]. D. Friend and N. B. Gilula, VARIATIONS IN TIGHT AND GAP JUNCTIONS IN MAMMALIAN TISSUES, The Journal of Cell Biology, vol.53, issue.3, pp.758-776, 1972.
DOI : 10.1083/jcb.53.3.758

]. S. Murray and S. Y. Pharrams, Comparison of gap junction expression in the adrenal gland, Microscopy Research and Technique, vol.262, issue.6, pp.510-519, 1997.
DOI : 10.1002/(SICI)1097-0029(19970315)36:6<510::AID-JEMT8>3.0.CO;2-L

O. Grynszpan-wynograd, G. Nicolas-]-k, T. Ishikawa, and . Kanno, Intercellular junctions in the adrenal medulla: a [7 Influences of extracellular calcium and potassium concentrations on adrenaline release and membrane potential in the perfused adrenal medulla of the rat, Jpn J Physiol, vol.28, pp.275-289, 1978.

V. Nassar-gentina, H. B. Pollard, and E. Rojas, Electrical activity in chromaffin cells of intact mouse adrenal gland, Am J Physiol, vol.254, pp.675-683, 1988.

M. E. Holman, H. A. Coleman, M. A. Tonta, and H. C. Parkington, Synaptic transmission from splanchnic nerves to the adrenal medulla of guinea-pigs., The Journal of Physiology, vol.478, issue.1, pp.478-115, 1994.
DOI : 10.1113/jphysiol.1994.sp020235

B. L. Brandt, S. Hagiwara, Y. Kidokoro, and S. Miyazaki, Action potentials in the rat chromaffin cell and effects of acetylcholine., The Journal of Physiology, vol.263, issue.3, pp.417-439, 1976.
DOI : 10.1113/jphysiol.1976.sp011638

E. M. Fenwick, A. Marty, and E. Neher, A patch-clamp study of bovine chromaffin cells and of their sensitivity to acetylcholine., The Journal of Physiology, vol.331, issue.1, pp.577-597, 1982.
DOI : 10.1113/jphysiol.1982.sp014393

. Carbone, Chronic hypoxia up-regulates alpha1H T-type channels and low-threshold catecholamine secretion in rat chromaffin cells, J Physiol, vol.584, pp.149-165, 2007.

E. Striessnig and . Carbone, Loss of Cav1.3 channels reveals the critical role of L-type and BK channel coupling in pacemaking mouse adrenal chromaffin cells, J Neurosci, vol.30, pp.491-504, 2010.

R. Ferrer, B. Soria, C. M. Dawson, I. Atwater, and E. Rojas, Effects of Zn2+ on glucoseinduced electrical activity and insulin release from mouse pancreatic islets, Am J Physiol, vol.246, pp.520-527, 1984.

S. Bonner-weir and A. A. Like, A dual population of islets of Langerhans in bovine pancreas, Cell and Tissue Research, vol.206, issue.1, pp.157-170, 1980.
DOI : 10.1007/BF00233616

P. Meda, J. F. Denef, A. Perrelet, and L. Orci, Nonrandom distribution of gap junctions between pancreatic beta-cells, Am J Physiol, vol.238, pp.114-119, 1980.

J. G. Barbara and K. Takeda, Quantal release at a neuronal nicotinic synapse from rat adrenal gland., Proceedings of the National Academy of Sciences, vol.93, issue.18, pp.9905-9909, 1996.
DOI : 10.1073/pnas.93.18.9905

J. G. Barbara, J. C. Poncer, R. A. Mckinney, and K. Takeda, An adrenal slice preparation for the study of chromaffin cells and their cholinergic innervation, Journal of Neuroscience Methods, vol.80, issue.2, pp.181-189, 1998.
DOI : 10.1016/S0165-0270(97)00200-8

R. Kajiwara, O. Sand, Y. Kidokoro, M. E. Barish, and T. Iijima, Functional Organization of Chromaffin Cells and Cholinergic Synaptic Transmission in Rat Adrenal Medulla., The Japanese Journal of Physiology, vol.47, issue.5, pp.449-464, 1997.
DOI : 10.2170/jjphysiol.47.449

D. A. Goodenough, J. A. Goliger, and D. L. Paul, Connexins, Connexons, and Intercellular Communication, Connexins, connexons, and intercellular communication, pp.475-502, 1996.
DOI : 10.1146/annurev.bi.65.070196.002355

L. Paul and . Orci, Differential expression of gap junction connexins in endocrine and exocrine glands, Endocrinology, vol.133, pp.2371-2378, 1993.

J. Eiberger, M. Kibschull, N. Strenzke, A. Schober, H. Bussow et al., Expression pattern and functional characterization of connexin29 in transgenic mice, Glia, vol.19, issue.6, pp.601-611, 2006.
DOI : 10.1002/glia.20315

C. Colomer, L. A. Olivos-ore, N. Coutry, M. N. Mathieu, S. Arthaud et al., Functional Remodeling of Gap Junction-Mediated Electrical Communication between Adrenal Chromaffin Cells in Stressed Rats, Journal of Neuroscience, vol.28, issue.26, pp.28-6616, 2008.
DOI : 10.1523/JNEUROSCI.5597-07.2008

URL : https://hal.archives-ouvertes.fr/inserm-00281272

D. F. Condorelli, R. Parenti, F. Spinella, A. Salinaro, N. Belluardo et al., Cloning of a new gap junction gene (Cx36) highly expressed in mammalian brain neurons, European Journal of Neuroscience, vol.56, issue.6521, pp.1202-1208, 1998.
DOI : 10.1046/j.1460-9568.1998.00163.x

D. F. Condorelli, N. Belluardo, A. Trovato-salinaro, and G. Mudo, Expression of Cx36 in mammalian neurons, Brain Research Reviews, vol.32, issue.1, pp.72-85, 2000.
DOI : 10.1016/S0165-0173(99)00068-5

V. Serre-beinier, S. Le-gurun, N. Belluardo, A. Trovato-salinaro, A. Charollais et al., Cx36 preferentially connects beta-cells within pancreatic islets, Diabetes, vol.49, issue.5, pp.727-734, 2000.
DOI : 10.2337/diabetes.49.5.727

J. Degen, C. Meier, R. S. Van-der-giessen, G. Sohl, E. Petrasch-parwez et al., Expression pattern of lacZ reporter gene representing connexin36 in transgenic mice, Journal of Comparative Neurology, vol.310, issue.4, pp.511-525, 2004.
DOI : 10.1002/cne.20085

H. S. Willenberg, M. Schott, W. Saeger, A. Tries, W. A. Scherbaum et al., Expression of Connexins in Chromaffin Cells of Normal Human Adrenals and in Benign and Malignant Pheochromocytomas, Annals of the New York Academy of Sciences, vol.21, issue.1, pp.578-583, 2006.
DOI : 10.1093/carcin/bgh071

W. W. Douglas and A. M. Poisner, Preferential Release of Adrenaline from the Adrenal Medulla by Muscarine and Pilocarpine, Nature, vol.138, issue.5015, pp.1102-1103, 1965.
DOI : 10.1146/annurev.pa.01.040161.001251

D. M. Gaumann, T. L. Yaksh, G. M. Tyce, and S. L. Stoddard, Adrenal vein catecholamines and neuropeptides during splanchnic nerve stimulation in cats, Peptides, vol.10, issue.3, pp.587-592, 1989.
DOI : 10.1016/0196-9781(89)90147-2

O. Grynszpan-winograd, Adrenaline and noradrenaline cells in the adrenal medulla of the hamster: a morphological study of their innervation, Journal of Neurocytology, vol.73, issue.supplementum 17, pp.341-361, 1974.
DOI : 10.1007/BF01097918

D. A. Bereiter, W. C. Engeland, and D. S. Gann, Adrenal Secretion of Epinephrine after Stimulation of Trigeminal Nucleus caudalis Depends on Stimulus Pattern, Neuroendocrinology, vol.45, issue.1, pp.54-61, 1987.
DOI : 10.1159/000124703

S. L. Edwards, C. R. Anderson, B. R. Southwell, and R. M. Mcallen, Distinct preganglionic neurons innervate noradrenaline and adrenaline cells in the cat adrenal medulla, Neuroscience, vol.70, issue.3, pp.825-832, 1996.
DOI : 10.1016/S0306-4522(96)83019-3

A. O. Martin, M. N. Mathieu, and N. C. Guerineau, Evidence for long-lasting cholinergic control of gap junctional communication between adrenal chromaffin cells, J Neurosci, vol.23, pp.3669-3678, 2003.

D. Cocchia and F. Michetti, S-100 antigen in satellite cells of the adrenal medulla and the superior cervical ganglion of the rat. An immunochemical and immunocytochemical study, Cell Tissue Res, vol.215, pp.103-112, 1981.

R. V. Lloyd, M. Blaivas, and B. S. Wilson, Distribution of chromogranin and S100 protein in normal and abnormal adrenal medullary tissues, Arch Pathol Lab Med, vol.109, pp.633-635, 1985.

B. M. Altevogt, K. A. Kleopa, F. R. Postma, S. S. Scherer, and D. L. Paul, Connexin29 is uniquely distributed within myelinating glial cells of the central and peripheral nervous systems, J Neurosci, pp.22-6458, 2002.

. Munari-silem, Cell-to-cell communication in the anterior pituitary: evidence for gap 34 junction-mediated exchanges between endocrine cells and folliculostellate cells, Endocrinology, vol.137, pp.3356-3367, 1996.

T. Fauquier, N. C. Guerineau, R. A. Mckinney, K. Bauer, and P. Mollard, Folliculostellate cell network: A route for long-distance communication in the anterior pituitary, Proceedings of the National Academy of Sciences, vol.98, issue.15, pp.98-8891, 2001.
DOI : 10.1073/pnas.151339598

J. L. Orthmann-murphy, M. Freidin, E. Fischer, S. S. Scherer, and C. K. Abrams, Two Distinct Heterotypic Channels Mediate Gap Junction Coupling between Astrocyte and Oligodendrocyte Connexins, Journal of Neuroscience, vol.27, issue.51, pp.27-13949, 2007.
DOI : 10.1523/JNEUROSCI.3395-07.2007

H. Rodriguez, V. Filippa, F. Mohamed, S. Dominguez, and L. Scardapane, Interaction between Chromaffin and Sustentacular Cells in Adrenal Medulla of Viscacha (Lagostomus maximus maximus), Anatomia, Histologia, Embryologia: Journal of Veterinary Medicine Series C, vol.70, issue.3, pp.182-185, 2007.
DOI : 10.1016/s0304-3940(02)01313-7

D. J. Anderson, Molecular Control of Cell Fate in the Neural Crest: The Sympathoadrenal Lineage, Annual Review of Neuroscience, vol.16, issue.1, pp.129-158, 1993.
DOI : 10.1146/annurev.ne.16.030193.001021

. Borges, Histogenesis and morphofunctional characteristics of chromaffin cells, Acta Physiol (Oxf), vol.192, pp.145-163, 2008.

K. Huber, The sympathoadrenal cell lineage: Specification, diversification, and new perspectives, Developmental Biology, vol.298, issue.2, pp.335-343, 2006.
DOI : 10.1016/j.ydbio.2006.07.010

S. Dhein, Gap junction channels in the cardiovascular system: pharmacological and physiological modulation, Trends in Pharmacological Sciences, vol.19, issue.6, pp.229-241, 1998.
DOI : 10.1016/S0165-6147(98)01192-4

J. A. Haefliger, P. Nicod, and P. Meda, Contribution of connexins to the function of the vascular wall, Cardiovascular Research, vol.62, issue.2, pp.345-356, 2004.
DOI : 10.1016/j.cardiores.2003.11.015

X. F. Figueroa and B. R. Duling, Gap Junctions in the Control of Vascular Function, Antioxidants & Redox Signaling, vol.11, issue.2, pp.251-266, 2009.
DOI : 10.1089/ars.2008.2117

S. Schinner and S. R. Bornstein, Cortical???Chromaffin Cell Interactions in the Adrenal Gland, Endocrine Pathology, vol.16, issue.2, pp.91-98, 2005.
DOI : 10.1385/EP:16:2:091

D. C. Spray, MOLECULAR PHYSIOLOGY OF GAP JUNCTION CHANNELS, Clinical and Experimental Pharmacology and Physiology, vol.23, issue.12, pp.1038-1040, 1996.
DOI : 10.1073/pnas.93.18.9565

J. C. Saez, V. M. Berthoud, M. C. Branes, A. D. Martinez, and E. C. Beyer, Plasma Membrane Channels Formed by Connexins: Their Regulation and Functions, Physiological Reviews, vol.83, issue.4, pp.1359-1400, 2003.
DOI : 10.1152/physrev.00007.2003

G. S. Goldberg, V. Valiunas, and P. R. Brink, Selective permeability of gap junction channels, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1662, issue.1-2, pp.96-101, 2004.
DOI : 10.1016/j.bbamem.2003.11.022

K. R. Zahs, Heterotypic coupling between glial cells of the mammalian central nervous system, Glia, vol.20, issue.1, pp.85-96, 1998.
DOI : 10.1002/(SICI)1098-1136(199809)24:1<85::AID-GLIA9>3.0.CO;2-#

B. M. Altevogt and D. L. Paul, Four Classes of Intercellular Channels between Glial Cells in the CNS, Journal of Neuroscience, vol.24, issue.18, pp.4313-4323, 2004.
DOI : 10.1523/JNEUROSCI.3303-03.2004

P. P. Mehta, Introduction: A Tribute to Cell-to-Cell Channels, Journal of Membrane Biology, vol.17, issue.1-3, pp.5-12, 2007.
DOI : 10.1007/s00232-007-9068-2

A. Hotz-wagenblatt and D. Shalloway, Gap junctional communication and neoplastic transformation, Crit Rev Oncog, vol.4, pp.541-558, 1993.

H. Yamasaki, M. Mesnil, Y. Omori, N. Mironov, and V. Krutovskikh, Intercellular communication and carcinogenesis, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.333, issue.1-2, pp.181-188, 1995.
DOI : 10.1016/0027-5107(95)00144-1

J. Czyz, The stage-specific function of gap junctions during tumourigenesis, Cell Mol Biol Lett, vol.13, pp.92-102, 2008.

L. Cronier, S. Crespin, P. O. Strale, N. Defamie, and M. , Gap Junctions and Cancer: New Functions for an Old Story, Antioxidants & Redox Signaling, vol.11, issue.2, pp.323-338, 2009.
DOI : 10.1089/ars.2008.2153

URL : https://hal.archives-ouvertes.fr/hal-00425220

M. T. Barakat, K. Meeran, S. R. Bloom, and N. Tumours, Neuroendocrine tumours, Endocrine Related Cancer, vol.11, issue.1, pp.1-18, 2004.
DOI : 10.1677/erc.0.0110001

M. M. Fung, O. H. Viveros, and D. T. Connor, Diseases of the adrenal medulla, Diseases of the adrenal medulla, pp.325-335, 2008.
DOI : 10.1111/j.1748-1716.2007.01809.x

A. S. Tischler, Pheochromocytoma and extra-adrenal paraganglioma: updates, Arch Pathol Lab Med, vol.132, pp.1272-1284, 2008.

S. J. Lu, H. Li, F. H. Zhou, J. J. Zhang, and L. X. Wang, Connexin 36 is expressed and associated with zonula occludens-1 protein in PC-12 cells, Gen Physiol Biophys, vol.26, pp.33-39, 2007.

T. J. King and P. D. Lampe, Mice deficient for the gap junction protein Connexin32 exhibit increased radiation-induced tumorigenesis associated with elevated mitogen-activated protein kinase (p44/Erk1, p42/Erk2) activation, Carcinogenesis, vol.25, issue.5, pp.669-680, 2004.
DOI : 10.1093/carcin/bgh071

P. A. Nielsen, D. L. Beahm, B. N. Giepmans, A. Baruch, J. E. Hall et al., Molecular Cloning, Functional Expression, and Tissue Distribution of a Novel Human Gap Junction-forming Protein, Connexin-31.9. INTERACTION WITH ZONA OCCLUDENS PROTEIN-1, Journal of Biological Chemistry, vol.277, issue.41, pp.38272-38283, 2002.
DOI : 10.1074/jbc.M205348200

T. J. King and P. D. Lampe, The Gap Junction Protein Connexin32 Is a Mouse Lung Tumor Suppressor, Cancer Research, vol.64, issue.20, pp.7191-7196, 2004.
DOI : 10.1158/0008-5472.CAN-04-0624

T. J. King, K. E. Gurley, J. Prunty, J. L. Shin, C. J. Kemp et al., Deficiency in the gap junction protein Connexin32 alters p27Kip1 tumor suppression and MAPK activation in a tissue-specific manner, Oncogene, vol.24, issue.10, pp.1718-1726, 2005.
DOI : 10.1038/sj.onc.1208355

M. M. Falk, Biosynthesis and structural composition of gap junction intercellular membrane channels, European Journal of Cell Biology, vol.79, issue.8, pp.564-574, 2000.
DOI : 10.1078/0171-9335-00080

R. Dermietzel, C. Meier, F. Bukauskas, and D. C. Spray, Following Tracks of Hemichannels, Cell Communication & Adhesion, vol.23, issue.4-6, pp.335-340, 2003.
DOI : 10.1002/1097-0029(20010201)52:3<251::AID-JEMT1011>3.0.CO;2-#

E. Scemes, D. C. Spray, and P. Meda, Connexins, pannexins, innexins: novel roles of ???hemi-channels???, Pfl??gers Archiv - European Journal of Physiology, vol.30, issue.25, pp.1207-1226, 2009.
DOI : 10.1007/s00424-008-0591-5

E. Scemes, Nature of plasmalemmal functional ???hemichannels???, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1818, issue.8, 2011.
DOI : 10.1016/j.bbamem.2011.06.005

S. Shagin, E. Nazarenko, O. Geraymovych, A. Litvin, T. L. Tiunova et al., The mammalian pannexin family is homologous to the invertebrate innexin gap junction proteins, Genomics, vol.83, pp.706-716, 2004.

M. R. Yen, M. H. Saier, and J. , Gap junctional proteins of animals: The innexin/pannexin superfamily, Progress in Biophysics and Molecular Biology, vol.94, issue.1-2, pp.5-14, 2007.
DOI : 10.1016/j.pbiomolbio.2007.03.006

V. I. Shestopalov and Y. Panchin, Pannexins and gap junction protein diversity, Cellular and Molecular Life Sciences, vol.65, issue.3, pp.376-394, 2008.
DOI : 10.1007/s00018-007-7200-1

C. D. Hondt, R. Ponsaerts, H. De-smedt, G. Bultynck, and B. , Pannexins, distant relatives of the connexin family with specific cellular functions?, BioEssays, vol.15, issue.9, pp.953-974, 2009.
DOI : 10.1016/j.tvjl.2008.08.011

M. V. Bennett, J. E. Contreras, F. F. Bukauskas, and J. C. Saez, New roles for astrocytes: Gap junction hemichannels have something to communicate, Trends in Neurosciences, vol.26, issue.11, pp.610-617, 2003.
DOI : 10.1016/j.tins.2003.09.008

R. P. Malchow, H. Qian, and H. Ripps, Evidence for hemi-gap junctional channels in isolated horizontal cells of the skate retina, Journal of Neuroscience Research, vol.8, issue.3, pp.237-245, 1993.
DOI : 10.1002/jnr.490350303

E. B. Trexler, M. V. Bennett, T. A. Bargiello, and V. K. Verselis, Voltage gating and permeation in a gap junction hemichannel., Proceedings of the National Academy of Sciences, vol.93, issue.12, pp.93-5836, 1996.
DOI : 10.1073/pnas.93.12.5836

L. Ebihara, New Roles for Connexons, Physiology, vol.18, issue.3, pp.100-103, 2003.
DOI : 10.1152/nips.01431.2002

D. J. Belliveau, M. Bani-yaghoub, B. Mcgirr, C. C. Naus, and W. J. Rushlow, Enhanced Neurite Outgrowth in PC12 Cells Mediated by Connexin Hemichannels and ATP, Journal of Biological Chemistry, vol.281, issue.30, pp.20920-20931, 2006.
DOI : 10.1074/jbc.M600026200

S. C. Schock, D. Leblanc, A. M. Hakim, and C. S. Thompson, ATP release by way of connexin 36 hemichannels mediates ischemic tolerance in vitro, Biochemical and Biophysical Research Communications, vol.368, issue.1, pp.138-144, 2008.
DOI : 10.1016/j.bbrc.2008.01.054

Q. V. Hoang, H. Qian, and H. Ripps, Functional analysis of hemichannels and gapjunctional channels formed by connexins 43 and 46, Mol Vis, vol.16, pp.1343-1352, 2010.

X. Fang, T. Huang, Y. Zhu, Q. Yan, Y. Chi et al., Connexin43 Hemichannels Contribute to Cadmium-Induced Oxidative Stress and Cell Injury, Connexin43 hemichannels contribute to cadmium-induced oxidative stress and cell injury, pp.2427-2439, 2011.
DOI : 10.1089/ars.2010.3150

J. A. Orellana, N. Froger, P. Ezan, J. X. Jiang, M. V. Bennett et al., ATP and glutamate released via astroglial connexin 43???hemichannels mediate neuronal death through activation of pannexin 1 hemichannels, Journal of Neurochemistry, vol.23, issue.5, pp.826-840, 2011.
DOI : 10.1111/j.1471-4159.2011.07210.x

R. Bruzzone, S. G. Hormuzdi, M. T. Barbe, A. Herb, and H. Monyer, Pannexins, a family of gap junction proteins expressed in brain, Proceedings of the National Academy of Sciences, vol.100, issue.23, pp.13644-13649, 2003.
DOI : 10.1073/pnas.2233464100

A. Vogt, S. G. Hormuzdi, and H. Monyer, Pannexin1 and Pannexin2 expression in the developing and mature rat brain, Molecular Brain Research, vol.141, issue.1, pp.113-120, 2005.
DOI : 10.1016/j.molbrainres.2005.08.002

B. A. Macvicar and R. J. Thompson, Non-junction functions of pannexin-1 channels, Trends in Neurosciences, vol.33, issue.2, pp.93-102, 2010.
DOI : 10.1016/j.tins.2009.11.007

S. Li, I. Bjelobaba, Z. Yan, M. Kucka, M. Tomic et al., Expression and Roles of Pannexins in ATP Release in the Pituitary Gland, Endocrinology, vol.152, issue.6, pp.2342-2352, 2011.
DOI : 10.1210/en.2010-1216

C. P. Lai, J. F. Bechberger, R. J. Thompson, B. A. Macvicar, R. Bruzzone et al., Naus, Tumor-suppressive effects of pannexin 1 in C6 glioma cells, Cancer Res, pp.67-1545, 2007.

R. Iglesias, G. Dahl, F. Qiu, D. C. Spray, and E. Scemes, Pannexin 1: The Molecular Substrate of Astrocyte "Hemichannels", Journal of Neuroscience, vol.29, issue.21, pp.7092-7097, 2009.
DOI : 10.1523/JNEUROSCI.6062-08.2009

C. E. Stout, J. L. Costantin, C. C. Naus, and A. C. Charles, Intercellular Calcium Signaling in Astrocytes via ATP Release through Connexin Hemichannels, Journal of Biological Chemistry, vol.277, issue.12, pp.10482-10488, 2002.
DOI : 10.1074/jbc.M109902200

F. B. Chekeni, M. R. Elliott, J. K. Sandilos, S. F. Walk, J. M. Kinchen et al., Pannexin 1 channels mediate ???find-me??? signal release and membrane permeability during apoptosis, Nature, vol.168, issue.7317, pp.863-867, 2010.
DOI : 10.1038/nature09413

Z. C. Ye, M. S. Wyeth, S. Baltan-tekkok, and B. R. Ransom, Functional hemichannels in astrocytes: a novel mechanism of glutamate release, J Neurosci, vol.23, pp.3588-3596, 2003.

S. Bruzzone, L. Guida, E. Zocchi, L. Franco, and A. D. Flora, Connexin 43 hemi channels mediate Ca2+-regulated transmembrane NAD+ fluxes in intact cells, FASEB J, pp.15-25, 2001.

S. Rana and R. Dringen, Gap junction hemichannel-mediated release of glutathione from cultured rat astrocytes, Neuroscience Letters, vol.415, issue.1, pp.45-48, 2007.
DOI : 10.1016/j.neulet.2006.12.043

. Jiang, Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin, Mol Biol Cell, vol.16, pp.3100-3106, 2005.

F. Reichsman, S. Santos, and E. W. Westhead, Two Distinct ATP Receptors Activate Calcium Entry and Internal Calcium Release in Bovine Chromaffin Cells, Journal of Neurochemistry, vol.65, issue.5, pp.2080-2086, 1995.
DOI : 10.1046/j.1471-4159.1995.65052080.x

S. J. Ennion, A. D. Powell, and E. P. Seward, Identification of the P2Y12 Receptor in Nucleotide Inhibition of Exocytosis from Bovine Chromaffin Cells, Molecular Pharmacology, vol.66, issue.3, pp.601-611, 2004.
DOI : 10.1124/mol.104.000224

. Garcia, The mechanism of calcium channel facilitation in bovine chromaffin cells, J Physiol, vol.494, pp.687-695, 1996.

K. P. Currie and A. P. Fox, ATP Serves as a Negative Feedback Inhibitor of Voltage-Gated Ca2+ Channel Currents in Cultured Bovine Adrenal Chromaffin Cells, Neuron, vol.16, issue.5, pp.1027-1036, 1996.
DOI : 10.1016/S0896-6273(00)80126-9

V. Carabelli, I. Carra, and E. Carbone, Localized Secretion of ATP and Opioids Revealed through Single Ca2+ Channel Modulation in Bovine Chromaffin Cells, Neuron, vol.20, issue.6, pp.1255-1268, 1998.
DOI : 10.1016/S0896-6273(00)80505-X

T. Ohta, T. Kai, and S. Ito, Evidence for paracrine modulation of voltage-dependent calcium channels by amperometric analysis in cultured porcine adrenal chromaffin cells, Brain Research, vol.1030, issue.2, pp.1030-183, 2004.
DOI : 10.1016/j.brainres.2004.10.006

A. Hernandez, P. Segura-chama, E. Albinana, A. Hernandez-cruz, and J. M. Hernandez-guijo, Down-Modulation of Ca2+ Channels by Endogenously Released ATP and Opioids: from the Isolated Chromaffin Cell to the Slice of Adrenal Medullae, Cellular and Molecular Neurobiology, vol.235, issue.8, pp.1209-1216, 2010.
DOI : 10.1007/s10571-010-9576-y

O. Romero, S. Figueroa, S. Vicente, M. P. Gonzalez, and M. J. Oset-gasque, Molecular mechanisms of glutamate release by bovine chromaffin cells in primary culture, Neuroscience, vol.116, issue.3, pp.817-829, 2003.
DOI : 10.1016/S0306-4522(02)00549-3

J. C. Saez, K. A. Schalper, M. A. Retamal, J. A. Orellana, K. F. Shoji et al., Cell membrane permeabilization via connexin hemichannels in living and dying cells, Experimental Cell Research, vol.316, issue.15, pp.316-2377, 2010.
DOI : 10.1016/j.yexcr.2010.05.026

H. Jiang, A. G. Zhu, M. Mamczur, J. R. Falck, K. M. Lerea et al., Stimulation of rat erythrocyte P2X7 receptor induces the release of epoxyeicosatrienoic acids, British Journal of Pharmacology, vol.71, issue.7, pp.1033-1040, 2007.
DOI : 10.1038/sj.bjp.0707311

F. Qiu and G. Dahl, A permeant regulating its permeation pore: inhibition of pannexin 1 channels by ATP, AJP: Cell Physiology, vol.296, issue.2, pp.250-255, 2009.
DOI : 10.1152/ajpcell.00433.2008

O. Litvin, A. Tiunova, Y. Connell-alberts, Y. Panchin, and A. Baranova, What is hidden in the pannexin treasure trove: the sneak peek and the guesswork, Journal of Cellular and Molecular Medicine, vol.506, issue.3, pp.613-634, 2006.
DOI : 10.1083/jcb.53.2.271

F. Cicirata and . Cicirata, Expression of pannexin2 protein in healthy and ischemized brain of adult rats, Neuroscience, vol.148, pp.653-667, 2007.

H. T. Liu, R. Z. Sabirov, and Y. Okada, Oxygen-glucose deprivation induces ATP release via maxi-anion channels in astrocytes, Purinergic Signalling, vol.119, issue.Pt 3, pp.147-154, 2008.
DOI : 10.1007/s11302-007-9077-8

W. R. Silverman, J. P. De-rivero-vaccari, S. Locovei, F. Qiu, S. K. Carlsson et al., The Pannexin 1 Channel Activates the Inflammasome in Neurons and Astrocytes, Journal of Biological Chemistry, vol.284, issue.27, pp.18143-18151, 2009.
DOI : 10.1074/jbc.M109.004804

V. Bennett and . Abudara, FGF-1 induces ATP release from spinal astrocytes in culture and opens pannexin and connexin hemichannels, Proc Natl Acad Sci U S A, vol.107, pp.22659-22664, 2010.

P. Mollard, J. M. Theler, N. Guerineau, P. Vacher, C. Chiavaroli et al., Cytosolic Ca2+ of excitable pituitary cells at resting potentials is controlled by steady 42

K. Yamagami, T. Moritoyo, M. Wakamori, and M. Sorimachi, Limited intercellular spread of spontaneous Ca2+ signals via gap junctions between mouse chromaffin cells in situ, Neuroscience Letters, vol.323, issue.2, pp.97-100, 2002.
DOI : 10.1016/S0304-3940(01)02578-2

P. Meda, The role of gap junction membrane channels in secretion and hormonal action, Journal of Bioenergetics and Biomembranes, vol.255, issue.4, pp.369-377, 1996.
DOI : 10.1007/BF02110113

Y. Munari-silem and B. Rousset, Gap junction-mediated cell-to-cell communication in endocrine glands--molecular and functional aspects: a review, European Journal of Endocrinology, vol.135, issue.3, pp.251-264, 1996.
DOI : 10.1530/eje.0.1350251

W. W. Douglas, Stimulus-secretion coupling: the concept and clues from chromaffin and other cells, British Journal of Pharmacology, vol.90, issue.suppl. 228, pp.451-474, 1968.
DOI : 10.1111/j.1476-5381.1968.tb08474.x

A. R. Wakade, Studies on secretion of catecholamines evoked by acetylcholine or transmural stimulation of the rat adrenal gland., The Journal of Physiology, vol.313, issue.1, pp.313-463, 1981.
DOI : 10.1113/jphysiol.1981.sp013676

M. Weinstock, M. Razin, D. Schorer-apelbaum, D. Men, and R. Mccarty, Gender differences in sympathoadrenal activity in rats at rest and in response to footshock stress, International Journal of Developmental Neuroscience, vol.16, issue.3-4, pp.289-295, 1998.
DOI : 10.1016/S0736-5748(98)00021-5

T. Petrocelli and S. J. Lye, Regulation of transcripts encoding the myometrial gap junction protein, connexin-43, by estrogen and progesterone, Endocrinology, vol.133, pp.284-290, 1993.

K. Shinohara, T. Funabashi, T. J. Nakamura, and F. Kimura, Effects of estrogen and progesterone on the expression of connexin-36 mRNA in the suprachiasmatic nucleus of female rats, Neuroscience Letters, vol.309, issue.1, pp.37-40, 2001.
DOI : 10.1016/S0304-3940(01)02022-5

M. Gulinello and A. M. Etgen, Sexually dimorphic hormonal regulation of the gap junction protein, CX43, in rats and altered female reproductive function in CX43+/??? mice, Brain Research, vol.1045, issue.1-2, pp.1045-107, 2005.
DOI : 10.1016/j.brainres.2005.03.021

E. Knipper and . Carbone, Ca(v)1.3 and BK channels for timing and regulating cell firing, Mol Neurobiol, vol.42, pp.185-198, 2010.

N. C. Guerineau and M. G. Desarmenien, Developmental and Stress-Induced Remodeling of Cell???Cell Communication in the Adrenal Medullary Tissue, Cellular and Molecular Neurobiology, vol.54, issue.8, pp.1425-1431, 2010.
DOI : 10.1007/s10571-010-9583-z

URL : https://hal.archives-ouvertes.fr/inserm-00534622

A. O. Martin, G. Alonso, and N. C. Guerineau, Agrin mediates a rapid switch from electrical coupling to chemical neurotransmission during synaptogenesis, The Journal of Cell Biology, vol.9, issue.3, pp.503-514, 2005.
DOI : 10.1074/jbc.M309652200

URL : https://hal.archives-ouvertes.fr/hal-00017507

C. Colomer, C. Lafont, and N. C. Guerineau, Stress-induced Intercellular Communication Remodeling in the Rat Adrenal Medulla, Annals of the New York Academy of Sciences, vol.307, issue.1, pp.106-111, 2008.
DOI : 10.1196/annals.1410.040

T. A. Slotkin and F. J. Seidler, Adrenomedullary catecholamine release in the fetus and newborn: secretory mechanisms and their role in stress and survival, J Dev Physiol, vol.10, pp.1-16, 1988.

F. J. Seidler and T. A. Slotkin, Adrenomedullary function in the neonatal rat: responses to acute hypoxia., The Journal of Physiology, vol.358, issue.1, pp.1-16, 1985.
DOI : 10.1113/jphysiol.1985.sp015536

F. J. Seidler and T. A. Slotkin, Non-neurogenic adrenal catecholamine release in the neonatal rat: Exocytosis or diffusion?, Developmental Brain Research, vol.28, issue.2, pp.274-277, 1986.
DOI : 10.1016/0165-3806(86)90031-3

D. J. Keating, G. Y. Rychkov, P. Giacomin, and M. L. Roberts, Oxygen-sensing pathway for SK channels in the ovine adrenal medulla, Clinical and Experimental Pharmacology and Physiology, vol.868, issue.10, pp.882-887, 2005.
DOI : 10.1007/s00424-002-0853-6

R. Bournaud, J. Hidalgo, H. Yu, E. Girard, and T. Shimahara, Catecholamine secretion from rat foetal adrenal chromaffin cells and hypoxia sensitivity, Pfl??gers Archiv - European Journal of Physiology, vol.556, issue.1, pp.83-92, 2007.
DOI : 10.1007/s00424-006-0185-z

URL : https://hal.archives-ouvertes.fr/hal-00120330

C. A. Nurse, J. Buttigieg, S. Brown, and A. C. Holloway, Regulation of Oxygen Sensitivity in Adrenal Chromaffin Cells, Annals of the New York Academy of Sciences, vol.29, issue.1, pp.132-139, 2009.
DOI : 10.1111/j.1749-6632.2009.05031.x

S. T. Brown, J. Buttigieg, and C. A. Nurse, Divergent roles of reactive oxygen species in the responses of perinatal adrenal chromaffin cells to hypoxic challenges, Respiratory Physiology & Neurobiology, vol.174, issue.3, pp.252-258, 2010.
DOI : 10.1016/j.resp.2010.08.020

A. J. Rico, J. Prieto-lloret, C. Gonzalez, and R. , Hypoxia and acidosis increase the secretion of catecholamines in the neonatal rat adrenal medulla: an in vitro study, AJP: Cell Physiology, vol.289, issue.6, pp.1417-1425, 2005.
DOI : 10.1152/ajpcell.00023.2005

N. Mochizuki-oda, Y. Takeuchi, K. Matsumura, Y. Oosawa, and Y. Watanabe, Hypoxiainduced catecholamine release and intracellular Ca2+ increase via suppression of K+ channels in cultured rat adrenal chromaffin cells, J Neurochem, pp.69-377, 1997.

R. J. Thompson, J. Buttigieg, M. Zhang, and C. A. , A rotenone-sensitive site and H2O2 are key components of hypoxia-sensing in neonatal rat adrenomedullary chromaffin cells, Neuroscience, vol.145, issue.1, pp.130-141, 2007.
DOI : 10.1016/j.neuroscience.2006.11.040

J. Buttigieg, S. T. Brown, M. Lowe, M. Zhang, and C. A. , Functional mitochondria are required for O2 but not CO2 sensing in immortalized adrenomedullary chromaffin cells, AJP: Cell Physiology, vol.294, issue.4, pp.945-956, 2008.
DOI : 10.1152/ajpcell.00495.2007

R. J. Thompson, A. Jackson, and C. A. Nurse, Developmental loss of hypoxic chemosensitivity in rat adrenomedullary chromaffin cells., The Journal of Physiology, vol.498, issue.2, pp.503-510, 1997.
DOI : 10.1113/jphysiol.1997.sp021876

Y. Takeuchi, N. Mochizuki-oda, H. Yamada, K. Kurokawa, and Y. Watanabe, Nonneurogenic Hypoxia Sensitivity in Rat Adrenal Slices, Nonneurogenic hypoxia sensitivity in rat adrenal slices, pp.51-56, 2001.
DOI : 10.1006/bbrc.2001.5913

K. L. Levitsky and J. Lopez-barneo, channel expression and its role in rat chromaffin cell responsiveness to acute hypoxia, The Journal of Physiology, vol.15, issue.9, pp.1917-1929, 2009.
DOI : 10.1113/jphysiol.2009.168989

J. C. Saez, J. A. Connor, D. C. Spray, and M. V. Bennett, Hepatocyte gap junctions are permeable to the second messenger, inositol 1,4,5-trisphosphate, and to calcium ions., Proceedings of the National Academy of Sciences, vol.86, issue.8, pp.2708-2712, 1989.
DOI : 10.1073/pnas.86.8.2708

T. Toyofuku, M. Yabuki, K. Otsu, T. Kuzuya, M. Hori et al., Intercellular Calcium Signaling via Gap Junction in Connexin-43-transfected Cells, Journal of Biological Chemistry, vol.273, issue.3, pp.1519-1528, 1998.
DOI : 10.1074/jbc.273.3.1519

D. B. Alexander and G. S. Goldberg, Transfer of Biologically Important Molecules Between Cells Through Gap Junction Channels, Current Medicinal Chemistry, vol.10, issue.19, pp.2045-2058, 2003.
DOI : 10.2174/0929867033456927

D. B. Cowan, M. Jones, L. M. Garcia, S. Noria, P. J. Del-nido et al., Hypoxia and Stretch Regulate Intercellular Communication in Vascular Smooth Muscle Cells Through Reactive Oxygen Species Formation, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.23, issue.10, pp.1754-1760, 2003.
DOI : 10.1161/01.ATV.0000093546.10162.B2

B. L. Upham and J. E. Trosko, Oxidative-Dependent Integration of Signal Transduction with Intercellular Gap Junctional Communication in the Control of Gene Expression, Antioxidants & Redox Signaling, vol.11, issue.2, pp.297-307, 2009.
DOI : 10.1089/ars.2008.2146

M. Garcia-fernandez, R. Mejias, and J. Lopez-barneo, Developmental changes of chromaffin cell secretory response to hypoxia studied in thin adrenal slices, Pfl??gers Archiv - European Journal of Physiology, vol.25, issue.1, pp.93-100, 2007.
DOI : 10.1007/s00424-006-0186-y

F. J. Seidler and T. A. Slotkin, Ontogeny of adrenomedullary responses to hypoxia and hypoglycemia: Role of splanchnic innervation, Brain Research Bulletin, vol.16, issue.1, pp.11-14, 1986.
DOI : 10.1016/0361-9230(86)90005-5

K. D. Walton and R. Navarrete, Postnatal changes in motoneurone electrotonic coupling studied in the in vitro rat lumbar spinal cord., The Journal of Physiology, vol.433, issue.1, pp.283-305, 1991.
DOI : 10.1113/jphysiol.1991.sp018426

K. Kandler and L. C. Katz, Neuronal coupling and uncoupling in the developing nervous system, Current Opinion in Neurobiology, vol.5, issue.1, pp.98-105, 1995.
DOI : 10.1016/0959-4388(95)80093-X

C. C. Naus and M. Bani-yaghoub, GAP JUNCTIONAL COMMUNICATION IN THE DEVELOPING CENTRAL NERVOUS SYSTEM, Cell Biology International, vol.22, issue.11-12, pp.751-763, 1998.
DOI : 10.1006/cbir.1998.0391

Q. Chang, M. Gonzalez, M. J. Pinter, and R. J. Balice-gordon, Gap junctional coupling and patterns of connexin expression among neonatal rat lumbar spinal motor neurons, J Neurosci, vol.19, pp.10813-10828, 1999.

T. M. Szabo, D. S. Faber, and M. J. Zoran, Transient Electrical Coupling Delays the Onset of Chemical Neurotransmission at Developing Synapses, Journal of Neuroscience, vol.24, issue.1, pp.112-120, 2004.
DOI : 10.1523/JNEUROSCI.4336-03.2004

T. M. Szabo and M. J. Zoran, Transient electrical coupling regulates formation of neuronal networks, Brain Research, vol.1129, pp.1129-63, 2007.
DOI : 10.1016/j.brainres.2006.09.112

K. Kandler, Coordination of neuronal activity by gap junctions in the developing neocortex, Seminars in Cell & Developmental Biology, vol.8, issue.1, pp.43-51, 1997.
DOI : 10.1006/scdb.1996.0120

K. E. Personius and R. J. Balice-gordon, Loss of Correlated Motor Neuron Activity during Synaptic Competition at Developing Neuromuscular Synapses, Neuron, vol.31, issue.3, pp.395-408, 2001.
DOI : 10.1016/S0896-6273(01)00369-5

E. Dupont, I. L. Hanganu, W. Kilb, S. Hirsch, and H. J. Luhmann, Rapid developmental switch in the mechanisms driving early cortical columnar networks, Nature, vol.171, issue.7072, pp.79-83, 2006.
DOI : 10.1038/nature04264

A. O. Martin, G. Alonso, and N. C. Guerineau, Un nouveau r??le pour l???agrine dans la r??gulation des communications intercellulaires au cours de la synaptogen??se, m??decine/sciences, vol.21, issue.11, pp.913-915, 2005.
DOI : 10.1051/medsci/20052111913

H. Arumugam, X. Liu, P. J. Colombo, R. A. Corriveau, and A. B. Belousov, NMDA receptors regulate developmental gap junction uncoupling via CREB signaling, Nature Neuroscience, vol.276, issue.12, pp.1720-1726, 2005.
DOI : 10.1038/nn1588

G. Z. Mentis, E. Diaz, L. B. Moran, and R. Navarrete, Increased incidence of gap junctional coupling between spinal motoneurones following transient blockade of NMDA receptors in neonatal rats, The Journal of Physiology, vol.10, issue.98P, pp.544-757, 2002.
DOI : 10.1113/jphysiol.2002.028159

M. Smith and A. E. Pereda, Chemical synaptic activity modulates nearby electrical synapses, Proceedings of the National Academy of Sciences, vol.100, issue.8, pp.4849-4854, 2003.
DOI : 10.1073/pnas.0734299100

A. M. Pastor, G. Z. Mentis, R. R. De-la-cruz, E. Diaz, and R. Navarrete, Increased Electrotonic Coupling in Spinal Motoneurons After Transient Botulinum Neurotoxin Paralysis in the Neonatal Rat, Journal of Neurophysiology, vol.89, issue.2, pp.793-805, 2003.
DOI : 10.1152/jn.00498.2002

C. E. Landisman and B. W. Connors, Long-Term Modulation of Electrical Synapses in the Mammalian Thalamus, Science, vol.310, issue.5755, pp.1809-1813, 2005.
DOI : 10.1126/science.1114655

R. Kvetnansky, C. L. Sun, C. R. Lake, N. Thoa, T. Torda et al., Effect of Handling and Forced Immobilization on Rat Plasma Levels of Epinephrine, Norepinephrine, and Dopamine-??-Hydroxylase, Endocrinology, vol.103, issue.5, pp.1868-1874, 1978.
DOI : 10.1210/endo-103-5-1868

. Guerineau, Functional characterization of alpha9-containing cholinergic nicotinic receptors in the rat adrenal medulla: implication in stress-induced functional plasticity, J Neurosci, vol.30, pp.6732-6742, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00483826

C. B. Collares-buzato, A. R. Leite, and A. C. Boschero, Modulation of Gap and Adherens Junctional Proteins in Cultured Neonatal Pancreatic Islets, Pancreas, vol.23, issue.2, pp.177-185, 2001.
DOI : 10.1097/00006676-200108000-00008

A. R. Leite, C. P. Carvalho, A. G. Furtado, H. C. Barbosa, A. C. Boschero et al., Co-expression and regulation of connexins 36 and 43 in cultured neonatal rat pancreatic islets, Canadian Journal of Physiology and Pharmacology, vol.83, issue.2, pp.142-151, 2005.
DOI : 10.1139/y04-133

D. S. Goldstein and I. J. Kopin, Evolution of concepts of stress, Stress, vol.247, issue.2, pp.109-120, 2007.
DOI : 10.1172/JCI109429

. Eiden, Pituitary adenylate cyclase-activating polypeptide is a sympathoadrenal neurotransmitter involved in catecholamine regulation and glucohomeostasis, Proc Natl Acad Sci U S A, vol.99, pp.461-466, 2002.

B. A. Kuri, S. A. Chan, and C. B. Smith, PACAP regulates immediate catecholamine release from adrenal chromaffin cells in an activity-dependent manner through a protein kinase C-dependent pathway, Journal of Neurochemistry, vol.182, issue.Pt 2, pp.110-1214, 2009.
DOI : 10.1111/j.1471-4159.2009.06206.x

N. Stroth and L. E. Eiden, Stress hormone synthesis in mouse hypothalamus and adrenal gland triggered by restraint is dependent on pituitary adenylate cyclase-activating polypeptide signaling, Neuroscience, vol.165, issue.4, pp.1025-1030, 2010.
DOI : 10.1016/j.neuroscience.2009.11.023

R. Kvetnansky, E. L. Sabban, and M. Palkovits, Catecholaminergic Systems in Stress: Structural and Molecular Genetic Approaches, Physiological Reviews, vol.89, issue.2, pp.535-606, 2009.
DOI : 10.1152/physrev.00042.2006

E. Maubert, G. Tramu, D. Croix, J. C. Beauvillain, and J. P. Dupouy, Co-localization of vasoactive intestinal polypeptide and neuropeptide Y immunoreactivities in the nerve fibers of the rat adrenal gland, Neuroscience Letters, vol.113, issue.2, pp.113-121, 1990.
DOI : 10.1016/0304-3940(90)90290-P

T. D. Wakade, M. A. Blank, R. K. Malhotra, R. Pourcho, and A. R. Wakade, The peptide VIP is a neurotransmitter in rat adrenal medulla: physiological role in controlling catecholamine secretion., The Journal of Physiology, vol.444, issue.1, pp.444-349, 1991.
DOI : 10.1113/jphysiol.1991.sp018882

X. Guo and A. R. Wakade, Differential secretion of catecholamines in response to peptidergic and cholinergic transmitters in rat adrenals., The Journal of Physiology, vol.475, issue.3, pp.475-539, 1994.
DOI : 10.1113/jphysiol.1994.sp020092

P. D. Marley, J. Mcleod, C. Anderson, and K. A. Thomson, Nerves containing nitric oxide synthase and their possible function in the control of catecholamine secretion in the bovine adrenal medulla, Journal of the Autonomic Nervous System, vol.54, issue.3, pp.184-194, 1995.
DOI : 10.1016/0165-1838(95)00013-N

H. Zimmermann, Signalling via ATP in the nervous system, Trends in Neurosciences, vol.17, issue.10, pp.420-426, 1994.
DOI : 10.1016/0166-2236(94)90016-7

R. K. Malhotra and A. R. Wakade, Non-cholinergic component of rat splanchnic nerves predominates at low neuronal activity and is eliminated by naloxone., The Journal of Physiology, vol.383, issue.1, pp.639-652, 1987.
DOI : 10.1113/jphysiol.1987.sp016434

A. Ngezahayo and H. A. Kolb, Regulation of gap junctional coupling in isolated pancreatic acinar cell pairs by cholecystokinin-octapeptide, vasoactive intestinal peptide (VIP) and a VIP-antagonist, The Journal of Membrane Biology, vol.139, issue.2, pp.127-136, 1994.
DOI : 10.1007/BF00232431

B. Rorig and B. Sutor, Regulation of gap junction coupling in the developing neocortex, Molecular Neurobiology, vol.366, issue.3, pp.225-249, 1996.
DOI : 10.1007/BF02755590

W. H. Baldridge, D. I. Vaney, and R. Weiler, The modulation of intercellular coupling in the retina, Seminars in Cell & Developmental Biology, vol.9, issue.3, pp.311-318, 1998.
DOI : 10.1006/scdb.1998.0235

M. Ehrhart-bornstein and S. R. Bornstein, Cross-talk between Adrenal Medulla and Adrenal Cortex in Stress, Annals of the New York Academy of Sciences, vol.78, issue.1, pp.112-117, 2008.
DOI : 10.1196/annals.1410.053

M. Haase, H. S. Willenberg, and S. R. Bornstein, Update on the corticomedullary interaction in the adrenal gland, Endocr Dev, vol.20, pp.28-37, 2011.

S. R. Bornstein and M. Ehrhart-bornstein, Ultrastructural evidence for a paracrine regulation of the rat adrenal cortex mediated by the local release of catecholamines from chromaffin cells, Endocrinology, vol.131, pp.3126-3128, 1992.

L. A. Pohorecky, R. S. Piezzi, and R. J. Wurtman, Steroid Induction of Phenylethanolamine-N-methyl Transferase in Adrenomedullary Explants: Independence of Adrenal Innervation, Endocrinology, vol.86, issue.6, pp.1466-1468, 1970.
DOI : 10.1210/endo-86-6-1466

B. M. Egan, Neurogenic Mechanisms Initiating Essential Hypertension, American Journal of Hypertension, vol.2, issue.12_Pt_2, pp.357-362, 1989.
DOI : 10.1093/ajh/2.12.357S

G. Hilaire, Endogenous noradrenaline affects the maturation and function of the respiratory network: Possible implication for SIDS, Autonomic Neuroscience, vol.126, issue.127, pp.126-127, 2006.
DOI : 10.1016/j.autneu.2006.01.021

URL : https://hal.archives-ouvertes.fr/hal-00300417

N. J. Christensen and E. W. Jensen, Effect of psychosocial stress and age on plasma norepinephrine levels: a review., Psychosomatic Medicine, vol.56, issue.1, pp.77-83, 1994.
DOI : 10.1097/00006842-199401000-00010

R. E. Coupland, Electron microscopic observations on the structure of the rat adrenal medulla: II. Normal innervation, J Anat, vol.99, pp.255-272, 1965.

T. Akiyama, T. Yamazaki, H. Mori, and K. Sunagawa, Simultaneous monitoring of acetylcholine and catecholamine release in the in vivo rat adrenal medulla, Neurochemistry International, vol.44, issue.7, pp.497-503, 2004.
DOI : 10.1016/j.neuint.2003.09.001

C. Colomer, M. G. Desarmenien, and N. C. Guerineau, Revisiting the Stimulus-Secretion Coupling in the Adrenal Medulla: Role of Gap Junction-Mediated Intercellular Communication, Molecular Neurobiology, vol.44, issue.Suppl, pp.40-87, 2009.
DOI : 10.1007/s12035-009-8073-0

URL : https://hal.archives-ouvertes.fr/inserm-00398108