# Supplementary Materials for the paper: Dynamical modeling of microRNA action on the protein translation process 

Andrei Zinovyev ${ }^{1,2,3, *}$, Nadezhda Morozova ${ }^{4}$, Nora Nonne ${ }^{4}$<br>Emmanuel Barillot ${ }^{1,2,3}$, Annick Harel-Bellan ${ }^{4}$, Alexander Gorban ${ }^{5}$<br>${ }^{1}$ Institut Curie, S ervice Bioinformatique, Paris,France<br>${ }^{2}$ INSERM, U900, Paris, F-75248 France<br>${ }^{3}$ Ecole des Mines de Paris, ParisTech, Fontainebleau, France<br>${ }^{4}$ CNRS FRE 2944, Institut André Lwoff, Villejuif, France<br>${ }^{5}$ University of Leicester, UK<br>* Correspondent author e-mail: andrei.zinovyev@curie.fr

September 25, 2009

## 1 Analytical analysis of the case of very inefficient cap structure

We analyze the system of equations

$$
\left\{\begin{array}{l}
\frac{d[40 S]}{d t}=-k_{1}[40 S][e I F 4 F]+k_{4}[80 S]  \tag{1}\\
\frac{d[e I F 4 F]}{d t}=-k_{1}[40 S][e I F 4 F]+k_{2}[m R N A: 40 S] \\
\frac{d[m R N A: 40 S]}{d t}=k_{1}[40 S][e I F 4 F]-k_{2}[m R N A: 40 S] \\
\frac{d[A U G]}{d t}=k_{2}[m R N A: 40 S]-k_{3}[A U G][60 S] \\
\frac{d[60 S]}{d t}=-k_{3}[A U G][60 S]+k_{4}[80 S] \\
\frac{d[80 S]}{d t}=k_{3}[A U G][60 S]-k_{4}[80 S] \\
\operatorname{Prsynth}(t)=k_{3}[A U G][60 S]
\end{array}\right.
$$

with the following assumptions on the model parameters:

$$
\begin{equation*}
k_{1} \ll k_{4} \ll k_{2} \ll k_{3} ;[e I F 4 F]_{0} \ll[40 S]_{0} ;[e I F 4 F]_{0}<[60 S]_{0}<[40 S]_{0} \tag{2}
\end{equation*}
$$

First of all, notice that, generally speaking, it is not eligible to compare the some parameters $k_{i}$ : $k_{1}$ and $k_{3}$ has $\frac{1}{\text { sec_moles }}$ dimensionality while $k_{2}$ and $k_{4}$ are $\frac{1}{\sec }$. So instead of comparing $k_{1}$ and $k_{4}$, for example, one should rather compare, for example, $k_{1}[e I F 4 F]_{0}$ and $k_{4}$. To facilitate this task, we explicitly consider that $[e I F 4 F]_{0}$ is on the order of $10^{0}$ in our model, $[60 S]_{0}$ is at the order of $10^{1}$ and $[40 S]_{0}$ at $10^{2}$.

### 1.1 Approximate steady state solution

From the conservation laws

$$
\begin{gather*}
{[m R N A: 40 S]+[40 S]+[A U G]+[80 S]=[40 S]_{0}}  \tag{3}\\
{[m R N A: 40 S]+[e I F 4 F]=[e I F 4 F]_{0},}  \tag{4}\\
{[60 S]+[80 S]=[60 S]_{0}} \tag{5}
\end{gather*}
$$

and the steady state condition

$$
\begin{equation*}
k_{2} \cdot[m R N A: 40 S]_{s}=k_{3} \cdot[A U G]_{s} \cdot[60 S]_{s}=k_{4} \cdot[80 S]_{s}=k_{1} \cdot[40 S]_{s} \cdot[e I F 4 F]_{s}, \tag{6}
\end{equation*}
$$

we can derive

$$
\begin{align*}
& {[m R N A: 40 S]_{s}=\frac{k_{4}}{k_{2}}[60 S]_{0}(1-x),[A U G]_{s}=\frac{k_{4}}{k_{3}}\left(\frac{1-x}{x}\right),} \\
& {[e I F 4 F]_{s}=[e I F 4 F]_{0}-\frac{k_{4}}{k_{2}}[60 S]_{0}(1-x),}  \tag{7}\\
& {[60 S]_{s}=[60 S]_{0} x,[80 S]_{s}=[60 S]_{0}(1-x),} \\
& {[40 S]_{s}=[40 S]_{0}-[60 S]_{0}(1-x)\left(1+\frac{k_{4}}{k_{2}}\right)-\frac{k_{4}}{k_{3}}\left(\frac{1-x}{x}\right)}
\end{align*}
$$

where $x=\frac{[60 S]_{s}}{[60 S]_{0}}$ is the fraction of $60 S$ in the free (unbound to mRNA) state.
Using (6) and (7) we obtain an equation on $x$ :

$$
\begin{align*}
& x^{3}+ \\
& +x^{2}\left(\alpha+(\delta-1)+(\beta-1)+\frac{[e I F 4 F]_{0}}{[60 S]_{0}}\right) \frac{1}{1+k_{4} / k_{2}}+ \\
& +x\left(-\alpha+(\delta-1)(\beta-1)+\frac{[e I F 4 F]_{0}}{[60 S]_{0}}\left(-1-2 \frac{k_{4}}{k_{3}[e I F 4 F]_{0}}+\frac{k_{2}}{k_{3}[60 S]_{0}}+\frac{k_{4}}{k_{2}[e I F 4 F]_{0}}\right)\right) \frac{1}{1+k_{4} / k_{2}}+ \\
& +\gamma(1-\beta)=0, \\
& \alpha=\frac{k_{2}}{k_{1}[60 S]_{0}}, \beta=\frac{[e I F 4 F]_{0} k_{2}}{[60 S]_{0} k_{4}}, \gamma=\frac{k_{4}}{k_{3}[60 S]_{0}}, \delta=\frac{[40 S]_{0}}{[60 S]_{0}} \tag{8}
\end{align*}
$$

Having in mind $k_{4} \ll k_{2}$ and assuming that $[e I F 4 F]_{0} /[60 S]_{0}$ is sufficiently small, we simplify it to

$$
\begin{equation*}
x^{3}+x^{2}(\alpha+(\delta-1)+(\beta-1))+x(-\alpha+(\delta-1)(\beta-1))+\gamma(1-\beta)=0, \tag{9}
\end{equation*}
$$

From the inequalities on the parameters of the model, we have $\delta>1, \gamma \ll 1$, the constant term $\gamma(1-\beta)$ of the equation (9) should be much smaller than the other polynomial coefficients, and the equation (9) should have one solution close to zero and two others:

$$
\begin{align*}
& x_{0} \approx \frac{\gamma(\beta-1)}{-\alpha+(\beta-1)(\delta-1)} \\
& x_{1}=\frac{1}{2}\left(-(\alpha+\beta+\delta)+2+\sqrt{(\alpha+\beta+\delta)^{2}-4 \beta \delta}\right)  \tag{10}\\
& x_{2}=\frac{1}{2}\left(-(\alpha+\beta+\delta)+2-\sqrt{(\alpha+\beta+\delta)^{2}-4 \beta \delta}\right)
\end{align*}
$$

If $k_{1} \gg k_{4} /[e I F 4 F]_{0}$ then we have a situation already solved in the main body of the paper. Let us consider the opposite situation, when $k_{1} \ll k_{4} /[e I F 4 F]_{0}$. In this case $\alpha \gg \beta+\delta$ and

$$
\begin{align*}
& x_{0} \approx \frac{\gamma(\beta-1)}{-\alpha}=\frac{k_{1} k_{4}}{k_{3} k_{2}}-\frac{k_{1}[e I F 4 F]_{0}}{k_{3}[60 S]_{0}} \\
& x_{1} \approx 1-\frac{\beta \delta}{\alpha}=1-\frac{k_{1}[e I F 4 F]_{0}[40 S]_{0}}{k_{4}[60 S]_{0}}  \tag{11}\\
& x_{2} \approx-\alpha<0
\end{align*}
$$

If $\alpha \gg \beta+\delta$ then the solution of the model can be approximated by the dominant system from Fig. 5 of the main body of the paper, Stage 1:

$$
\begin{align*}
& {\left[\begin{array}{l}
{[e I F 4 F](t)} \\
{[m R N A: 40 S](t)} \\
{[A U G](t)} \\
{[80 S]}
\end{array}\right]} \\
& =\frac{[e I F 4 F]_{0}}{\frac{1}{k_{1}^{\prime}}+\frac{1}{k_{2}}}\left(\left[\begin{array}{l}
1 / k_{1}^{\prime} \\
1 / k_{2} \\
1 / k_{3}^{\prime} \\
1 / k_{4}
\end{array}\right]+\frac{1}{k_{2}}\left[\begin{array}{l}
1 \\
-1 \\
0 \\
\frac{k_{2}}{k_{1}^{\prime}+k_{2}}
\end{array}\right] e^{-\left(k_{1}^{\prime}+k_{2}\right) t}-\left(\frac{1}{k_{4}}+\frac{1}{k_{1}^{\prime}+k_{2}}\right)\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] e^{-k_{4} t}\right) \tag{12}
\end{align*}
$$

and $[60 S]=[60 S]_{0},[40 S]=[40 S]_{0}$. This solution is valid on the interval $\left[0 ; t^{\prime}\right], t^{\prime}=\frac{1}{k_{1}^{\prime}+k_{2}}+\frac{[60 S]_{0}}{10[\text { elF4F }]_{0}}\left(\frac{1}{k_{1}^{\prime}}+\right.$ $\left.\frac{1}{k_{2}}\right)$. Following the recipe from the main body of the paper, after this moment it can be prolonged with quasiequilibrium approximation:

$$
\begin{align*}
& A=\frac{[e I F 4 F]_{0}}{k_{4}\left(\frac{1}{k_{1}^{\prime}}+\frac{1}{k_{2}}\right)} \\
& {[80 S](t)=\frac{[60 S]_{0}}{10}+A\left(1-e^{-k_{4}\left(t-t^{\prime}\right)}\right),[40 S](t)=\frac{[40 S]_{0}-[80 S](t)}{1+\frac{k_{1}^{\prime}}{k_{2}}[e I F 4 F]_{0}},[60 S](t)=[60 S]_{0}-[80 S](t),}  \tag{13}\\
& {[e I F 4 F](t)=\frac{k_{2} \cdot[e I F 4 F]_{0}}{k_{1}[40 S](t)},[m R N A: 40 S](t)=\frac{k_{1}[40 S](t)[e I F 4 F]_{0}}{k_{2}},} \\
& {[A U G](t)=\frac{[e I F 4 F]_{0}}{\left(\frac{1}{k_{1}^{\prime}}+\frac{1}{k_{2}}\right) k_{3}\left([60 S]_{0}-[80 S](t)\right)}}
\end{align*} .
$$

Formulas (12-13) completely describes the dynamics of the system in the case $k_{1} \ll k_{4} /[\text { eIF4F] }]_{0}$. However, if $\alpha \approx \beta+\delta$ (i.e., when $k_{1} \approx k_{4} /[e I F 4 F]_{0}$ ) then an other dominant system approximates the last stage of relaxation, when $[60 S](t)$ becomes much smaller than $[A U G](t)$. Here the same quasi steadystate asymptotic as in the main body of the paper (Stage 2) is valid (see formula (42-44) of the main text). This completes the analysis of the system behaviour in the case when $k_{1}$ is relatively small with respect to other parameters. On the Fig. 1 one can see the comparison of these solutions with numerical simulations.


Figure 1: a) Simulation of the non-linear protein translation model with parameters $k_{1}=0.001, k_{2}=3$, $k_{3}=50, k_{4}=0.1,[40 S]_{0}=100,[60 S]_{0}=25,[e I F 4 F]_{0}=6$. b) Same as a) but $k_{1}=0.01$. Circles represent the numerical simulation while solid lines gives the analytical solution.

