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Reciprocal extreme BMI phenotypes associated with 

gene dosage at the 16p11.2 locus 

 

 

Both underweight and obesity have been associated with increased mortality
1,2

. 

Underweight, defined as body mass index (BMI) ≤ 18,5 kg/m
2 

in adults 
3
 and ≤ -2 

standard deviations (SD) in children
4,5

, is the main sign of a series of heterogeneous 

clinical conditions such as failure to thrive (FTT) 
6-8

, feeding and eating disorder and/or 

anorexia nervosa
9,10

. In contrast to obesity, few genetic variants underlying these clinical 

conditions have been reported 
11

 
12

. We previously demonstrated that hemizygosity of a 

600 kb region on the short arm of chromosome 16 (chr16:29.5-30.1Mb), causes a 

highly-penetrant form of obesity often associated with hyperphagia and intellectual 

disabilities
13

. Here we show that the corresponding reciprocal duplication is associated 

with underweight. We identified 138 (132 novel cases) duplication carriers (108 

unrelated carriers) from over 95,000 individuals clinically-referred for developmental or 

intellectual disabilities (DD/ID), psychiatric disorders or recruited from population-

based cohorts. These carriers show significantly reduced postnatal weight (mean Z-score 

–0.6; p=4.4×10
-4

) and BMI (mean Z-score –0.5; p=2.0×10
-3

). In particular, half of the 

boys younger than 5 years are underweight with a probable diagnosis of FTT, while 

adult duplication carriers have an 8.7-fold (p=5.9×10
-11

; CI_95=[4.5-16.6]) increased risk 

of being clinically underweight. We observe a significant trend towards increased 

severity in males, as well as a depletion of male carriers among non-medically 

ascertained cases. These features are associated with an unusually high frequency of 

selective and restrictive feeding behaviours and a significant reduction in head 

circumference (mean Z-score –0.9; p=7.8×10
-6

). Each of the observed phenotypes is the 
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converse of one reported in carriers of deletions at this locus, correlating with changes in 

transcript levels for genes mapping within the duplication but not within flanking 

regions. The reciprocal impact of these 16p11.2 copy number variants suggests that 

severe obesity and being underweight can have mirror etiologies, possibly through 

contrasting effects on eating behaviour. 

 

Copy number variants at the 16p11.2 locus have been associated with cognitive disorders 

including autism (deletions) and schizophrenia (duplications)
14-19

, conditions that have been 

suggested to lie at opposite ends of a single spectrum of psychiatric phenotypes
20

. We and 

others have reported that deletion of this region spanning 28 genes (Supplementary Table 

S1) increases the risk of morbid obesity 43-fold (Supplementary Figure S1)
13,21

. We 

hypothesized that the reciprocal duplication, with its resulting increase in gene dosage, may 

influence BMI in a converse manner. The duplication was identified in 73 out of 31,424 

patients with DD/ID, a frequency consistent with previous reports
17

 (Table 1). Four additional 

cases were identified among 1,080 patients affected by bipolar disease or schizophrenia. 

Compared to its prevalence in seven European population-based GWAS cohorts
22-24

 (31 out 

of 58,635 individuals), the duplication was significantly more frequent in both the DD/ID 

cohorts (p=4.23×10
-13

; OR=4.4, CI_95=[2.9-6.9]) and the psychiatric cohorts (p=3.6×10
-3

; 

OR=7.0, CI_95=[1.8-19.9]) (Table 1) strengthening previous reports of similar 

associations
16,17

. Our data do not support a two-hit model
25

 for the effects of 16p11.2 

duplications or deletions (Supplementary Text and Table S2). 

We compared available data on weight, height and BMI for 106 independent duplication 

carriers (including published cases) to those in gender-, age- and geographically-matched 

reference populations (Table 2, Supplementary Tables S3 and S4, Methods). The 

duplication was strongly associated with lower weight (mean Z-score -0.56; p=4.4×10
-4

) and 



 3 

BMI (mean Z-score -0.47; p=2.0×10
-3

) (Table 2, Supplementary Table S5). Birth 

parameters (n=48) were normal indicating a postnatal effect.  Adults carrying the duplication 

had a relative risk (RR) of being clinically underweight (BMI < 18.5)
26

 of 8.7, CI_95=[4.5-

16.6] (p=5.9×10
-11

) (Methods). Concordantly, none of the 3,544 patients in our obesity 

cohorts
13,21

 carried the duplication (Table 1).  

To further investigate these associations, we carried out separate analyses of carrier patients 

(DD/ID and psychiatric) and non-medically ascertained carriers (population-based cohorts 

plus 11 transmitting parents and three other affected first-degree relatives for whom data were 

available) (Table 2). Each category exhibited significantly lower weight and BMI with 

similar effect sizes. However, the proportion of underweight cases (BMI ≤ -2 SD)
26

 was 

higher in the first than in the second group (17/76 compared to 2/40; p=0.017). Note that the 

impact of the duplication on underweight status might be understated due to prescription of 

antipsychotic treatments, often associated with weight gain
27

 (Supplementary Table S6) 

Having demonstrated an association of the duplication with underweight, we investigated the 

contribution of gender to the resulting phenotypes (Figure 1, Supplementary Figure S2 and 

Table S7). In DD/ID patients, the impact of the duplication on being underweight is stronger 

in males − the effect in females is in the same direction, but is both smaller and statistically 

non-significant (Table 2). A similar and significant difference (p=0.0173) was observed in 

adult carriers (all groups combined): the RR of being underweight for males is 24.1 

(CI_95=[9.5-61.2], p=2.2×10
-11

) and only 4.9 for females (CI_95=[2.0-12.3], p=6.7×10
-4

). A 

gender bias was also observed in the ascertainment of DD/ID duplication carriers, in which 

we have an excess of males (51M:33F, p=0.044). By contrast, carriers from the general 

population exhibited a strong overrepresentation of females (10M:21F, p=0.035) 

(Supplementary Text). A similar bias was observed among transmitting parents (7M:23F, 

p=5.53×10
-4

). Thus, there is an overrepresentation of males in the medically ascertained group 
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and a depletion in the non-medically ascertained one.  We suggest that males are more likely 

than females to present severe phenotypes, and that this may account for the observed gender 

bias, as severely affected males are less likely to be recruited to adult population cohorts or be 

reproductively successful. 

As previously reported
28

, the duplication was also associated with reduced head 

circumference (HC; mean Z-score -0.89; p=7.8×10
-6

) (Figure 1), 26.7% presenting with 

microcephaly, while carriers of the reciprocal deletion had an increased HC (mean Z-score 

+0.57; p=1.79×10
-5

) (Supplementary Table S8, Figure S3), demonstrating an additional 

instance of a mirror phenotype associated with reciprocal copy number changes at this locus. 

Notably, HC Z-scores correlate positively with those of BMI in carriers of both the 

duplication (rho=0.37; p=2.65×10
-3

) and the deletion (rho=0.42; p=1.9×10
-5

) 

(Supplementary Methods). This suggests that HC and BMI may be regulated by a common 

pathway or that a causal relationship exists between these two traits in these patients. A full 

list of malformations and secondary phenotypes reported in duplication carriers ascertained 

for DD/ID is available in Supplementary Table S9. 

In view of their importance in obesity and underweight, the clinical reports of duplication 

carriers were screened for evidence of modified eating behaviours. Consequently, we carried 

out multiplex ligation-dependent probe amplification (MLPA, Supplementary Table S10) to 

screen for 16p11.2 rearrangements in 441 patients diagnosed with ED including anorexia 

nervosa (AN), bulimia and binge eating disorder (Table 1, Supplementary Text). No 

duplications of the entire region were identified, but one out of 109 AN patients carried an 

atypical 136 kb duplication that encompasses the SPN and QPRT genes (Supplementary 

Figure S4). This smaller duplication is currently the subject of further investigations, as it 

potentially delineates a critical region affecting eating behaviour. 
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Large genomic structural variants are known to affect the expression of genes not only within 

the affected region but also at a distance
29-32

. We therefore measured relative transcript levels 

in lymphoblastoid cell-lines of 27 genes mapping within the rearrangement or nearby 

(Supplementary Tables S1 and S11): six from deletion carriers, five from duplication 

carriers and ten from gender- and age-matched controls (Supplementary Table S12). 

Expression levels correlated positively with gene dosage for all genes within the copy number 

variable region (Figure 2) consistent with published partial results from adipose tissue
13

. 

Mean relative transcript levels in deletion and duplication carriers were, respectively, 67% 

and 214% of the levels measured in controls (Supplementary Table S13). While genes 

proximal (centromeric) to the rearrangement interval showed no significant variation in 

relative transcript levels between patients and controls (Figure 2), distal (telomeric) genes 

showed a significant alteration in relative expression. While lymphoblastoid cells may not 

recapitulate obesity-relevant tissues, previous experiments have shown a high degree of 

correlation between expression levels in different tissues/cell lines
29

, suggesting that the same 

pathways may be similarly disrupted in different cell lineages. Thus, the involvement of these 

distal genes in the control of BMI in our study subjects seems unlikely.  

Our study demonstrates the power of very large screens (>95,000 samples, the biggest of its 

kind so far) to characterize the clinical and molecular correlates of a rare functional genomic 

variant. We unambiguously demonstrate that carrying the 16p11.2 duplication confers a high 

risk of being clinically underweight and show that reciprocal changes in gene dosage at this 

locus result in multiple mirror phenotypes. As in the schizophrenia/autism
20,34

 and 

microcephaly/macrocephaly
28

 dualisms, abnormal eating behaviours, such as hyperphagia and 

anorexia, could represent opposite pathological manifestations of a common energy balance 

mechanism, although the precise relationships between these mirror phenotypes remain to be 

determined. We surmise that abnormal brain volume, thus neuronal circuitry, both cognitive 
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function and eating behaviour, the latter possibly being the basis for the observed impact on 

BMI. Consistent with this are previous reports that a subgroup of children with microcephaly 

show concomitant reduction in weight percentile
35

. Our findings also support the observation 

that severe overweight and underweight phenotypes correlate with lower cognitive 

functioning
7,36

. Thus, abnormal food intake may be a direct result of particular 

neurodevelopmental disorders. Although it is possible that the 16p11.2 region encodes distinct 

genes specific for each trait, a more parsimonious hypothesis is that these different clinical 

manifestations of central nervous system dysfunction are all secondary to the disruption of a 

single gene-dosage-sensitive neurodevelopmental step. Further resolution of this issue may 

require identification of additional patients with rare atypical rearrangements in this region. 

 

METHODS SUMMARY 

Underweight is defined in adults and individuals of less than 18 years of age as BMI ≤ 18.5 

and Z-score ≤ -2, respectively. 

Statistics: Two-sided Fisher’s exact test was used to compare frequencies of the 

rearrangement in patients and controls. Z-scores were computed for all data using gender-, 

age- and geographically-matched reference populations. One-sided t-test was performed to 

test duplication carriers for lower than zero BMI, height, weight and HC Z-score values. We 

used Kruskal-Wallis to test differences in gene expression patterns. P-value thresholds were 

defined (by permutation) in order to control the false discovery rate at 5%. Relative risk of 

being underweight was calculated as the ratio of the fraction of underweight individuals 

among duplication carriers versus our control group. 

CNV discovery: 16p11.2 duplication and deletion carriers were identified through various 

procedures: (i) CGH with Agilent (Santa Clara, CA) 44K, 60K, 105K, 180K, 244K arrays; (ii) 

Illumina (San Diego, CA) Human317, Human370, HumanHap550, Human610 and 1M 

BeadChips; (iii) Affymetrix (Santa Clara, CA) 6.0, 250K genotyping arrays; (iv) QMPSF, (v) 

FISH and/or (vi) MLPA. CNV analyses of GWAS data were variously carried out using 

cnvHap, a moving window average intensity procedure, a Gaussian Mixture Model, Circular 
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Binary Segmentation, QuantiSNP, PennCNV, BeadStudio GT module and Birdseed. At least 

two independent algorithms were used for each cohort. 

Expression analyses: lymphoblastoid cell lines were established from carriers and controls. 

SYBR Green quantitative PCR was performed to assess relative expression of genes. 
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Table 1: 16p11.2 rearrangements in cases and controls. 

  Dup Del Total 

Ascertainment Cohorts n p 
1 

n p 
1 

 

Neuro-

developmental 

disorders 

Unspecified DD/ID* from 28 cytogenetic centers 72  113  30323 

ADHD 
4
, deCODE 

4
 0  1  591 

Childhood Autism 
4
, deCODE 0  2  159 

Childhood Autism spectrum disorder 
4
, deCODE 1  3  351 

TOTAL 73 4.23e-13 119 5.43e-32 31424 

Rearrangement frequency (95% CI) 0.23% (0.18-0.29)  0.38% (0.31-0.45)   

Family history 1
st
 degree relatives of probands 30  35  43 /62

2
 

Adult psychiatric  Schizophrenia, deCODE 0  1  657 

symptoms Bipolar disease, Rouen 1  0  156 

 Schizophrenia, Schizo-affective, Rouen. 3  0  267 

 TOTAL 4 3.57e-03 1 3.78e-01 1080 

 Rearrangement frequency (95% CI) 0.37% (0.01-0.73)  0.09% (0-0.27)   

Underweight Eating disorder, Spain 1 
3
  0  441 

Obesity Obesity, Spain 0  2  653 

 Adult Obesity, France 0  4  705 

 Childhood Obesity, France & UK 0  7  1574 

 Obesity Bariatric Surgery, France 0  2  141 

 Obesity Discordant Siblings, Sweden 0  2  159 

 Obesity and Cognitive Delay, France & UK 0  9  312 

 TOTAL 0 4.21e-01 26 2.52e-19 3544 

 Rearrangement frequency (95% CI) 0  0.73% (0.45-1.01)   

Population-

based  

NFBC1966 Finnish 4  3  5319 

cohorts CoLaus Swiss 5  0  5612 

 EGCUT Estonian 2  1  2994 

 deCODE Iceland 17  18  36601 

 SHIP Germany 1  2  4070 

 KORA F3+F4 Germany 2  1  3458 

 Pediatric family study 0  0  581 

 TOTAL 31  25  58635 

 Rearrangement frequency (95% CI) 0.05% (0.03-0.07) - 0.04% (0.03-0.06) -  
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Legend:  

*: Not a disease-specific cohort. Detailed distribution is provided in the online methods. 

DD/ID: developmental delay/ intellectual disabilities  

1 Fisher’s exact test, compared to the combined frequency in general population groups. 

2 total number of parental pairs tested for dup/del.  13 out of 43 duplications and 27 out of 62 deletion cases were de novo. 

3 atypical duplication (see Supplementary Figure S5) 

4 There was no overlap between these 3 cohorts
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Table 2:  Comparisons of the height, weight and BMI distributions in duplication 

carriers and controls. 

The available BMI, weight and height data for duplication carriers were transformed to Z-

scores using gender- and age-matched reference populations, and one-sided t-tests were 

carried out to determine whether the mean Z-scores deviate from zero. Significant differences 

were identified by reference to cutoffs controlling the false discovery rate (FDR) at 5% (see 

Methods): BMI – 0.022; weight – 0.032; height – 0.025 (significant results indicated in bold). 

Data were not available for all subjects. 

 

 
 

Combined
2 

DD/ID or psychiatric
2
 

 Non-medically 

ascertained
3 

 Strata Mean  

Z-score 
p-value N

1
 Mean  

Z-score 
p-value N

1
 Mean  

Z-score 
p-value N

1
 

BMI 

All -0.47 2.0e-03 102 -0.56 4.1e-03 76 -0.45 6.0e-03 40 

Male -0.54 2.1e-02 52 -0.71 1.3e-02 43 -0.31 2.0e-01 14 

Female -0.4 1.8e-02 50 -0.37 8.3e-02 33 -0.52 4.2e-03 26 

Weight 

All -0.56 4.4e-04 104 -0.65 1.3e-03 78 -0.61 3.0e-03 40 

Male -0.64 5.8e-03 53 -0.79 4.4e-03 44 -0.57 8.8e-02 14 

Female -0.47 1.7e-02 51 -0.47 6.5e-02 34 -0.63 8.6e-03 26 

Height 
All -0.24 4.8e-02 103 -0.33 3.6e-02 77 -0.15 1.8e-01 40 
Male -0.34 4.5e-02 52 -0.4 4.6e-02 43 -0.29 1.2e-01 14 

Female -0.14 2.6e-01 51 -0.24 2.1e-01 34 -0.07 3.7e-01 26 

 

1
 Relatives of probands were excluded as required, to avoid including more than one member 

of the same family in a single analysis  

2
 Including 24 cases from the literature (Supplementary Table S3).  

3
 Population-based cases and first-degree relatives of probands. 
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Figure 1: Effect of the 16p11.2 duplication on BMI and head circumference  

 

 

Legend: Z-score values of BMI (top row) and head circumference (bottom row) of 16p11.2 

duplication carriers stratified by gender and age group. The most severe effect is observed in 

children 0-5 years of age. Abscise: age groups in years. Boxplots represent the 5th, 25th, 

median, 75th and 95th percentile for each age group. Light grey and dark grey background 

represent -2 and -3 SD respectively, which correspond to the WHO definition of moderate 

and severe underweight
4
. BMI is decreased in adolescent and adult females.  
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Figure 2: Transcript levels for genes within and near to the 16p11.2 rearrangements. 

(A) Relative expression levels in boxplot format of 27 genes mapping to 16p11.2 in deletion 

and duplication carriers (red and green, respectively) and control cell lines (blue).  Grey lines 

denote the extent of the 16p11.2 CNV (29.5-30.1 Mb).  Complete lists of genes mapping 

within the rearranged interval and of the quantitative PCR assays can be consulted in 

Supplementary Table S1 and S11, respectively.  Possible relevance of each of these genes 

to obesity/leanness and/or developmental delay/cognitive deficits can be consulted in 
13

.
 

 

(B) Rank comparison (Kruskal-Wallis test) between expression of 27 genes mapping to 

16p11.2 in deletion and duplication carriers (red and green, respectively) and control cell lines 

(blue).  

Distinction is made between genes mapping telomeric (or centromeric) to the rearranged 

interval and those within the rearranged interval. Dots correspond to the mean group rank and 

bars indicate the comparison interval, groups with non-overlapping intervals are significantly 

different (at α=5%). 
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ONLINE METHODS 

Patients referred for intellectual disabilities and developmental delay 

Patients with cognitive deficits are routinely referred to clinical genetics for etiological work-

ups including aCGH. We surveyed 28 cytogenetic centers in Europe and North America 

(Supplementary Table S3), identifying 31,424 patients ascertained for developmental delay, 

intellectual disabilities and/or malformations. Clinical ascertainment was as follows: 

developmental delay and mental retardation (MR): 51.0%, autism spectrum disorder (ASD) 

with or without MR: 14.4%, language delay with or without MR: 42.9%, malformations with 

MR: 27.6%, and malformations without MR: 4.8%. 

These analyses were performed for clinical diagnostic purposes, all available phenotypic data 

being those provided anonymously and retrospectively by the clinician ordering the analyses. 

Consequently, research-based informed consent was not required by the Institutional Review 

Board of the University of Lausanne, which granted an exemption for this part of the study.  

Patients referred for psychiatric disorders 

Cohort from Rouen. 

Cases with schizophrenia and cases with bipolar disorder were ascertained at University 

Hospital, Rouen, France, from consecutive hospitalizations. All psychiatric diagnoses were 

established according to DSM-IV criteria following review of case notes and direct 

examination of cases. The Schedule for Affective Disorders and Schizophrenia was used for 

the clinical assessment of all cases with schizophrenia or schizoaffective disorder and the 

Diagnostic Interview for Genetic Studies (DIGS) was used in patients with bipolar disorder. 

The schizophrenia cohort was described before 
37

: 189 cases with schizophrenia and 47 cases 

with schizoaffective disorder. Post-morbid IQs were available for two-thirds of cases with 

schizophrenia; 18.0% of these cases had an IQ lower than 70. The bipolar cohort was made up 

of 150 patients with either bipolar disorder type I or type II. All subject have given written 

informed consent and this study was accepted by the local institutional review board.  

General population cohorts 

CoLaus 
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This prospective population cohort was described previously
22

: 6,188 white individuals aged 

35–75 years were randomly selected from the general population in Lausanne, Switzerland. 

These individuals underwent a detailed phenotypic assessment, and were genotyped using the 

Affymetrix Mapping 500K array; 5,612 samples passed genotyping quality control. The 

institutional review board of the University of Lausanne approved this study, and written 

consent was obtained from all participants.  

NFBC1966 

The Northern Finland Birth Cohort 1966 is a prospective birth cohort of almost all individuals 

born in 1966 in the two northernmost provinces of Finland. Biochemical and DNA samples 

were collected with informed consent at age 31 years. Genotyping was done using the 

Illumina Infinium 370cnvDuo array and phenotypic characteristics of the cohort were as 

previously described
23

. Phenotypic and genotyping data was available for 5,246 subjects after 

quality control. 

EGCUT 

The Estonian Genome Centre at the University of Tartu (EGCUT) maintains a general 

population based biobank, described in greater detail in 
24

. 2994 unrelated subjects were 

randomly selected among the 48,000 Estonian participants and genotyped using the 

IlluminaCNV370-Duo or –Quad BeadChips. EGCUT is conducted according to Estonian 

Gene Research Act. The project was approved by the Ethics Review Committee on Human 

Research of the University of Tartu. Written informed consent was obtained from all 

voluntary participants. 

deCODE 

Patients and controls were all Icelandic and were recruited from all over Iceland. All 

participants with ADHD met DSM-IV criteria for ADHD (477 combined type, 250 inattentive 

type, 58 hyperactive-impulsive type, 40 unspecified). ADHD subjects were recruited from 

outpatient pediatric, child, and adult psychiatry clinics in Iceland, and diagnoses had been 

made on the basis of standardized diagnostic assessments and had been reviewed by 

experienced clinicians 
38,39

. Autistic individuals (n=351) met Autism Diagnostic Interview-

Revised (ADI-R) criteria and were ascertained through the State Diagnostic Counselling 

Center and the Department of Child and Adolescent Psychiatry in Iceland. schizophrenia 

diagnoses were assigned according to Research Diagnostic Criteria (RDC) 
40

 through the use 
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of the Schedule for Affective Disorders and Schizophrenia Lifetime Version (SADS-L) 
41

. 

Schizophrenia patients (n=657) were recruited from outpatient pediatric, child, and adult 

psychiatry clinics, and diagnoses had been made on the basis of standardized diagnostic 

assessments and had been reviewed by experienced clinicians. Recruitment of the psychiatric 

patients at deCODE has been described in more details elsewhere, ADHD 
42

, ASD 

schizophrenia and the control population 
17

. All participants, cases and controls, returned 

signed informed consents prior to participation in the study. All personal identifiers associated 

with medical information, questionnaire results, and blood samples were encrypted according 

to the standards set by the Data Protection Committee of Iceland. All procedures related to 

this study have been approved by the Data Protection Authority and National Bioethics 

Committee of Iceland. 

SHIP 

The Study of Health in Pomerania (SHIP) is a cross-sectional survey in Western Pomerania, 

the north-eastern area of Germany 
43,44

. A sample from the population aged 20 to 79 years 

was drawn from population registries. 7,008 subjects were selected randomly from each 

community, proportional to community population size and stratified by age and gender. 

Exclusively, individuals with German citizenship and main residency in the study area were 

included. 4,308 individuals participated to the study and were genotyped on Affymetrix 6.0 

SNP arrays. Both genotyped data (after QC filtering) and BMI were available for 4,070 

individuals. 

KORA F3/F4  

The KORA study is a series of independent population-based epidemiological surveys of 

participants living in the region of Augsburg, Southern Germany 
45

. All survey participants 

are residents of German nationality identified through the registration office and were 

examined in 1994/95 (KORA S3) and 1999/2001 (KORA F4). In the KORA S3 study 4,856 

subjects (response 75%), and in KORA F4 in total 4,261 subjects have been examined 

(response 67%).  3,006 subjects participated in a 10-year follow-up examination of S3 in 

2004/05 (KORA F3). Individuals for genotyping in KORA F3 and KORA F4 were randomly 

selected. The age range of the participants was 25 to 74 years of recruitment. Age and sex 

were self-reported in a questionnaire survey. Height and Weight were measured following a 

standardized study protocol. Informed consent has been given by all participants. The study 

has been approved by the local ethics committee. 
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French paediatric cohort 

The French paediatric cohort was previously published 
46

 and was genotyped using the 

Illumina Human CNV370-duo array. 581 non-obese children (BMI ≤ 90th percentile) passed 

quality control. All participants or their legal guardians gave written informed consent, and all 

local ethics committees approved the study protocol. 

Stanislas French Cohort 

This cohort was described elsewhere 
47

.  This family cohort (1006 families) was recruited 

between 1993–1995 (first visit) at the Center for Preventive Medicine (CMP) of Vandoeuvre-

lès-Nancy during a periodical health assessment. Inclusion criteria at the first visit were 

parents and grandparents of French origin; residence in the Lorraine region (north-east of 

France); nuclear families comprising two parents and at least two biological children over 6 

years old; fidelity of the majority of the families coming for the second or third time. 

Exclusion criteria at that visit were chronic or acute disorders. The families were supposed 

healthy and free from any declared acute and/or chronic disease in order to be able to assess 

the effects of genetics on the variability of the intermediate phenotypes in physiological 

conditions without the influence of any medical treatment or disease. These data were used 

for the statistical analysis when comparing BMI of duplication cases ascertained in France.  

Spanish control cohort, University Hospital Dr. Josep Trueta 

The 335 Spanish control subjects were recruited between 2000 and 2006 from the general 

population at the University Hospital Dr. Josep Trueta of Girona as previously described in 
48-

51. 

 

Obesity cohorts 

Adult-obesity and child-obesity cohorts 

These cohorts were described in a previous publication 
13

. The adult-obesity case-control 

groups and the child-obesity case control groups were as published previously
46

, and were 

genotyped with the Illumina Human CNV370-duo array. In all, 643 children with familial 

obesity (BMI≥97th centile corrected for gender and age, at least one obese first-degree 

relative, age less than 18 years), 581 non-obese children (BMI≤90th centile), 705 morbidly 
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obese adults with familial obesity (BMI≥40kgm
-2

, at least one obese first-degree relative with 

BMI≥35kgm
-2

, age≥18 years) and 197 lean adults (BMI≤25kgm
-2

) passed quality control; All 

participants or their legal guardians gave written informed consent, and all local ethics 

committees approved the study protocol.  

Bariatric surgery cohort 

This cohort was described in a previous publication 
13

. Patients undergoing elective bariatric 

weight-loss surgery were recruited for the ABOS study at Lille Regional University Hospital. 

Genotyping was performed with the Illumina Human 1M-duo array, and data from 141 adults 

passed quality control. All participants gave written informed consent, and the study protocol 

was approved by the local ethics committee. 

Swedish discordant sibling cohort 

The SOS Sib Pair Study cohort was as published previously 
52

. It includes 154 nuclear 

families, each with BMI discordant sibling pairs (BMI difference>10kgm
-2

), giving a total of 

732 subjects. Genotyping data with the Illumina 610K-Quad array was available for 353 

siblings from 149 families. Expression data from subcutaneous adipose tissue (sampled after 

overnight fasting) were available for 360 siblings from 151 families. Subjects received written 

and oral information before giving written informed consent. The Regional Ethics Committee 

in Gothenburg approved the studies. 

Obesity cohort, University Hospital of Dr. Josep Trueta, Girona, Spain 

The clinical sample consisted of 285 male and 223 female Spanish subjects of Caucasian 

origin with morbid obesity or type 2 diabetes mellitus recruited between 2000 and 2006. The 

remaining subjects were from the general population. All subjects reported stable body weight 

for at least three months before the study. They had no systemic disease other than obesity 

and/or IGT.  The mean BMI (kg/m2) was 32.0 (15.2–82.4). The average age at assessment 

was 46.1 years (range 18.0–79.1). The majority of the patients have been described in 

previous reports 
48-51

. 

Obesity cohort, University Hospital Virgen de la Victoria, Malaga, Spain 

The clinical sample consisted of 85 Spanish Caucasian patients with obesity (35% were men 

and 65 % women).  The mean BMI (kg/m2) was 53,9 (40–73). The average age at assessment 
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was 42.63 years (19–69). The majority of the patients have been described in previous 

reports.
53 

Obesity cohort, University Hospital Juan XXIII, Tarragona, Spain 

The clinical sample consisted of 57 Spanish Caucasian patients with obesity (59% were men 

and 41 % women).  The mean BMI (kg/m2) was 32,23 (27,01-48). The average age at 

assessment was 59,74 years (36–79). The cases have not previously been described. 

Eating disorder cohort 

Spanish Eating Disorder Cohort, University Hospital of Bellvitge-IDIBELL 

The clinical sample consisted of 441 Spanish Caucasian patients with eating disorders (ED) 

consecutively admitted to the Eating Disorders Unit of the University Hospital of Bellvitge 

between 2000 and 2008. The majority of patients were female (94.6%), fulfilled DSM-IV 

criteria for ED, and were diagnosed using the structured clinical interview for mental 

disorders, research version 2.0 (SCID-I) 
54

. The sample consisted of n=109 anorexia nervosa 

(AN; 25%), n=193 bulimia nervosa (BN; 44%), n=111 ED not otherwise specified (EDNOS; 

25%)) and n=28 binge eating disorder patients (BED; 6%). The mean lifetime minimum BMI 

(kg/m2) was 15.46 (SD 1.39) for AN patients, 19.89 (SD 2.95) for BN patients, 18.53 

(SD2.75) for EDNOS patients and 24.31 (SD 4.57) for BED patients. The average age at 

assessment was 26.57 years (SD 7.67). The average age at onset of the disorder was 18.9 

years (SD 4.53) for AN patients, 19.74 (SD 7.16) for BN patients, 18.94 years (SD 5.88) for 

EDNOS patients and 24.65 years (SD 9.59) for BED patients. The majority of the patients 

have been described in previous reports 
55

 
56

 
57

. 

CNV detection. 

Cases ascertained for intellectual disabilities and developmental delay were identified through 

standard medical diagnostic procedures. CNV analyses of GWAS data were variously carried 

out using cnvHap 
58

; a moving window average intensity procedure; a Gaussian Mixture 

Model 
59

; Circular Binary Segmentation
60,61

; QuantiSNP 
62

; PennCNV 
63

; BeadStudio GT 

module (Illumina inc); and Birdseed 
64

 (see below). At least two independent algorithms were 

used for each cohort. 

Patients referred for intellectual disabilities and developmental delay 
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All diagnostic procedures (aCGH, QPCR and/or Quantitative Multiplex PCR of Short 

Fluorescent fragments) were carried out according to the relevant guidelines of good clinical 

laboratory practice for the respective countries. All rearrangements in probands were 

confirmed by a second independent method and karyotyping was performed in all cases to 

exclude a complex rearrangement. 

NFBC cohort  

CNV calling was previously described in 
13

. In brief, data were normalized using Illumina 

BeadStudio, then GC effects on ratios were removed by regressing on GC and GC2, while 

wave effects were removed by fitting a loess function
65

. CNV analysis was done using 

cnvHap
58

. All called 16p11.2 duplications were validated by direct analysis of log2 ratios. 

Data for each probe were normalized by first subtracting the median value across all samples 

(so that the distribution of ratios for each probes was centered on zero), and then dividing by 

the variance across all samples (to correct for variation in the sensitivity of different probes to 

copy number variation). All CNV calls were confirmed by MLPA. 

DeCODE 

Illumina (San Diego, CA, USA) Human317, Human370, HumanHap550, Human610 and 1M 

BeadChips were used for CNV analysis. BeadStudio (version 2.0) was used to call genotypes, 

normalize the signal intensity data, and establish the log R ratio and B allele frequency at 

every SNP according to the standard Illumina protocols. All samples passed a standard SNP-

based quality control procedure; all samples with a SNP call rate lower than 0·97. 

PennCNV
63

, a free, open-source tool, was used for copy number variation detection. The 

input data for PennCNV are log R ratio (LRR): a normalized measure of the total signal 

intensity for the two alleles of the SNP and B allele frequency (BAF): a normalized measure 

of the allelic intensity ratio of the two alleles. These values are derived with the help of 

control genotype clusters (HapMap samples), using the Illumina BeadStudio software. 

PennCNV employs a hidden Markov model (HMM) to analyze the LRR and BAF values 

across the genome. CNV calls are made, based on the probability of a given copy state at the 

current marker, as well as on the probability of observing a copy state change from the 

previous marker to the current one. PennCNV uses a built-in correction model for GC 

content
66

. 

CoLaus 
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Data normalization and CNV calling was previously described in 
13

. Data normalization 

included allelic cross-talk calibration 
67,68

, intensity summarization using robust median 

average and correction for any PCR amplification bias. Wave effects were corrected by fitting 

a Loess function
65

. CNV calling was done using a Gaussian mixture model (GMM) 
59

, that 

fits four components (deletion, copy neutral, 1 and 2 additional copy) to CN ratios. The final 

copy number at each probe location is determined as the expected (dosage) copy number. The 

method has been validated by comparing test datasets with results from the CNAT 
69

 and CBS 

60,61
 algorithms and by replicating a subset of CoLaus subject on Illumina arrays. Only 

duplications found by both GMM and CBS were considered. 

EGCUT 

Genotypes were called by BeadStudio software GT module v3.1 or GenomeStudio GT v1.6 

(Illumina Inc). Log R Ratio and B Allele Frequency (BAF) values produced by the 

BeadStudio were formatted for further CNV analysis and break-point mapping with Hidden 

Markov Model based softwares QuantiSNP (ver.1.1) 
62

 and PennCNV 
70

 or CNVPartition 

2.4.4 (Illumina Inc). All analyses were carried out using the recommended settings, except 

changing EMiters to 25 and L to 1,000,000 in QuantiSNP. For PennCNV, the Estonian 

population specific SNP allele frequency data was used. All detected duplications were 

confirmed by quantitative PCR. 

SHIP 

Raw intensities were normalized using Affymetrix Power Tools (Affymetrix inc), CNV 

analysis was done using Birdseye from the Birdsuite software package
64

 and PennCNV
63

. 

PennCNV predictions with confidence score less than 10 were removed. Birdsuite predictions 

were filtered as in 
21

: CNVs were kept if their LOD score was greater than 10, length greater 

than 1kb and number of probes greater or equal to 5 and size per number of probes less than 

10,000. 

KORA F3/F4 

Genotyping for KORA F3 was performed using Affymetrix 500K Array Set consisting of two 

chips (Sty I and Nsp I). The KORA F4 samples were genotyped with the Affymetrix Human 

SNP Array 6.0. For both studies genomic DNA from blood samples was used for analysis. 

Hybridisation of genomic DNA was done in accordance with the manufacturer’s standard 

recommendations. Genotyping was done in the Genome Analysis Centre (GAC) of the 
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Helmholtz Centre Munich. Genotypes were determined using BRLMM clustering algorithm 

(Affymetrix 500K Array Set) and Birdseed2 clustering algorithm (Affymetrix Array 6.0). For 

quality control purposes, we applied a positive control and a negative control DNA every 48 

(KORA F3) samples or 96 samples (KORA F4). On chip level only subjects with overall 

genotyping efficiencies of at least 93% were included. In addition the called gender had to 

agree with the gender in the KORA study database. After exclusions 1,644 individuals 

remained in KORA F3 and 1,814 in KORA F4 for further analysis. 

MLPA analysis 

We used Multiplex Ligation-dependent Probe Amplification (MLPA) to determine changes in 

the copy number of a region of around 2 Mb on chromosome 16p11.2. Briefly, we designed, 

using hg18, nine probes within the targeted region, one control probe outside the rearranged 

region and seven control probes targeting unique position in the genome (Supplementary 

Table S10). Assays were performed with MRC-Holland reagents according to the 

manufacturer’s protocol
71

. The analysis of the amplification products was performed by 

capillary electrophoresis in the DNA Analyzer 3730XL and using the GeneMapper software 

v3.7 (Applied Biosystems, Foster City, CA). The calculations were performed independently 

for each experiment: we first normalized the MLPA data to minimize the amount of 

experimental variations summing all the signal values of each control probe for each sample, 

and afterwards, dividing each signal value of each sample with the sum. Then, the normalized 

signal values were compared to signal values from all other samples in the same experiment 

dividing the normalized signal values by the average calculated from all the samples in the 

same experiment. The product of this calculation is termed dosage quotient (DQ). A 

calculated DQ value below 0.65 and above 1.25 was considered as copy-number loss and 

gain, respectively as described 
72-74

.  

Short arm of chromosome 16 custom array-CGH 

DNA samples were labelled with Cy3 and cohybridized with Cy5-labelled DNA from the 

CEPH cell line, GM12042, to custom-made Nimblegen arrays. These arrays contained 71,000 

probes spread across the short arm of chromosome 16 from 22.0 to 32.7 Mb (at a median 

space of 45 bp between 27.5 and 31.0 Mb) and 1,000 control probes situated in invariable 

region of the X chromosome. DNA labelling, hybridization and washing were performed 

according to Nimblegen protocols. Scanning was performed using an Agilent G2565BA 
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Microarray Scanner. Image processing, quality control and data extraction were performed 

using the Nimblescan software v.2.5. 

 

Weight, height, BMI and head circumference (HC) Z-scores as a function of age 

 Pediatric cases 

Weight, height, BMI and HC Z-scores were determined for pediatric cases (0-18 years) using 

clinical growth charts specific to the country of origin. Children were ascertained from 9 

different countries. If charts were only available in percentile, those measures were 

transformed in Z-scores (cf. Statistics). 

For United-States and Canada, data from the Center for Disease Control and National Center 

for Health Statistics (CDC/NCHS) were used to calculate Z scores. 
75

.  

For the French pediatric population we used French national growth charts 
76

 
77

. For the Swiss 

pediatric population we used Swiss national growth charts 
78

. For Dutch participants Dutch 

national growth charts were available. 
79

 For Italian, German, Finnish, Austrian cases (n= 6) 

height, weight and BMI Z-scores were estimated using WHO growth charts. 
80

  

To check for discrepancies generated by the use of different growth charts, height, weight and 

BMI Z-scores were recalculated using WHO growth charts, for all cases less than 5 years, 

regardless of origin (http://www.who.int/childgrowth/standards/en/
80

). Z-scores obtained 

using the WHO data were not significantly different. These growth standards, developed by 

the World Health Organization Multicentre Growth Reference Study, describe normal child 

growth from birth to 5 years under optimal environmental conditions. These standards can be 

applied to all children everywhere, regardless of ethnicity, socioeconomic status, and type of 

feeding 
81

 
82

.  

If needed, Percentile values were transformed to Z-scores by the inverse-normal density 

function.  When growth chart were unavailable we utilized reported LMS parameters (median 

(M), generalized coefficient of variation (S), and skewness (L)) to obtain Z-scores via the 

formula: 


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


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
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in which X is the genuinely observed value. 

 Adults (>18 years) 

 

When LMS parameters were unavailable we estimated them from the available sex-, age-, and 

origin-matched Swiss- (CoLaus), Estonian-, or French control populations. For cases 

identified from population based cohorts, Z-scores were directly inferred from the cohort. 

Gene expression 

We established lymphoblastoid cell lines from deletion and duplication carriers, as well as 

controls (Supplementary Table S12), by transforming peripheral blood mononuclear cells 

with EBV. Patients and controls were enrolled after obtaining appropriate informed consent 

by the physicians in charge and approval by the ethics committee of the University of 

Lausanne. More control cell lines were obtained from Coriell Institute for Medical Research 

(http://www.coriell.org/) (Supplementary Table S12). SYBR Green real-time quantitative 

polymerase chain reaction was performed as published 
29,83

. Briefly, 1g of total RNA from 

lymphoblastoid cell lines was converted to cDNA using Superscript VILO (Invitrogen) 

primed with a mix of oligo(dT) and random hexamers. Oligos were designed using the 

PrimerExpress program (Applied Biosystem) with default parameters (Supplementary Table 

S11). Non intron-spanning assays were
 
tested in standard +/– RT reactions of RNA samples 

for
 
genomic contamination. The amplification efficiency of each primer pair was tested in a 

cDNA dilution series as described 
84

. A full list of genes mapping within the rearranged 

interval and exclusion criteria are presented in Supplementary Table S1. All RT-PCR 

reactions were performed in a 10l final volume and triplicates per sample. The set up in a 

384 wells plate format was performed using a Freedom EVO robot (TECAN) and assays run 

in an ABI 7900 Sequence Detection System (Applied Biosystems)
 

with the following 

amplification conditions: 50°C for 2 min, 95°C
 
for 10 min, and 45 cycles of 95°C 15 sec/60°C 

for 1
 
min. A final incubation of 95°C for 15 sec followed by 60°C for 15 sec was carried out 

in order to establish a dissociation curve. Each plate included the appropriate
 
normalization 

genes to control for any variability between the
 
different plate runs. Raw threshold cycles (Ct) 

values were obtained using SDS2.4 (Applied Biosystems). In order to calculate the 

normalized relative expression ratio of individuals carrying the copy number variant and of 

controls, we used the Biogazelle qBase Plus software 
85

 including geNorm 
86

. This program 

identified appropriate normalization genes (EEF1A1, RPL13, GUSB and TBP) having a gene-

stability measure of M=0.25. We note that, one gene, namely LAT, showed a startlingly high 

http://www.coriell.org/
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expression profile in one of the duplication samples (DASYL, Supplementary Table S13), 

reaching a relative expression value of 27.3 (SE=1.37), compared to an average expression for 

other duplications of 1.89 (SE=0.51). Whilst at this point we cannot exclude that this finding 

is genuine (although confirmed it in a second experiment), it was excluded from further 

analyses as an outlier in order to give a more accurate overview of expression profiles for 

these genes. 

In silico analysis was performed to check for brain, and specifically hypothalamus, expression 

of genes within the rearranged 16p11.2 interval (Supplementary Table S1). This was done 

using Allen Brain Atlas Resources, Seattle (WA): Allen Institute for Brain Science. ©2009. 

Available from: http://www.brain-map.org.  

Cases with significant neurological signs 

Significant neurological signs were defined by (i) the presence of neurological signs such as 

severe hypotonia, hypertonia, ataxia, severe spasticity, hypereflexia, hyporeflexia and/or 

extra-pyramidal signs, (ii) the severity of the developmental delay (e.g. no speech at age 5 

and/or severe gross motor delay in walking acquisition >24 months); and (iii) the presence of 

epilepsy. Mental retardation, autism, psychiatric symptoms, unspecified hypotonia and mild 

spasticity were not considered. 

Statistics 

T-test 

One-sided t-test was performed to test whether duplication carriers have lower than zero BMI, 

height, weight Z-score values. We found this analysis more suitable than linear regression 

analysis correcting for confounding factors such as sex and age, because these anthropometric 

traits have a highly non-linear dependence on these factors as can be observed in control 

population.  

Kruskal-Wallis test 

We used Kruskal-Wallis to test differences in the gene expression pattern between deletion 

and duplication carriers and control individuals. Since expression values are not necessarily 

normally distributed, this test is more adequate than a classical one-way ANOVA. To test 

pairwise differences, we computed the difference in mean group rank with its 95% confidence 

http://www.brain-map.org/
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interval (as provided by the multcompare function in Matlab). Correction for multiple testing 

issues was done using a Bonferroni adjustment. 

Multiple testing 

We determined false discovery rate (FDR) based association p value thresholds for each 

phenotype to correct for multiple testing. For each phenotype we replaced the observed Z-

scores with numbers randomly drawn from a standard normal distribution and performed the 

same t-tests for the same strata. The procedure was repeated 1,000 times. For various p value 

thresholds we asked how many test would be declared significant for the null set on average 

(over the 1,000 random draws). FDR was estimated as the fraction of this number and the 

actual number we obtained for the observed Z-scores. With this approach we controlled the 

dependence between the nested tests we carried out. 

Relative risk 

Among adults, we defined (the risk of) being underweight as having BMI below 18.5. The 

estimated Relative Risk (RR) is the ratio of the fraction of underweight individuals among 

duplication carriers versus our control group. Underweight adults were defined by the WHO 

criteria (BMI ≤ 18.5). The standard error of log(RR) and its significance were calculated as 

described in 
87

. In our control group (population based cohorts), the frequency of underweight 

is 1.9% (38 males and 148 females out of 9470). 
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