Brain GLP-1 Signaling Regulates Femoral Artery Blood Flow and Insulin Sensitivity Through Hypothalamic PKC-{delta} - Inserm - Institut national de la santé et de la recherche médicale Accéder directement au contenu
Article Dans Une Revue Diabetes Année : 2011

Brain GLP-1 Signaling Regulates Femoral Artery Blood Flow and Insulin Sensitivity Through Hypothalamic PKC-{delta}

Résumé

OBJECTIVE Glucagon-like peptide 1 (GLP-1) is a gut-brain hormone that regulates food intake, energy metabolism, and cardiovascular functions. In the brain, through a currently unknown molecular mechanism, it simultaneously reduces femoral artery blood flow and muscle glucose uptake. By analogy to pancreatic β-cells where GLP-1 activates protein kinase C (PKC) to stimulate insulin secretion, we postulated that PKC enzymes would be molecular targets of brain GLP-1 signaling that regulate metabolic and vascular function. RESEARCH DESIGN AND METHODS We used both genetic and pharmacological approaches to investigate the role of PKC isoforms in brain GLP-1 signaling in the conscious, free-moving mouse simultaneous with metabolic and vascular measurements. RESULTS In normal wild-type (WT) mouse brain, the GLP-1 receptor (GLP-1R) agonist exendin-4 selectively promotes translocation of PKC-δ (but not -βII, -α, or -ε) to the plasma membrane. This translocation is blocked in Glp1r(-/-) mice and in WT mice infused in the brain with exendin-9, an antagonist of the GLP-1R. This mechanism coordinates both blood flow in the femoral artery and whole-body insulin sensitivity. Consequently, in hyperglycemic, high-fat diet-fed diabetic mice, hypothalamic PKC-δ activity was increased and its pharmacological inhibition improved both insulin-sensitive metabolic and vascular phenotypes. CONCLUSIONS Our studies show that brain GLP-1 signaling activates hypothalamic glucose-dependent PKC-δ to regulate femoral artery blood flow and insulin sensitivity. This mechanism is attenuated during the development of experimental hyperglycemia and may contribute to the pathophysiology of type 2 diabetes.

Dates et versions

inserm-00615255 , version 1 (18-08-2011)

Identifiants

Citer

Cendrine Cabou, Christelle Vachoux, Gérard Campistron, Daniel J. Drucker, Rémy Burcelin. Brain GLP-1 Signaling Regulates Femoral Artery Blood Flow and Insulin Sensitivity Through Hypothalamic PKC-{delta}. Diabetes, 2011, epub ahead of print. ⟨10.2337/db11-0464⟩. ⟨inserm-00615255⟩
63 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More