Simulation of a SEIR infectious disease model on the dynamic contact network of conference attendees

Additional file 1 – Supporting text.

Juliette Stehlé¹, Nicolas Voirin^{2,3§}, Alain Barrat^{1,4}, Ciro Cattuto⁴, Vittoria Colizza^{5,6,7}, Lorenzo Isella⁴, Corinne Régis³, Jean-François Pinton⁸, Nagham Khanafer^{2,3}, Wouter Van den Broeck⁴ and Philippe Vanhems^{2,3}

¹Centre de Physique Théorique de Marseille, CNRS UMR 6207, Marseille, France

²Hospices Civils de Lyon, Hôpital Edouard Herriot, Service d'Hygiène, Epidémiologie et Prévention, Lyon, France

³Université de Lyon; université Lyon 1; CNRS UMR 5558, laboratoire de Biométrie et de Biologie Evolutive, Equipe Epidémiologie et Santé Publique, Lyon, France

⁴Data Science Laboratory, Institute for Scientific Interchange (ISI) Foundation, Torino, Italy

⁵ INSERM, U707, Paris F-75012, France

⁶ UPMC Université Paris 06, Faculté de Médecine Pierre et Marie Curie, UMR S 707, Paris F75012, France

⁷Computational Epidemiology Laboratory, Institute for Scientific Interchange (ISI) Foundation, Torino, Italy

⁸Laboratoire de Physique de l'Ecole Normale Supérieure de Lyon, CNRS UMR 5672, Lyon, France [§]Corresponding author

Description of the data extension procedure 'CONSTR-SH'.

The data describes a list of contact events between pairs of individuals. Upon reshuffling of two tag identities, for instance of tags *i* and *j*, an artificial data set is generated such that each time the tag *i* was in contact with another tag, say with *k*, from time t_0 to time t_1 , in the real data, the contact is replaced by a contact between *j* and *k* between times t_0 and t_1 .

As explained in the main text, the empirical data set allows constructing daily aggregated contact networks. Let us denote by f_{emp} the observed average fraction of repeated contacts from one day to the next: for each individual *i*, one considers the set $V(i,1)=\{j_1,j_2,...\}$ of individuals with whom *i* has had a contact on day 1, and $V(i,2)=\{k_1,k_2,...\}$ with whom he or she has had a contact on day 1. The fraction f_{emp} is then the average over all individuals of the ratio between the size of the intersection of V(i,1) and V(i,2), and the size of V(i,1). If $f_{emp} = 0$, it means that *i* has encountered only new individuals during the second day and if $f_{emp} = 1$, it means that *i* has encountered exactly the same set of participants in both days.

For each reshuffling of the tags, we can aggregate the reshuffled contact data on a daily scale and create the reshuffled daily contact networks. We then compute the average fraction f of repeated contacts between the empirical and the reshuffled daily aggregated networks. By constraining f to be close to f_{emp} , we construct reshuffled contact sequences that conserve a realistic amount of correlations between the sets of individuals encountered from one day to the next in the artificial data set.

We proceed by the following steps:

- 1. Choose two tag Ids at random
- 2. Exchange their identities, as described above
- 3. Compute f and $(f f_{emp})^2$
- 4. Accept the exchange with a probability decreasing with $b (f f_{emp})^2$, where b is a parameter
- 5. Go back to step 1.

By tuning and increasing slowly the parameter b, it is then possible to produce reshufflings which have very low values of $(f - f_{emp})^2$, and thus reproduce the empirical correlations between the successive daily networks.