16- compared to CD16+ Mo) with the highest expression levels (>10,000 AU). AU, arbitrary units.

<p>Figure 1</p>

Genome wide transcriptome analysis identifies new markers for CD16+ and CD16- monocyte (Mo) subsets

Genome wide transcriptome analysis identifies new markers for CD16+ and CD16- monocyte (Mo) subsets. (A) Total RNA from matched CD16+ and CD16- Mo samples isolated from 4 different healthy donors were reverse transcribed and hybridized on GeneChip® Human Genome U133 Plus 2.0 Arrays (Affymetrix). Statistical analyses using one way ANOVA was performed to identify differentially expressed genes (p < 0.05). Graph depicts the number of probe sets shared or differentially expressed between CD16+ and CD16- Mo. (B) Graph depicts the fold change expression of probe sets differentially expressed in CD16+ versus CD16- Mo. (C-D) Hierarchical clustering analysis based on c-fuzzy means separated the 8 samples in 2 groups that perfectly matched CD16+ and CD16- Mo; heat maps were generated using differentially expressed genes (>2-fold). Red and green signify increased and decreased gene expression, respectively.

Validation of microarray results and identification of new surface markers that distinguish CD16+ and CD16- monocytes

Real time RT-PCR was used to quantify expression of nine differentially expressed genes identified by microarray analysis. Results in Figure 2 indicate increased mRNA expression for CD16, C3AR1, ICAM-2, CSF1R, CDKN1C, TNFRSF8, and LTB, and decreased mRNA expression for C1QR1 and CSF3R in CD16+ compared to CD16- Mo (unpaired t-test, p < 0.05, CD16+ versus CD16- Mo). Microarray results were also validated at the protein level by flow cytometry analysis. Consistent with the microarray and real time RT-PCR results (Figures 1, 2), FACS analysis demonstrated that CD14lowCD16+ (gate R3) compared to classical CD14highCD16- Mo (gate R2) expressed higher levels of CD115/CSFR1 (M-CSF receptor) and C3AR1, and lower levels of CD114/CSF3R (G-CSF receptor) and CD93/C1qR1 on the cell surface (Figure 3A–B). A third Mo subset with an intermediate phenotype, CD14highCD16+ Mo, exhibited intermediate expression levels of CD114 and CD115 and similar levels of CD93 and C3aR1 compared to CD14lowCD16+ Mo and CD14highCD16- Mo, respectively (Additional file 3). In addition, CD16+ compared to CD16- Mo expressed higher levels of CXCL16 and CD43 and lower levels of CD1d (Figure 4A–C). As expected, CX3CR1 was also expressed at higher levels (Figure 4D). Thus, we identified new surface markers that distinguish CD16- Mo (i.e., CD114, CD93, and CD1d) and CD16+ Mo (i.e., CD115, C3AR1, CXCL16, and CD43).

<p>Additional file 3</p>

Figure S1. Differential expression of CD114/CSF3R, CD115/CSF1R, CD93/C1qR1 and C3aR1 on CD14highCD16-, CD14highCD16+, and CD14lowCD16+ monocytes. Freshly isolated PBMC were stained with FITC CD14, PE-Cy5 CD16, and PE CD114, PE CD115, and PE CD93 Abs. The expression of CD3aR1 was detected after staining with unconjugated mouse C3AR1 Ab and PE rat anti-mouse Ab (RAM). CD14highCD16neg (R2), CD14highCD16+ (R3) and CD14lowCD16+ (R4) Mo (A) were analyzed for expression of CD114, CD115, CD93 and C3aR1 (B). Shown is an overlay histogram from one representative donor of 4 donors examined (B, left panels) and graphs showing mean ± SEM for % or MFI of CD114, CD115, CD93, and C3aR1 expression on each Mo subset (B, right panels). (*, Paired t-test p-values < 0.05, CD16+ versus CD16- Mo; n = 4).

Click here for file

<p>Figure 2</p>

Real-time RT-PCR validation of microarray results

Real-time RT-PCR validation of microarray results. The expression of CD16, C3AR1, C1QR1, ICAM-2, CSFR1, CSF3R, CDKN1C, TNFRSF8, and LTB mRNA was quantified by SYBR Green real time RT-PCR in CD16+ and CD16- Mo. The concentration of each gene was normalized to the 28S rRNA internal control and expressed as fgs RNA of a target gene per 1 ng rRNA28S. Depicted are results (mean ± SD of triplicate wells; *, p < 0.05, unpaired t-test, CD16+ versus CD16- Mo) obtained with matched cells from 2 different healthy donors.

<p>Figure 3</p>

Differential expression of CD114/CSF3R, CD115/CSF1R, CD93/C1qR1 and C3aR1 on CD16+ and CD16- monocytes

Differential expression of CD114/CSF3R, CD115/CSF1R, CD93/C1qR1 and C3aR1 on CD16+ and CD16- monocytes. Freshly isolated PBMC were stained with FITC CD14, PE-Cy5 CD16, and PE CD114, PE CD115, and PE CD93 Abs. The expression of CD3aR1 was detected after staining with unconjugated mouse C3AR1 Ab and PE rat anti-mouse Ab (RAM). CD14highCD16neg (R2) and CD14lowCD16+ (R3) Mo (A) were analyzed for expression of CD114, CD115, CD93 and C3aR1 (B). Shown is an overlay histogram from one representative donor of 4 donors examined (B, left panels) and graphs showing mean ± SEM for % or MFI of CD114, CD115, CD93 and C3aR1 expression on each Mo subset (B, right panels). (*, Paired t-test p-value < 0.05, CD16+ versus CD16- Mo; n = 4).

<p>Figure 4</p>

Differential expression of CD1d, CD43, CXCL16, and CX3CR1 on CD16+ and CD16- monocytes

Differential expression of CD1d, CD43, CXCL16, and CX3CR1 on CD16+ and CD16- monocytes. Freshly isolated PBMC were stained with Pacific Blue CD3, Alexa700 CD4, FITC CD14, PE-Cy5 CD16, and PE CD1d, PE CD43, PE CXCL16 or PE CX3CR1 Abs. Gated CD3-CD4lowCD14highCD16- (CD16- Mo) and CD3-CD4lowCD14lowCD16+ (CD16+ Mo) cells were analyzed for expression of (A) CD1d, (B) CD43, (C) CXCL16, and (D) CX3CR1. Shown are representative dot plots (left panels) and results for 9–13 different donors (right panels). Paired Wilcoxon signed rank test was used to calculated statistical significance (p < 0.05, CD16+ versus CD16- Mo).

Biological functions of differentially expressed genes

Differentially expressed genes, corresponding to 250 downregulated and 228 upregulated probe sets in CD16+ compared to CD16- Mo, were classified into eight functional categories using Gene Ontology. Heat maps for biological function categories (Figure 5A–H) showed clear distinctions in patterns of gene expression between the Mo subpopulations for these categories.

<p>Figure 5</p>

Biological functions of genes differentially expressed in CD16+ and CD16- monocytes

Biological functions of genes differentially expressed in CD16+ and CD16- monocytes. Differentially expressed genes were classified based on their biological functions using Gene Ontology as indicated. Heat maps were generated using dChip software and include data from matched CD16+ and CD16- Mo from 4 different individuals. In each heat map, upregulated genes are plotted first followed by downregulated genes. Red and green signify increased and decreased gene expression, respectively.

Adhesion molecules, chemokines, and chemokine receptors

Genes upregulated in CD16+ compared to CD16- Mo included those coding for the tetraspanins MS4A4A and MS4A7, adhesion molecules SIGLEC10, ICAM-2, SPN/CD43, ITGAL/LFA-1/CD11a, CD47, and PCAM1/CD31, chemokine receptor CX3CR1, and chemokine CXCL16 56. Genes downregulated in CD16+ compared to CD16- Mo included those coding for the tetraspanin MS4A6A, adhesion molecules ITGAM/CD11b, SELL/L-selectin/CD62L, CD99, and junctional adhesion molecule like (JAML or AMICA) 57, and chemokine receptors CCR1, CCR2, and formyl peptide receptor 1 (FPR1) (Figure 5A). These results identify SIGLEC10, ICAM-2, SPN/CD43, CD47, and CXCL16 as new markers upregulated on CD16+ Mo that are relevant for T cell activation, and FPR1 as a chemokine receptor preferentially expressed on CD16- Mo. In addition, these results indicate the distinct trafficking potential of CD16+ and CD16- Mo (i.e., via CX3CR1 versus CCR2, respectively), consistent with previous studies 181920.

Cytokines and cytokine receptors

CD16+ Mo expressed significantly higher levels of mRNA for the cytokines lymphotoxin beta (LTB) and leukocyte specific transcript 1 (LST1) and the cytokine receptors TNF receptor superfamily 8 (TNFRSF8), prostaglandin E receptor 4 (PTGER4), colony stimulating factor 1 receptor (CSF1R; CSF1, controls Mo/MΦ differentiation and function), and IL-12RB1. Genes downregulated in CD16+ Mo included those coding for the cytokine IL-1RA, platelet-activating factor receptor (PTAFR), and IL1B and cytokine receptors IL13RA1, IL27RA (WSX1), colony stimulating factor 3 receptor (CSF3R; CSF3 controls granulocytes differentiation and function), IL6R, and IL6ST/gp130 (a signal transducer shared by many cytokines, including IL-6 and IL-27) (Figure 5B). These results provide further evidence for pro-inflammatory genes upregulated in CD16+ Mo (e.g., HMOX1 and SOD1) 12 and suggest the ability of CD16+ and CD16- Mo to respond to distinct cytokines including IL-12 58 and IL-13 59 and IL-6 and IL-27 6061, respectively, which has potential implications for Th1 and Th2 polarization of immune responses. In addition, these results identify CSF1R and CSF3R as new markers for CD16+ and CD16- Mo, respectively, with potential implications for their differentiation fate in vivo.

Immune responses, inflammation, and complement

CD16+ Mo expressed significantly higher levels of mRNA for the low affinity Fcγ receptor FCGR3A/CD16, IFN-γ-induced surface molecules IFITM1, IFITM2 and IFITM3, complement receptor C3AR1, arrestin beta 1 (ARRB1, which contributes to desensitization of G-protein-coupled receptors), and CD97 (receptor for complement decay accelerating factor, DAF/CD55). Genes downregulated in CD16+ Mo included those coding for the high affinity Fcγ receptor FCGR1A/CD64, complement receptor C1QR1, Ca binding proteins S100A12, S100A9, and S100A8, phospholipase A2, group VII (PLA2G7), Ig superfamily receptor TREM1, neutrophil cytosolic factors NCF1 and NCF4, heparanase (HPSE), chondroitin sulfate proteoglycan 2 (versican, CSPG2), amyloid beta (A4) precursor-like protein 2 (APLP2) involved in turnover of MHC Class I molecules 62, amyloid beta (A4) precursor protein (APP), and aquaporin AQP9, which plays a role in immunological response and bactericidal activity (Figure 5C). These results identify complement-related molecules C3AR1 and CD97 as new markers for CD16+ Mo, and C1QR1 as a new marker for CD16- Mo.

Metabolism and stress response

Transcripts upregulated in CD16+ Mo included genes related to protein synthesis (i.e., tryptophanyl-tRNA synthetase (WARS)), protein catabolism (i.e., cathepsin L (CTSL), cathepsin C (CTSC)), stress responses (i.e., heme oxygenase (decycling) 1 (HMOX1), superoxide dismutase 1 (SOD1), heat shock 105 kDa/110 kDa protein 1 (HSPH1), and monoglyceride lipase (MGLL)), and insulin induced gene 1 (INSIG1). Genes downregulated in CD16+ Mo included those coding for enzymes related to protein metabolism (i.e., glutaminyl-peptide cyclotransferase (QPCT), microsomal glutathione S-transferase 1 (MGST1), carboxypeptidase D (CPD), ubiquitin specific protease 15 (USP15), peptidylprolyl isomerase F (cyclophilin F; PPIF), and N-sulfoglucosamine sulfohydrolase (sulfamidase)/SGSH), stress responses (i.e., aldehyde dehydrogenase 1 family, member A1 (ALDH1A1), cytochrome P450, family 1, subfamily B, polypeptide 1 (CYP1B1), glutathione peroxidase 1 (GPX1), tumor necrosis factor, alpha-induced protein 3 (TNFAIP3), and aldehyde dehydrogenase 2 family (ALDH2)) and other enzymatic processes (i.e., ribonuclease, RNase A family, 2 (RNASE2) and lysozyme (LYZ)) (Figure 5D). Differential expression of SOD1 and GPX1 in CD16+ and CD16- Mo, respectively, indicates a distinct antioxidant enzymatic defense system in these Mo subsets. The upregulation of WARS expression in CD16+ Mo suggests increased potential protein synthesis 63, while CTSL and CTSC upregulation may indicate increased potential antigenic processing and antigen presentation capacity 64.

Signaling and signal transduction

CD16+ Mo expressed significantly higher levels of transcripts for a large number of genes involved in signal transduction including the protein tyrosine phosphatase type IVA, member 3 (PTP4A3) and phosphoinositide-3-kinase, catalytic, gamma polypeptide (PIK3CG, a crucial signaling molecule required for macrophage accumulation in inflammation 65). Genes downregulated in CD16+ Mo included those coding for the interleukin 6 signal transducer (IL6ST), G protein-coupled receptor 160 (GPR160), jagged 1 (JAG1, the ligand for the receptor notch 1), protein kinase, cAMP-dependent, regulatory, type II, beta (PRKAR2B), the CD2 binding protein proline-serine-threonine phosphatase interacting protein 1 (PSTPIP1), and mitogen-activated protein kinase kinase 6 (MAP2K6) (Figure 5E). Thus, CD16+ and CD16- Mo exhibit distinct signaling pathway activation, indicating a distinct activation/differentiation history in vivo.

Cell cycle, proliferation and differentiation

CD16+ Mo were distinguished from CD16- Mo by upregulation of the cell cycle related genes cyclin-dependent kinase inhibitor 1C (CDKN1C, p27, or KIP2, which is a negative regulator of cell proliferation 66 induced by TGF-β 67), and metastasis suppressor 1 (MTSS1, a transcript involved in cytoskeleton organization missing in metastasis 68). CD16- Mo preferentially expressed mRNA for genes encoding the CD1d antigen (member of the MHC family that mediates presentation of primarily lipid/glycolipid antigens to T cells), and myeloid cell nuclear differentiation antigen (MNDA, which is expressed in human monocytes and granulocytes and earlier stage cells in the myeloid lineage 69) (Figure 5F). These results provide evidence that CD16+ Mo represent a more advanced stage of differentiation compared to CD16- Mo.

Cytoskeleton

CD16+ were distinguished from CD16- Mo by expression of a series of genes related to the cytoskeleton showing higher expression in CD16+ Mo including CDC42 effector protein (Rho GTPase binding) 4 (CDC42EP4), microtubule-associated protein 4 (MAP4), and supervillin (SVIL) and in CD16- Mo including actinin, alpha 1 (ACTN1). (Figure 5G).

Transcription factors

CD16+ Mo expressed significantly higher levels of mRNA for several transcriptional factor genes including the macrophage transcription factor v-maf musculoaponeurotic fibrosarcoma oncogene homolog B (MafB, an essential determinant of the monocytic program in hematopoietic cells 77071), the pleckstrin homology, Sec7, and coiled-coil protein-binding protein (PSCDBP or CYBR, a cytohesin-1-binding protein expressed in NK cells stimulated with IL-2 and IL-12 that plays a role in integrin-mediated cell adhesion 72), the Kruppel-like factor 2 (KLF2, reported to license mature T-cells for trafficking from the thymus and recirculation through secondary lymphoid tissues 73), and retinoic acid receptor, alpha (RARA, expressed in dendritic cells 74 and involved in myeloid differentiation 75 and imprinting for gut homing 7677). In contrast, CD16- Mo preferentially expressed the aryl hydrocarbon receptor (AHR, a ligand dependent E3 ubiquitin ligase 78 and modulator of anti-viral immunity 79) transcript (Figure 5H). Both CD16+ and CD16- Mo lacked PU.1 expression, a transcription factor upregulated in DC 71, as demonstrated by microarray analysis and RT-PCR (data not shown). Thus, CD16+ and CD16- Mo express distinct transcription factors that may differentially regulate biological functions in vivo.

Gene set enrichment analysis (GSEA)

To extract further meaning from differentially expressed genes in CD16+ and CD16- Mo, GSEA, a knowledge based approach for interpreting genome-wide expression profiles 54, was applied to test for sets of genes that share common biological functions. Enrichment scores (ES), nominal p-values, false discovery rate (FDR), and family wise-error rate (FWER) values were generated for a large number of gene sets for GSEA available on the Molecular Signatures Database (MSigDB) of the Broad Institute. One gene set was significantly enriched in CD16- compared to CD16+ Mo: HADDAD_HPCLYMPHO_ENRICHED (p < 0.001; both FDR q-value and FWER p-value- < 0.2). According to MSigDB, this set includes genes enriched in CD45RAhiLin-CD10+ versus CD45RAintCD7- and CD45RAhiCD7hi hematopoietic progenitor cells 80. Four uncharacterized open reading frames upregulated in hematopoietic progenitor cells (i.e., C18ORF1, CYORF15B, C6ORF62, and C6ORF111) 80 were significantly enriched in CD16- Mo.

GSEA also identified several gene sets relatively enriched in CD16+ or CD16- Mo, but with a lower statistical significance likely related to the limited number of samples (p < 0.001 and FDR = 1). These analyses showed that CD16+ Mo were enriched in genes related to NK cell mediated toxicity (i.e., FcγRIIIA, PIK3CG, NFATC1, ITGAL, and ICAM-2), inositol phosphate metabolism (i.e., PIK3CG), actin binding (i.e., MTSS1, COTL1, and SVIL), and oxidative stress (i.e., CDKN1C, ETS1, CD47, LYN, and VIL2). In contrast, CD16- Mo were enriched in genes related to hematopoietic cell lineage (i.e., CD1d, IL1β, FcγRIA, ITGAM, CSF3R, CD36, and CD14), receptor mediated endocytosis (i.e., SORL1, STAB1, FCGR1A, and CD14), arginine and proline metabolism (i.e., ALDH2, P4HB, and ALDH1A1), nontypable Haemophilus influenzae (NTHi) pathway (i.e., IL1B and MAP2K6), and lipid binding molecules (i.e., CD1D, PTAFR, ALDH1A1, and PLA2G7). Overall, these results provide new insights into the developmental relationship between CD16+ and CD16- Mo, with CD16- Mo being more closely related to hematopoietic progenitor cells and having higher endocytosis activity, while CD16+ Mo being at a more advanced stage of Mo differentiation with more effector functions related to antigen presentation, migration, and cytotoxicity.

Pattern recognition receptor expression in CD16+ and CD16- monocytes

Both Mo subsets expressed TLR1, TLR2, TLR4, TLR5, and TLR8 but not TLR3, TLR6, TLR7, TLR9, and TLR10 mRNA (data not shown). Considering that CD16+ Mo express low levels of the LPS co-receptor, CD14 11, and that TLR stimulation was previously implicated in myeloid differentiation 2681, we tested whether genes associated with TLR pathway were upregulated in these cells. However, GSEA rejected this hypothesis. Nonetheless, microarray results demonstrated slight downregulation of TLR2, TLR4, TLR5, and TLR8, together with slight upregulation of MyD88, a key adaptor for these TLRs 82, in CD16+ compared to CD16- Mo

Potential imprinting for non-skin homing in CD16+ monocytes

We demonstrated increased expression of RARA mRNA in CD16+ compared to CD16- Mo (Figure 5H and 6A). SLP-76 (Src-homology 2 domain-containing leukocyte specific phosphoprotein of 76 kDa), a RA-induced target 75, was significantly upregulated in CD16+ compared to CD16- Mo (6363 ± 611 versus 3882 ± 565; CD16+/CD16- ratio 1.64; p = 0.005), indicative of RARA pathway activation in CD16+ Mo. Activation of the RARA transcription factor pathway leads to loss of skin homing potential in lymphocytes via downregulation of the cutaneous lymphocyte-associated antigen (CLA, an epitope on PSGL-1) 83 and imprinting for mucosal homing 77. CLA expression was quantified on CD16+ and CD16- Mo by FACS on PBMC from healthy individuals. CLA expression was undetectable on all CD16+ Mo and a fraction of CD16- Mo (Figure 6B). The frequency of CLA+CD16- Mo was negatively correlated with the frequency of CD16+ Mo (Figure 6C). CD16+ Mo express M-DC8 (an epitope on PSGL-1) 13, which was previously reported to be expressed by a subset of mucosal DC 84 (Figure 6D). CX3CR1 expression on CD16+ Mo (Figure 4D) 18 may contribute to recruitment of these cells into CX3CL1 expressing tissues including the gut. These results indicate that CD16+ Mo, similar to RA-stimulated T-cells 77, lack expression of the skin-homing addressin CLA and therefore are potentially imprinted for non-skin homing. Because retinoic acid (RA) is an important factor driving myeloid differentiation 75, this reprogramming of CD16+ Mo homing potential may be in part a consequence of RARA pathway activation.

<p>Figure 6</p>

Differential expression of RARA mRNA and PSGL-1 epitopes CLA and M-DC8 on CD16+ and CD16- monocytes

Differential expression of RARA mRNA and PSGL-1 epitopes CLA and M-DC8 on CD16+ and CD16- monocytes. (A) Differential expression of RARA mRNA in CD16+ and CD16- Mo was extracted from microarray data set results and expressed as relative fluorescence units. (B-D) Freshly isolated PBMC were stained with Pacific Blue CD3, Alexa700 CD4, PE-Cy5 CD16, FITC CLA and PE M-DC8 Abs. Gated CD3-CD4lowCD14highCD16- (CD16- Mo) and CD3-CD4lowCD14lowCD16+ (CD16+ Mo) cells were analyzed for expression of CLA (C) and M-DC8 (D). (B and D) Shown are representative dot plots (left panels) and results for 13 different donors (right panels). Paired Wilcoxon signed rank test was used to calculated statistical significance (p < 0.05). (B) Spearman correlation (r and p values) and linear regression (r2 value) were calculated to examine the relationship between the frequency of CD16-CLA+ Mo and CD16+ Mo.

Discussion

In this study, we define transcriptional profiles of human CD16+ and CD16- monocytes (Mo) and provide new insights into their developmental relationship and biological functions. Despite remarkable transcriptional similarity (approximately 83%), a significant number of transcripts were differentially expressed (n = 2,759), with 228 and 250 >2-fold upregulated and downregulated, respectively, in CD16+ compared to CD16- Mo. Differentially expressed genes related to cell-to-cell adhesion and trafficking, immune responses and inflammation, metabolism and stress response, signaling and signal transduction, cell cycle, proliferation, and differentiation, cytoskeleton, and regulation of transcription. Gene set enrichment analysis (GSEA) demonstrated that CD16+ Mo are enriched in genes related to NK-mediated cytotoxicity, inositol phosphate metabolism, actin binding, and oxidative stress, while CD16- Mo are enriched in genes related to hematopoietic cell lineage, receptor-mediated endocytosis, arginine and proline metabolism, NTHi pathway, and lipid binding. The transcriptional profiles suggest that CD16+ and CD16- Mo subsets originate from a common myeloid precursor, with CD16+ Mo being at a more advanced stage of myeloid differentiation and having distinct biological functions in vivo.

Previous studies in mice provide evidence for a developmental relationship between Ly6ChighCCR2highGr1+CX3CR1low and Ly6ClowCCR2lowGr1-CX3CR1high Mo (homologs of human CD16- and CD16+ Mo, respectively), with Ly6ClowCCR2lowGr1-CX3CR1high Mo being more mature and derived from Ly6ChighCCR2highGr1+CX3CR1low Mo 54185. Likewise, studies on human Mo demonstrated the ability of CD16-CX3CR1low Mo to differentiate into CD16+CX3CR1high Mo upon stimulation with TGF-β, IL-10, M-CSF, or CCL2 17434445. Our comparative transcriptome analysis provides further evidence for the idea that CD16- Mo originate from a common granulocyte-macrophage (GM) precursor and give rise to CD16+ Mo, which are more closely related to macrophages (MΦ) and dendritic cells (DC). CD16- Mo preferentially expressed granulocyte-associated transcripts (i.e., CSF3R, formyl peptide receptor 1 (FPR1), the calgranulins S100A8, S100A9, and S100A12), and myeloid markers (i.e., CD14, MNDA, TREM-1, CD1d, and C1qR1/CD93), together with transcripts suggesting an increased potential for receptor-mediated endocytosis via molecules such as CD14 and FCGR1A/CD64 8586. In contrast, CD16+ Mo preferentially expressed MΦ (i.e., CSF1R/CD115, MafB, EGF module-containing mucin-like hormone receptor (EMR)1-3, CD97, and C3aR) 86 and DC markers (i.e., SIGLEC10, CD43, CXCL16, and RARA) 56748788. CD16+ Mo expressed higher levels of transcripts encoding the cysteine protease cathepsin L (CTSL), which contributes to phagocytic-endocytic proteolysis in DC for subsequent antigen presentation 64. Upregulation of transcripts encoding dipeptidyl-peptidase I, CTSC 89 may further enhance antigen processing by CD16+ Mo or DC derived from these cells. Although some studies classified CD16+ Mo as DC based on their increased antigen presenting ability 141516 and transcriptional profile similarities 16, a recent compendium analysis of transcriptional profiles demonstrated that CD16+HLA-DR+ cells are more closely linked to myeloid CD14+ cells than to DC subsets in peripheral blood 90. Our results demonstrate that CD16+ Mo share approximately 83% of their transcripts with CD16- Mo, supporting the idea that these two Mo subsets are developmentally related.

Recruitment of CD16+ and CD16- Mo into tissues is mediated via distinct molecular mechanisms 78. Our gene expression analysis confirms differential expression of adhesion molecules and chemokine receptors previously reported to be preferentially expressed on CD16+ Mo (i.e., LFA-1, PECAM/CD31, CX3CR1) and CD16- Mo (i.e., CCR1, CCR2, and L-selectin/CD62L) 181920. We also identified new cell surface markers and other molecules that are differentially expressed in these Mo subsets and may influence their trafficking and migration into tissues. The tetraspanins MS4A4A and MS4A7, adhesion molecules SIGLEC10 and ICAM-2, and membrane-bound chemokine CXCL16 56 were preferentially expressed by CD16+ Mo, whereas the tetraspanin MS4A6A, adhesion molecules CD99 and junctional adhesion molecule like (JAML or AMICA) 57, and chemokine receptor FPR1 were preferentially expressed by CD16- Mo. CD31 and CD99 are involved in distinct steps of Mo transendothelial migration 9192. Expression of CXCL16, a chemokine expressed by DC 56, on the surface of CD16+ Mo may facilitate interaction with CXCR6+ cells (i.e., NKT and activated CD4+ and CD8+ T-cells 56) and retention of CXCR6+ cells in tissues. Similar to mouse and rat CCR2lowCX3CR1high Mo 3741, CD16+ Mo expressed higher levels of SPN/CD43 (sialophorin, leukosialin, large sialoglycoprotein or gp115), a ligand for ICAM-1 9394, and the macrophage adhesion receptor sialoadhesin (Siglec-1) 95. CD43 has both adhesive and anti-adhesive properties 96, mediates DC maturation 88, and contributes to regulation of immunological synapse formation 97. CD47, a receptor for thrombospondin-1 (TSP-1), is preferentially expressed by CD16+ Mo. CD47 ligation selectively inhibits the development of human naive T cells into Th1 effectors by decreasing IL-12 and TNF-α production by Mo-derived DC 9899. Consistent with these findings, CD16- and CD16+ Mo may induce Th1 and Th2-like differentiation, respectively 100. However, CD16+ Mo express IL-12RB1, which favors Th1 polarization 58, whereas CD16- Mo express receptors for the Th2 cytokines IL-6 and IL-13 59 and the anti-Th1 cytokine, IL-27 6061. Accordingly, the influence of CD16+ and CD16- Mo on Th1 versus Th2 polarization of immune responses is likely to be highly dependent on the local microenvironment within tissues.

CD16+ Mo expressed high levels of transcripts for RARA, which controls transcription of genes involved in cell trafficking and mucosal homing. RA imprints lymphocytes with non-skin mucosal homing properties by decreasing cutaneous lymphocyte-associated antigen (CLA, an epitope on PSGL-1) expression 83 and increasing expression of CCR9 and integrin beta 7, two mucosal addressins 77. RA also controls reciprocal differentiation of Th17 and regulatory T cells 101, modulates myeloid gene expression and differentiation 75, and regulates survival and antigen presentation by DC 74. Consistent with our hypothesis that the RARA pathway is activated in CD16+ Mo, we demonstrated CLA downregulation on these cells, together with upregulation of two RA-induced targets: SLP-76 75 and CXCL16 102. RA induces mucosal-type DC, which produce TGF-β and thereby imprints T-cells for gut homing by inducing CCR9 and integrin beta 7 76. CD16+ Mo-derived MΦ and DC constitutively produce TGF-β 23100, but whether they also instruct T-cells for gut homing remains to be determined.

KLF2 mRNA is expressed at very high levels and significantly upregulated in CD16+ compared to CD16- Mo. KLF2 belongs to a family of zinc-finger transcription factors that is induced by PI3K signaling 103 and controls expression of several genes including those coding for CD62L, CCR7, integrin beta7, sphingosine-1-phosphate receptor (S1PR1) 73, and lymphotoxin beta 104. CCR7 and CD62L are essential for migration into lymph nodes, S1P1 regulates T-cell thymic egress and recirculation 105, and integrin beta 7 mediates cell recruitment into Peyer's patches and mesenteric lymph nodes 106. Together, these findings raise the possibility that preferential expression of KLF2 in CD16+ Mo may confer an increased potential for trafficking.

CD16+ compared to CD16- Mo express very high levels of transcripts for cyclin-dependent kinase inhibitor 1C (CDKN1C or p57/KIP2) (18.4-fold increase) and metastasis suppressor 1 MTSS1 (5.7-fold increase). CDKN1C is a potent inhibitor of several G1 cyclin-dependent kinase (cdk) complexes, and negative regulator of G1/S cell cycle transition and cell proliferation 66. CDKN1C 66 and MTSS1 68 are candidate tumor suppressor genes, and their high expression is consistent with the inability of Mo to proliferate 7. CDKN1C is induced by TGF-β 67, a cytokine known to induce CD16+ Mo differentiation 1743. Thus, our results are consistent with a potential link between TGF-β pathway activation and CD16+ Mo differentiation in vivo.

Several transcripts related to cell activation were upregulated in CD16+ Mo including LTB, TNFRSF8, leukocyte specific transcript 1 (LST1), IFITM1-3, HMOX1, superoxide dismutase-1 (SOD-1), tryptophanyl tRNA synthetase (WARS), and monoglyceride lipase (MGLL), indicating increased activation of CD16+ compared with CD16- Mo. LST1 107, HMOX1 108, SOD-1, and WARS are induced by stimulation with lipopolysaccharide 109. The role of LST1 in immune regulation remains elusive. HMOX1 modulates Mo inflammatory responsiveness by decreasing LPS-induced TNF and IL-1β expression 108. WARS and indoleamine 2,3-dioxygenase (IDO) are responsible for tryptophan use in protein synthesis and degradation, respectively 63. WARS was identified as a molecular marker for Mo differentiation into MΦ 110 and DC 111. These results suggest increased activation of CD16+ compared to CD16- Mo in vivo.

The CD16+ Mo subset includes two subsets with distinct levels of CD14 expression: CD14highCD16+ and CD14lowCD16+ 11112. CD14highCD16+ Mo exhibit a phenotype intermediate between that of CD14highCD16neg and CD14lowCD16+ Mo in terms of adhesion molecule (e.g., CL62L) and chemokine receptor expression (e.g., CCR2, CXCR2, and CX3CR1) 18. Both CD14highCD16+ and CD14lowCD16+ Mo contributed to the transcriptional profile of CD16+ Mo in this study. The expression of some genes we identified as markers for CD16+ Mo may be distinct on CD14highCD16+ and CD14lowCD16+ Mo. Consistent with this prediction, we demonstrated intermediate expression of CD115 and CD114 on CD14highCD16+ Mo compared to CD14highCD16neg and CD14lowCD16+ Mo, and high expression of CD93 and C3aR1, similar to that on CD14highCD16- and CD14lowCD16+ Mo, respectively (Additional file 3). These findings suggest a developmental relationship between these Mo subsets in which CD14highCD16neg Mo, CD14highCD16+ Mo, and CD14lowCD16+ Mo represent sequential stages of monocyte differentiation 41.

Conclusion

Comparative transcriptome analysis of CD16+ and CD16- Mo indicates that CD16+ Mo represent a more advanced stage of myeloid differentiation with a more MΦ – and DC-like transcription program, whereas CD16- Mo are more closely related to a common myeloid precursor. Given the ability of CD16+ and CD16- Mo to be recruited into specific tissues via distinct mechanisms, these Mo subsets are likely to give rise to DC and MΦ subpopulations with distinct phenotypes and roles in immunity and disease pathogenesis. Further studies to characterize phenotypic differences between CD16+ and CD16- Mo-derived DC and MΦ are relevant for development of DC-based vaccines, and will also provide a better understanding of their functional roles in immune responses, inflammation, and disease pathogenesis.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

PA designed and performed experiments, analyzed and interpreted data, prepared graphics, and wrote the manuscript. VM generated heat maps, performed statistical analysis for differentially expressed genes, and drafted the Methods for Figure 5. KYL and XZ performed statistical analysis of microarray data and drafted the Methods and Results. KYL classified genes based on biological functions and performed GSEA. VSW and AG carried out experiments in Figures 4 and 6 and drafted the Methods and Results. DG conceived the study, designed experiments, analyzed and interpreted data, and wrote the manuscript. All authors revised and gave final approval for publication of the manuscript.

Acknowledgements

We thank Trent Rector for help with performing Affymetrix microarrays and initial data analysis (Biopolymers Facility at Harvard Medical School), Tao Lu for providing advice and technical expertise for real time RT-PCR, Elaine Thomas for helpful discussions, and Bruce Yankner for advice on statistical analysis of microarray results and valuable discussions. This work was supported by NIH DA16549 and DA36222 to DG and CIHR/MOP-82849 and ANRS grants to PA. Core facilities were supported by the Harvard University Center for AIDS Research and DFCI/Harvard Center for Cancer Research grants. PA is a New Investigator Awardee from FRSQ and INSERM.

<p>Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo</p> Randolph GJ Inaba K Robbiani DF Steinman RM Muller WA Immunity 1999 11 6 753 761 10626897 10.1016/S1074-7613(00)80149-1 <p>Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2</p> Serbina NV Pamer EG Nat Immunol 2006 7 3 311 317 16462739 10.1038/ni1309 <p>A clonogenic bone marrow progenitor specific for macrophages and dendritic cells</p> Fogg DK Sibon C Miled C Jung S Aucouturier P Littman DR Cumano A Geissmann F Science 2006 311 5757 83 87 16322423 10.1126/science.1117729 <p>The origin of dendritic cells</p> Geissmann F Nat Immunol 2007 8 6 558 560 17514208 10.1038/ni0607-558 <p>Monocytes give rise to mucosal, but not splenic, conventional dendritic cells</p> Varol C Landsman L Fogg DK Greenshtein L Gildor B Margalit R Kalchenko V Geissmann F Jung S J Exp Med 2007 204 1 171 180 17190836 10.1084/jem.20061011 2118434 <p>Monocyte-mediated defense against microbial pathogens</p> Serbina NV Jia T Hohl TM Pamer EG Annu Rev Immunol 2008 26 421 452 18303997 10.1146/annurev.immunol.26.021607.090326 <p>Blood Monocytes: Development, Heterogeneity, and Relationship with Dendritic Cells</p> Auffray C Sieweke MH Geissmann F Annu Rev Immunol 2009 27 669 92 19132917 10.1146/annurev.immunol.021908.132557 <p>Monocyte and macrophage heterogeneity</p> Gordon S Taylor PR Nat Rev Immunol 2005 5 12 953 964 16322748 10.1038/nri1733 <p>Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses</p> Denning TL Wang YC Patel SR Williams IR Pulendran B Nat Immunol 2007 8 10 1086 1094 17873879 10.1038/ni1511 <p>Division of labor, plasticity, and crosstalk between dendritic cell subsets</p> Pulendran B Tang H Denning TL Curr Opin Immunol 2008 20 1 61 67 18082389 10.1016/j.coi.2007.10.009 2346585 <p>Heterogeneity of human peripheral blood monocyte subsets</p> Grage-Griebenow E Flad HD Ernst M J Leukoc Biol 2001 69 1 11 20 11200054 <p>The Proinflammatory CD14(+)CD16(+)DR(++) Monocytes Are a Major Source of TNF</p> Belge KU Dayyani F Horelt A Siedlar M Frankenberger M Frankenberger B Espevik T Ziegler-Heitbrock L J Immunol 2002 168 7 3536 3542 11907116 <p>6-Sulfo LacNAc, a novel carbohydrate modification of PSGL-1, defines an inflammatory type of human dendritic cells</p> Schakel K Kannagi R Kniep B Goto Y Mitsuoka C Zwirner J Soruri A von Kietzell M Rieber E Immunity 2002 17 3 289 301 12354382 10.1016/S1074-7613(02)00393-X <p>Tetrameric complexes of human histocompatibility leukocyte antigen (HLA)-G bind to peripheral blood myelomonocytic cells</p> Allan DS Colonna M Lanier LL Churakova TD Abrams JS Ellis SA McMichael AJ Braud VM J Exp Med 1999 189 7 1149 1156 10190906 10.1084/jem.189.7.1149 2193000 <p>Characterization of human blood dendritic cell subsets</p> MacDonald KP Munster DJ Clark GJ Dzionek A Schmitz J Hart DN Blood 2002 100 13 4512 4520 12393628 10.1182/blood-2001-11-0097 <p>Gene family clustering identifies functionally associated subsets of human in vivo blood and tonsillar dendritic cells</p> Lindstedt M Lundberg K Borrebaeck CA J Immunol 2005 175 8 4839 4846 16210585 <p>The CD16(+) (FcgammaRIII(+)) Subset of Human Monocytes Preferentially Becomes Migratory Dendritic Cells in a Model Tissue Setting</p> Randolph GJ Sanchez-Schmitz G Liebman RM Schakel K J Exp Med 2002 196 4 517 527 12186843 10.1084/jem.20011608 2196052 <p>Fractalkine preferentially mediates arrest and migration of CD16+ monocytes</p> Ancuta P Rao R Moses A Mehle A Shaw SK Luscinskas FW Gabuzda D J Exp Med 2003 197 12 1701 1707 12810688 10.1084/jem.20022156 2193954 <p>Blood monocytes consist of two principal subsets with distinct migratory properties</p> Geissmann F Jung S Littman DR Immunity 2003 19 1 71 82 12871640 10.1016/S1074-7613(03)00174-2 <p>Differential chemokine receptor expression and function in human monocyte subpopulations</p> Weber C Belge KU von Hundelshausen P Draude G Steppich B Mack M Frankenberger M Weber KS Ziegler-Heitbrock HW J Leukoc Biol 2000 67 5 699 704 10811011 <p>Absence of monocyte chemoattractant protein 1 in mice leads to decreased local macrophage recruitment and antigen-specific T helper cell type 1 immune response in experimental autoimmune encephalomyelitis</p> Huang DR Wang J Kivisakk P Rollins BJ Ransohoff RM J Exp Med 2001 193 6 713 726 11257138 10.1084/jem.193.6.713 2193420 <p>CD16+ monocytes produce IL-6, CCL2, and matrix metalloproteinase-9 upon interaction with CX3CL1-expressing endothelial cells</p> Ancuta P Wang J Gabuzda D J Leukoc Biol 2006 80 5 1156 1164 17056766 10.1189/jlb.0206125 <p>CD16+ Monocyte-Derived Macrophages Activate Resting T Cells for HIV Infection by Producing CCR3 and CCR4 Ligands</p> Ancuta P Autissier P Wurcel A Zaman T Stone D Gabuzda D J Immunol 2006 176 10 5760 5771 16670281 <p>Association of circulating receptor Fc gamma RIII-positive monocytes in AIDS patients with elevated levels of transforming growth factor-beta</p> Allen JB Wong HL Guyre PM Simon GL Wahl SM J Clin Invest 1991 87 5 1773 1779 1708784 10.1172/JCI115196 295289 <p>CD14lowCD16high: a cytokine-producing monocyte subset which expands during human immunodeficiency virus infection</p> Thieblemont N Weiss L Sadeghi HM Estcourt C Haeffner-Cavaillon N Eur J Immunol 1995 25 12 3418 3424 8566032 10.1002/eji.1830251232 <p>TLR activation triggers the rapid differentiation of monocytes into macrophages and dendritic cells</p> Krutzik SR Tan B Li H Ochoa MT Liu PT Sharfstein SE Graeber TG Sieling PA Liu YJ Rea TH Nat Med 2005 11 6 653 660 15880118 10.1038/nm1246 1409736 <p>CD16+ monocytes in human cutaneous leishmaniasis: increased ex vivo levels and correlation with clinical data</p> Soares G Barral A Costa JM Barral-Netto M Van Weyenbergh J J Leukoc Biol 2006 79 1 36 39 16282534 10.1189/jlb.0105040 <p>Adhesion mechanisms regulating the migration of monocytes</p> Imhof BA Aurrand-Lions M Nat Rev Immunol 2004 4 6 432 444 15173832 10.1038/nri1375 <p>The neuropathogenesis of AIDS</p> Gonzalez-Scarano F Martin-Garcia J Nat Rev Immunol 2005 5 1 69 81 15630430 10.1038/nri1527 <p>Monocyte heterogeneity and innate immunity</p> Taylor PR Gordon S Immunity 2003 19 1 2 4 12871633 10.1016/S1074-7613(03)00178-X <p>Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues</p> Palframan RT Jung S Cheng G Weninger W Luo Y Dorf M Littman DR Rollins BJ Zweerink H Rot A J Exp Med 2001 194 9 1361 1373 11696600 10.1084/jem.194.9.1361 2195988 <p>New mechanisms and pathways for monocyte recruitment</p> Muller WA J Exp Med 2001 194 9 F47 51 11696603 10.1084/jem.194.9.f47 2195978 <p>Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior</p> Auffray C Fogg D Garfa M Elain G Join-Lambert O Kayal S Sarnacki S Cumano A Lauvau G Geissmann F Science 2007 317 5838 666 670 17673663 10.1126/science.1142883 <p>Decreased Atherosclerotic Lesion Formation in CX3CR1/Apolipoprotein E Double Knockout Mice</p> Combadiere C Potteaux S Gao JL Esposito B Casanova S Lee EJ Debre P Tedgui A Murphy PM Mallat Z Circulation 2003 107 7 1009 1016 12600915 10.1161/01.CIR.0000057548.68243.42 <p>Fractalkine and vascular injury</p> Umehara H Bloom E Okazaki T Domae N Imai T Trends Immunol 2001 22 11 602 607 11698220 10.1016/S1471-4906(01)02051-8 <p>CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance</p> Niess JH Brand S Gu X Landsman L Jung S McCormick BA Vyas JM Boes M Ploegh HL Fox JG Science 2005 307 5707 254 258 15653504 10.1126/science.1102901 <p>Relationships between distinct blood monocyte subsets and migrating intestinal lymph dendritic cells in vivo under steady-state conditions</p> Yrlid U Jenkins CD MacPherson GG J Immunol 2006 176 7 4155 4162 16547252 <p>A restricted subset of dendritic cells captures airborne antigens and remains able to activate specific T cells long after antigen exposure</p> Julia V Hessel EM Malherbe L Glaichenhaus N O'Garra A Coffman RL Immunity 2002 16 2 271 283 11869687 10.1016/S1074-7613(02)00276-5 <p>Diverse and potent chemokine production by lung CD11bhigh dendritic cells in homeostasis and in allergic lung inflammation</p> Beaty SR Rose CE Jr Sung SS J Immunol 2007 178 3 1882 1895 17237439 <p>Blood monocyte subsets differentially give rise to CD103+ and CD103- pulmonary dendritic cell populations</p> Jakubzick C Tacke F Ginhoux F Wagers AJ van Rooijen N Mack M Merad M Randolph GJ J Immunol 2008 180 5 3019 3027 18292524 <p>Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response</p> Sunderkotter C Nikolic T Dillon MJ Van Rooijen N Stehling M Drevets DA Leenen PJ J Immunol 2004 172 7 4410 4417 15034056 <p>Recombinant human macrophage colony-stimulating factor in nonhuman primates: selective expansion of a CD16+ monocyte subset with phenotypic similarity to primate natural killer cells</p> Munn DH Bree AG Beall AC Kaviani MD Sabio H Schaub RG Alpaugh RK Weiner LM Goldman SJ Blood 1996 88 4 1215 1224 8695839 <p>Transforming growth factor-beta in synovial fluids modulates Fc gamma RII (CD16) expression on mononuclear phagocytes</p> Wahl SM Allen JB Welch GR Wong HL J Immunol 1992 148 2 485 490 1309559 <p>CD14+CD16++ cells derived in vitro from peripheral blood monocytes exhibit phenotypic and functional dendritic cell-like characteristics</p> Ancuta P Weiss L Haeffner-Cavaillon N Eur J Immunol 2000 30 7 1872 1883 10940876 10.1002/1521-4141(200007)30:7<1872::AID-IMMU1872>3.0.CO;2-2 <p>The CC Chemokine MCP-1 Stimulates Surface Expression of CX3CR1 and Enhances the Adhesion of Monocytes to Fractalkine/CX3CL1 via p38 MAPK</p> Green SR Han KH Chen Y Almazan F Charo IF Miller YI Quehenberger O J Immunol 2006 176 12 7412 7420 16751386 <p>Loss of CCR2 expression and functional response to monocyte chemotactic protein (MCP-1) during the differentiation of human monocytes: role of secreted MCP-1 in the regulation of the chemotactic response</p> Fantuzzi L Borghi P Ciolli V Pavlakis G Belardelli F Gessani S Blood 1999 94 3 875 883 10419877 <p>CD16+ monocytes exposed to HIV promote highly efficient viral replication upon differentiation into macrophages and interaction with T cells</p> Ancuta P Kunstman KJ Autissier P Zaman T Stone D Wolinsky SM Gabuzda D Virology 2006 344 2 267 276 16305804 10.1016/j.virol.2005.10.027 <p>Binarization of microarray data on the basis of a mixture model</p> Zhou X Wang X Dougherty ER Mol Cancer Ther 2003 2 7 679 684 12883041 <p>Missing value estimation methods for DNA microarrays</p> Troyanskaya O Cantor M Sherlock G Brown P Hastie T Tibshirani R Botstein D Altman RB Bioinformatics 2001 17 6 520 525 11395428 10.1093/bioinformatics/17.6.520 <p>Missing-value estimation using linear and non-linear regression with Bayesian gene selection</p> Zhou X Wang X Dougherty ER Bioinformatics 2003 19 17 2302 2307 14630659 10.1093/bioinformatics/btg323 <p>Gene clustering based on clusterwide mutual information</p> Zhou X Wang X Dougherty ER Russ D Suh E J Comput Biol 2004 11 1 147 161 15072693 10.1089/106652704773416939 <p>False discovery rate, sensitivity and sample size for microarray studies</p> Pawitan Y Michiels S Koscielny S Gusnanto A Ploner A Bioinformatics 2005 21 13 3017 3024 15840707 10.1093/bioinformatics/bti448 <p>Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection</p> Li C Wong WH Proc Natl Acad Sci USA 2001 98 1 31 36 11134512 10.1073/pnas.011404098 14539 <p>Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles</p> Subramanian A Tamayo P Mootha VK Mukherjee S Ebert BL Gillette MA Paulovich A Pomeroy SL Golub TR Lander ES Proc Natl Acad Sci USA 2005 102 43 15545 15550 16199517 10.1073/pnas.0506580102 1239896 <p>Gene regulation and DNA damage in the ageing human brain</p> Lu T Pan Y Kao SY Li C Kohane I Chan J Yankner BA Nature 2004 429 6994 883 891 15190254 10.1038/nature02661 <p>A transmembrane CXC chemokine is a ligand for HIV-coreceptor Bonzo</p> Matloubian M David A Engel S Ryan JE Cyster JG Nat Immunol 2000 1 4 298 304 11017100 10.1038/79738 <p>JAML, a novel protein with characteristics of a junctional adhesion molecule, is induced during differentiation of myeloid leukemia cells</p> Moog-Lutz C Cave-Riant F Guibal FC Breau MA Di Gioia Y Couraud PO Cayre YE Bourdoulous S Lutz PG Blood 2003 102 9 3371 3378 12869515 10.1182/blood-2002-11-3462 <p>IL-12 acts directly on DC to promote nuclear localization of NF-kappaB and primes DC for IL-12 production</p> Grohmann U Belladonna ML Bianchi R Orabona C Ayroldi E Fioretti MC Puccetti P Immunity 1998 9 3 315 323 9768751 10.1016/S1074-7613(00)80614-7 <p>IL-13 effector functions</p> Wynn TA Annu Rev Immunol 2003 21 425 456 12615888 10.1146/annurev.immunol.21.120601.141142 <p>WSX-1 and glycoprotein 130 constitute a signal-transducing receptor for IL-27</p> Pflanz S Hibbert L Mattson J Rosales R Vaisberg E Bazan JF Phillips JH McClanahan TK de Waal Malefyt R Kastelein RA J Immunol 2004 172 4 2225 2231 14764690 <p>Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation</p> Kastelein RA Hunter CA Cua DJ Annu Rev Immunol 2007 25 221 242 17291186 10.1146/annurev.immunol.22.012703.104758 <p>Amyloid precursor-like protein 2 increases the endocytosis, instability, and turnover of the H2-K(d) MHC class I molecule</p> Tuli A Sharma M McIlhaney MM Talmadge JE Naslavsky N Caplan S Solheim JC J Immunol 2008 181 3 1978 1987 2607064 18641335 <p>Regulation of indoleamine 2,3-dioxygenase and tryptophanyl-tRNA-synthetase by CTLA-4-Fc in human CD4+ T cells</p> Boasso A Herbeuval JP Hardy AW Winkler C Shearer GM Blood 2005 105 4 1574 1581 15466932 10.1182/blood-2004-06-2089 <p>Phagocytosis and antigen presentation in dendritic cells</p> Savina A Amigorena S Immunol Rev 2007 219 143 156 17850487 10.1111/j.1600-065X.2007.00552.x <p>Central role for G protein-coupled phosphoinositide 3-kinase gamma in inflammation</p> Hirsch E Katanaev VL Garlanda C Azzolino O Pirola L Silengo L Sozzani S Mantovani A Altruda F Wymann MP Science 2000 287 5455 1049 1053 10669418 10.1126/science.287.5455.1049 <p>Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution</p> Lee MH Reynisdottir I Massague J Genes Dev 1995 9 6 639 649 7729683 10.1101/gad.9.6.639 <p>Transforming growth factor beta-induced cell cycle arrest of human hematopoietic cells requires p57KIP2 up-regulation</p> Scandura JM Boccuni P Massague J Nimer SD Proc Natl Acad Sci USA 2004 101 42 15231 15236 15477587 10.1073/pnas.0406771101 524079 <p>MIM, a potential metastasis suppressor gene in bladder cancer</p> Lee YG Macoska JA Korenchuk S Pienta KJ Neoplasia 2002 4 4 291 294 12082544 10.1038/sj.neo.7900231 1531703 <p>The human myeloid cell nuclear differentiation antigen gene is one of at least two related interferon-inducible genes located on chromosome 1q that are expressed specifically in hematopoietic cells</p> Briggs RC Briggs JA Ozer J Sealy L Dworkin LL Kingsmore SF Seldin MF Kaur GP Athwal RS Dessypris EN Blood 1994 83 8 2153 2162 7512843 <p>MafB is an inducer of monocytic differentiation</p> Kelly LM Englmeier U Lafon I Sieweke MH Graf T Embo J 2000 19 9 1987 1997 10790365 10.1093/emboj/19.9.1987 305687 <p>Balance of MafB and PU.1 specifies alternative macrophage or dendritic cell fate</p> Bakri Y Sarrazin S Mayer UP Tillmanns S Nerlov C Boned A Sieweke MH Blood 2005 105 7 2707 2716 15598817 10.1182/blood-2004-04-1448 <p>Cybr, a cytokine-inducible protein that binds cytohesin-1 and regulates its activity</p> Tang P Cheng TP Agnello D Wu CY Hissong BD Watford WT Ahn HJ Galon J Moss J Vaughan M Proc Natl Acad Sci USA 2002 99 5 2625 2629 11867758 10.1073/pnas.052712999 122398 <p>Kruppel-like factor 2 regulates thymocyte and T-cell migration</p> Carlson CM Endrizzi BT Wu J Ding X Weinreich MA Walsh ER Wani MA Lingrel JB Hogquist KA Jameson SC Nature 2006 442 7100 299 302 16855590 10.1038/nature04882 <p>Retinoids regulate survival and antigen presentation by immature dendritic cells</p> Geissmann F Revy P Brousse N Lepelletier Y Folli C Durandy A Chambon P Dy M J Exp Med 2003 198 4 623 634 12925678 10.1084/jem.20030390 2194172 <p>Retinoic acid signaling in myelopoiesis</p> Drumea K Yang ZF Rosmarin A Curr Opin Hematol 2008 15 1 37 41 18043244 10.1097/MOH.0b013e3282f20a9c <p>In vitro induction of mucosa-type dendritic cells by all-trans retinoic acid</p> Saurer L McCullough KC Summerfield A J Immunol 2007 179 6 3504 3514 17785784 <p>Retinoic acid: an educational "vitamin elixir" for gut-seeking T cells</p> Mora JR von Andrian UH Immunity 2004 21 4 458 460 15485623 10.1016/j.immuni.2004.10.002 <p>Dioxin receptor is a ligand-dependent E3 ubiquitin ligase</p> Ohtake F Baba A Takada I Okada M Iwasaki K Miki H Takahashi S Kouzmenko A Nohara K Chiba T Nature 2007 446 7135 562 566 17392787 10.1038/nature05683 <p>The aryl hydrocarbon receptor is a modulator of anti-viral immunity</p> Head JL Lawrence BP Biochem Pharmacol 2008 77 4 642 53 19027719 10.1016/j.bcp.2008.10.031 <p>Molecular characterization of early human T/NK and B-lymphoid progenitor cells in umbilical cord blood</p> Haddad R Guardiola P Izac B Thibault C Radich J Delezoide AL Baillou C Lemoine FM Gluckman JC Pflumio F Blood 2004 104 13 3918 3926 15331438 10.1182/blood-2004-05-1845 <p>Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment</p> Nagai Y Garrett KP Ohta S Bahrun U Kouro T Akira S Takatsu K Kincade PW Immunity 2006 24 6 801 812 16782035 10.1016/j.immuni.2006.04.008 1626529 <p>Toll-like receptor signalling</p> Akira S Takeda K Nat Rev Immunol 2004 4 7 499 511 15229469 10.1038/nri1391 <p>Vitamins A and D are potent inhibitors of cutaneous lymphocyte-associated antigen expression</p> Yamanaka K Dimitroff CJ Fuhlbrigge RC Kakeda M Kurokawa I Mizutani H Kupper TS J Allergy Clin Immunol 2008 121 1 148 157 17910894 10.1016/j.jaci.2007.08.014 2566300 <p>A subset of human dendritic cells in the T cell area of mucosa-associated lymphoid tissue with a high potential to produce TNF-alpha</p> de Baey A Mende I Baretton G Greiner A Hartl WH Baeuerle PA Diepolder HM J Immunol 2003 170 10 5089 5094 12734354 <p>Antigen presentation by monocytes and monocyte-derived cells</p> Randolph GJ Jakubzick C Qu C Curr Opin Immunol 2008 20 1 52 60 2408874 18160272 <p>The mononuclear phagocyte system</p> Hume DA Curr Opin Immunol 2006 18 1 49 53 16338128 10.1016/j.coi.2005.11.008 <p>Cloning and characterization of Siglec-10, a novel sialic acid binding member of the Ig superfamily, from human dendritic cells</p> Li N Zhang W Wan T Zhang J Chen T Yu Y Wang J Cao X J Biol Chem 2001 276 30 28106 28112 11358961 10.1074/jbc.M100467200 <p>Cross-linking of membrane CD43 mediates dendritic cell maturation</p> Corinti S Fanales-Belasio E Albanesi C Cavani A Angelisova P Girolomoni G J Immunol 1999 162 11 6331 6336 10352244 <p>Human dipeptidyl-peptidase I. Gene characterization, localization, and expression</p> Rao NV Rao GV Hoidal JR J Biol Chem 1997 272 15 10260 10265 9092576 10.1074/jbc.272.15.10260 <p>Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling</p> Robbins SH Walzer T Dembele D Thibault C Defays A Bessou G Xu H Vivier E Sellars M Pierre P Genome Biol 2008 9 1 R17 18218067 10.1186/gb-2008-9-1-r17 2395256 <p>PECAM-1 is required for transendothelial migration of leukocytes</p> Muller WA Weigl SA Deng X Phillips DM J Exp Med 1993 178 2 449 460 8340753 10.1084/jem.178.2.449 2191108 <p>CD99 plays a major role in the migration of monocytes through endothelial junctions</p> Schenkel AR Mamdouh Z Chen X Liebman RM Muller WA Nat Immunol 2002 3 2 143 150 11812991 10.1038/ni749 <p>CD43, a molecule defective in Wiskott-Aldrich syndrome, binds ICAM-1</p> Rosenstein Y Park JK Hahn WC Rosen FS Bierer BE Burakoff SJ Nature 1991 354 6350 233 235 1683685 10.1038/354233a0 <p>Enhancement of T-cell activation by the CD43 molecule whose expression is defective in Wiskott-Aldrich syndrome</p> Park JK Rosenstein YJ Remold-O'Donnell E Bierer BE Rosen FS Burakoff SJ Nature 1991 350 6320 706 709 2023632 10.1038/350706a0 <p>Cutting edge: CD43 functions as a T cell counterreceptor for the macrophage adhesion receptor sialoadhesin (Siglec-1)</p> Berg van den TK Nath D Ziltener HJ Vestweber D Fukuda M van Die I Crocker PR J Immunol 2001 166 6 3637 3640 11238599 <p>The Roman god Janus: a paradigm for the function of CD43</p> Ostberg JR Barth RK Frelinger JG Immunol Today 1998 19 12 546 550 9864944 10.1016/S0167-5699(98)01343-7 <p>Exclusion of CD43 from the immunological synapse is mediated by phosphorylation-regulated relocation of the cytoskeletal adaptor moesin</p> Delon J Kaibuchi K Germain RN Immunity 2001 15 5 691 701 11728332 10.1016/S1074-7613(01)00231-X <p>CD47 ligation selectively inhibits the development of human naive T cells into Th1 effectors</p> Avice MN Rubio M Sergerie M Delespesse G Sarfati M J Immunol 2000 165 8 4624 4631 11035105 <p>Ligation of CD47 during monocyte differentiation into dendritic cells results in reduced capacity for interleukin-12 production</p> Johansson U Londei M Scand J Immunol 2004 59 1 50 57 14723621 10.1111/j.0300-9475.2004.01354.x <p>CD16+ and CD16- human blood monocyte subsets differentiate in vitro to dendritic cells with different abilities to stimulate CD4+ T cells</p> Sanchez-Torres C Garcia-Romo GS Cornejo-Cortes MA Rivas-Carvalho A Sanchez-Schmitz G Int Immunol 2001 13 12 1571 1581 11717198 10.1093/intimm/13.12.1571 <p>From the diet to the nucleus: Vitamin A and TGF-beta join efforts at the mucosal interface of the intestine</p> Mucida D Park Y Cheroutre H Semin Immunol 2009 21 1 14 21 18809338 10.1016/j.smim.2008.08.001 <p>All-trans retinoic acid regulates CXCL16/SR-PSOX expression</p> Wagsater D Sheikine Y Sirsjo A Int J Mol Med 2005 16 4 661 665 16142401 <p>Induction of KLF2 by fluid shear stress requires a novel promoter element activated by a phosphatidylinositol 3-kinase-dependent chromatin-remodeling pathway</p> Huddleson JP Ahmad N Srinivasan S Lingrel JB J Biol Chem 2005 280 24 23371 23379 15834135 10.1074/jbc.M413839200 <p>Identification of LKLF-regulated genes in quiescent CD4+ T lymphocytes</p> Haaland RE Yu W Rice AP Mol Immunol 2005 42 5 627 641 15607822 10.1016/j.molimm.2004.09.012 <p>CD69 acts downstream of interferon-alpha/beta to inhibit S1P1 and lymphocyte egress from lymphoid organs</p> Shiow LR Rosen DB Brdickova N Xu Y An J Lanier LL Cyster JG Matloubian M Nature 2006 440 7083 540 544 16525420 10.1038/nature04606 <p>Critical role for beta7 integrins in formation of the gut-associated lymphoid tissue</p> Wagner N Lohler J Kunkel EJ Ley K Leung E Krissansen G Rajewsky K Muller W Nature 1996 382 6589 366 370 8684468 10.1038/382366a0 <p>Cloning and genomic characterization of LST1: a new gene in the human TNF region</p> Holzinger I de Baey A Messer G Kick G Zwierzina H Weiss EH Immunogenetics 1995 42 5 315 322 7590964 10.1007/BF00179392 <p>Lipopolysaccharide-induced expression of NAD(P)H:quinone oxidoreductase 1 and heme oxygenase-1 protects against excessive inflammatory responses in human monocytes</p> Rushworth SA MacEwan DJ O'Connell MA J Immunol 2008 181 10 6730 6737 18981090 <p>LST1 and NCR3 expression in autoimmune inflammation and in response to IFN-gamma, LPS and microbial infection</p> Mulcahy H O'Rourke KP Adams C Molloy MG O'Gara F Immunogenetics 2006 57 12 893 903 16362817 10.1007/s00251-005-0057-2 <p>Differential screening identifies genetic markers of monocyte to macrophage maturation</p> Krause SW Rehli M Kreutz M Schwarzfischer L Paulauskis JD Andreesen R J Leukoc Biol 1996 60 4 540 545 8864140 <p>Analysis of gene expression during maturation of immature dendritic cells derived from peripheral blood monocytes</p> Matsunaga T Ishida T Takekawa M Nishimura S Adachi M Imai K Scand J Immunol 2002 56 6 593 601 12472671 10.1046/j.1365-3083.2002.01179.x <p>Definition of human blood monocytes</p> Ziegler-Heitbrock HW J Leukoc Biol 2000 67 5 603 606 10810998