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Abstract

Resveratrol (RSV) is a potent anti-diabetic agent when used at high doses. However, the direct targets primarily responsible
for the beneficial actions of RSV remain unclear. We used a formulation that increases oral bioavailability to assess the
mechanisms involved in the glucoregulatory action of RSV in high-fat diet (HFD)-fed diabetic wild type mice. Administration
of RSV for 5 weeks reduced the development of glucose intolerance, and increased portal vein concentrations of both
Glucagon-like peptid-1 (GLP-1) and insulin, and intestinal content of active GLP-1. This was associated with increased levels
of colonic proglucagon mRNA transcripts. RSV-mediated glucoregulation required a functional GLP-1 receptor (Glp1r) as
neither glucose nor insulin levels were modulated in Glp1r-/- mice. Conversely, levels of active GLP-1 and control of
glycemia were further improved when the Dipeptidyl peptidase-4 (DPP-4) inhibitor sitagliptin was co-administered with
RSV. In addition, RSV treatment modified gut microbiota and decreased the inflammatory status of mice. Our data suggest
that RSV exerts its actions in part through modulation of the enteroendocrine axis in vivo.
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Introduction

Type 2 diabetes (T2D), classically arises as a result of defects in

insulin secretion and insulin action. Considerable evidence

suggests that low-grade inflammation may also exacerbate

metabolic control by impairing insulin action and secretion [1].

In the quest of a unifying molecular mechanism, impaired

mitochondrial metabolism has been linked to inflammation [2].

Increased inflammation is also associated with impaired adipose

tissue physiology [3] which has been recently linked to a change in

intestinal microbiota and lipopolysaccharide production [4,5].

Our current concepts of how existing anti-diabetic agents exert

their mechanisms of action continue to evolve, as exemplified by

studies of the biguanide metformin. Recently new mechanisms of

action of this well-known biguanide have been described that

encompass enhanced secretion and action of Glucagon-like

peptid-1 (GLP-1) [6,7] a gut hormone which increases insulin

secretion [8,9,10] . This seems to make metformin an ideal oral

antidiabetic agent for use alone, or in combination with other

agents that exert their glucoregulatory effects through comple-

mentary mechanisms of action.

Resveratrol (RSV) is a natural phytoalexin (3,49,5-trihydroxy-

trans-stilbene) produced by various plants such as the red grapes

(Vitis vinifera L.), peanuts (Arachis spp), berries (Vaccinium sp), and

polygonum cuspidatum, that exerts multiple beneficial metabolic

actions in vivo [11,12,13]. Resveratrol is known to be a strong

antioxidant and possesses anti inflammatory properties [14,15]. It

inhibits NFkB- and AP-1-dependent inflammatory processes,

resulting in reduction of levels of IL-1, TNFa and other

inflammatory cytokines. Over the last decade several mechanisms

have been proposed to explain the glucoregulatory actions of

RSV. This polyphenol has been shown to enhance Sirtuin-1

(SIRT1) activity and to improve insulin secretion [16,17] and

sensitivity [18,19], increase mitochondrial number and function

[12,20,21], decrease adiposity, reduce glucose, and prolong life of

mice fed a calorie enriched diet [13,22]. However, since the

central role of SIRT in these beneficial actions is, to date,

controversial [23], the direct targets of RSV remain unclear.
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Recently, our laboratory has shown that diabetic mice

treated with Benzopyren, an aryl hydrocarbon receptor (AhR)

agonist, exhibit reduced GLP1 secretion [24]. As RSV is also

an antagonist of AhR [25], we hypothesized that RSV might

trigger GLP-1 secretion and improve glycemia. Our results

show that a five week chronic treatment with RSV is associated

with increased circulating levels of GLP-1 and insulin and

enhanced levels of intestinal proglucagon mRNA transcripts.

Consistent with these findings, RSV combined with a

Dipeptidyl peptidase (DPP-4) inhibitor augments portal GLP-

1 concentrations and further improves glucose homeostasis.

The glucoregulatory actions of RSV are abolished in GLP-1

receptor knockout (Glp1r-/-) mice and associated with

increased levels of anti-inflammatory IL-10 cytokine expres-

sion and changes in gut flora of diabetic mice. These findings

expand our concepts of how RSV exerts its metabolic effects to

encompass activation of the enteroendocrine system and

control of glycemia through GLP-1-receptor-dependent mech-

anisms of action.

Materials and Methods

RSV formulation and dosage
The natural purified trans-Resveratrol is formulated with

polysorbate 20, and polyglyceryl-3Dioleate (Yvery, France). The

RSV was daily mixed with the diet for animal experiments at the

dose of 60 mg RSV/Kg/day.

Animal and treatment
Eight week-old male C57Bl/6J wild type mice (Charles River,

L’Arbresle, France) and Glp1r2/2 mice from our colony (in

C57Bl/6 background) were housed in a specific pathogen-free

condition with a 12-/12-hour light (10 p.m.)/dark (10 a.m.)

cycle and had free access to water and food. Mice were

maintained on normal chow diet (NC, energy content: 12% fat,

28% protein, and 60% carbohydrate), or a high-fat diet (HFD;

energy content: roughly 72% fat comprising corn oil and lard,

28% protein, and ,1% carbohydrate, SAFE, Augy, France) for

five weeks. This diet induces diabetes before the onset of obesity

[4,5,26,27]. A subset of mice was treated with the fat-enriched

diet supplemented with RSV. In addition, another group of

mice was treated with RSV and a DPP-4 inhibitor, sitagliptin

(JanuviaH, Merck Sharp and Dohme-Chibret, France) (5 mg/

day, in the food). Food intake, body weight, and glucose

tolerance were measured as previously described [28]. All

animal experimental procedures were approved by the local

animal ethical committee of the Rangueil hospital under the

authorization number ‘‘31–278’’.

Oral glucose tolerance test and insulin assays
An oral glucose tolerance test (OGTT, 2 g/kg of glucose) was

performed in 6 h-fasted mice after five weeks of treatment. Blood

glucose concentrations were monitored from the tip of the tail vein

with a glucose meter (Roche Diagnostic, Meylan, France) at 230,

0, 30, 60, 90 and 120 min after oral glucose administration, as

previously described [28]. Area under the curve (AUC) (30–90)

was calculated for each group of mice. Plasma insulin concentra-

tion was determined by ELISA (Mercodia, Uppsala, Sweden) by

using 10 ml of plasma from normal chow and HFD +/2 RSV

treated mice.

GLP-1 measurement in portal plasma and colon
For plasma portal GLP-1 quantification, mice (in fed state) were

rapidly anesthetized by intra-peritoneal injection (0.1 ml/10 mg

body weight) of Ketamine (Vibrac, France) and Xylazine

hydrochloride 2% RompunH (Bayer, France) in sodium chloride

(0.9%; 2:1:7 v/v/v), dissected and the portal blood samples were

collected in EDTA tubes (Sarstedt, Numbrecht, Germany)

containing a DPP-4 inhibitor (Linco Research, St Charles, MO,

USA). Following sacrifice, segments of colon were immediately

excised, immersed in liquid N2 and stored at 280uC for further

mRNA and peptide analyses.

For assessment of levels of colonic GLP-1, intestinal samples

were homogenized in ethanol/acid (100% ethanol: sterile water:

12N HCl 74:25:1 v/v) solution (5 ml/g tissue). Then the

homogenates were centrifuged (2000 g for 20 minutes) and

supernatants were collected and diluted 50-fold. Concentrations

of GLP-1 (7–36) amide were determined using an ELISA method

(Glucagon-Like-Peptide-1 active ELISA kit, Millipore, France).

RNA extraction and real time PCR
Total RNA was isolated from tissues using Trizol reagent

(Invitrogen, France) and quantified by NanoDrop (NanoDrop

technologies Inc., France). Total RNA (1 mg) was reverse-

transcribed using Moloney murine leukemia virus reverse-

transcriptase (Invitrogen, Cergy-Pontoise, France) and random

primers at 42uC for 1 h. The expression of target genes was

determined using the Stratagene Mx 3005p. The mRNA

concentration of target genes was normalized to levels of b2-actin

mRNA and the results were expressed as relative expression levels

(REL). The data were quantified by the method of 2-DDCt. Primers

used are listed in table 1.

Determination of IL-10 protein concentration
Tissue protein extracts were obtained by homogenization of

colonic segments (0.5 mg tissue/ml) in 50 mM Tris HCl, pH 7.4,

0.5 mM DTT and a cocktail of proteases inhibitors containing

Table 1. Primers Used.

Genes Forward sequence (59-39) Reverse sequence (59-39)

b2-actin 59-AAGGCCAACCGTGAAAAGAT-39 59-GTGGTACGACCAGAGGCATAC-39

TGF-b 59-TGGAGCAACATGTGGAACTG-39 59-GTCAGCAGCCGGTTACCA-39

IL-10 59-CACAAAGCAGCCTTGCAGAA-39 59-AGAGCAGGCAGCATAGCAGTG-39

TNFalpha 59-TGGGACAGTGACCTGGACTGT-39 59-TTCGGAAAGCCCATTTGAGT-39

Proglucagon 59-GACATGCTGAAGGGACCTTTAC-39 59-GGCTTTCACCAGCCAC-39

V3 16S rDNA universal 59-GCCCGGGGCGCGCCCCGGGCGGGGCGGGGG
CACGGGGGGACTCCTACGGGAGGCAGCAGT-39

59-GTATTACCGCGGCTGCTGGCAC-39

doi:10.1371/journal.pone.0020700.t001

RSV Regulates Glucose Control via GLP-1
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PMSF, ALI and POP (Sigma, France). Samples were centrifuged

at 12,000 g for 10 minutes and stored at 280uC. IL-10 levels in

colonic protein extracts were determined using an ELISA method

(Mouse IL-10 ELISA Ready-SET-Go!, eBioscience, France).

Intestinal microflora characterization
Total DNA was isolated from caecum using Trizol reagent

(Invitrogen, France) and was amplified by PCR, targeting the V3

region of the 16S rRNA gene using the universal bacterial

primers HDA1-GC and HDA2 (Table 1). Each reaction mixture

(25 ml) contained 4 ml of DNA diluted to 50 ng/ml, deoxynucleo-

side triphosphate (Sigma-Aldrich – France) at a concentration of

200 mM, 0.3 mM of each primer, and 0.07 ml of Taq polymerase

(Sigma-Aldrich – France). The following amplification program

was used: 94uC for 5 min, 30 cycles consisting of 94uC for 30 s,

55uC for 45 s, and 72uC for 60 s, and 30 min at 72uC.

Denaturing gradient gel electrophoresis (DGGE) was then

performed by using DGGE 2401 systems (CBS & Scientific Co.

– United State) and 8% polyacrylamide gels with a 35–55%

gradient of urea (99.0–100.5% - Sigma-Aldrich-France) and

formamide (99+% - Sigma-Aldrich-France), which increased in

the direction of electrophoresis. Electrophoretic runs were in a

Tris-acetate-EDTA buffer (40 mmol/l Tris, 20 mmol/l acetic

acid, and 1 mmol/l EDTA) at 60 V and 60uC for 18 h. Gels

were stained with SYBR Safe 16 (Invitrogen, France) for 30 min,

rinsed with deionized water, then scanned and analyzed by using

Typhoon 9400 Variable Mode Imager (Amersham Biosciences-

United State). Hierarchical clustering was performed by using

Permutmatrix 1.9.3.0 [29].

Statistical Analysis
Results are expressed as means 6 SEM. Statistical differences

between groups were evaluated by one-way ANOVA followed by

Tukey test and the non-paired –Student’s T test using Sigma Stat

2.03. The level of significance was set at p,0.05.

Results

Effect of a five week treatment with RSV on HFD-induced
glucose intolerance

To assess the anti-diabetic effect of RSV, we treated HFD-

diabetic mice with a dose of RSV, 60 mg/kg/day, for five weeks.

RSV significantly reduced glucose intolerance in diabetic mice

without affecting fasting glycemia (Figure 1A, B).

To understand the mechanisms mediating the pronounced

salutary effects of RSV on oral glucose tolerance, we examined

levels of GLP-1. Mice fed the high fat diet exhibited reduced levels

of GLP-1 (Figure 2A), in contrast, RSV almost tripled the

concentration of active GLP-1 in the portal vein (Figure 2A) and

significantly increased the corresponding intestinal content of both

proglucagon mRNA and active GLP-1 (3.4 and 1.8-fold,

respectively, Figures 2B, C). Consistent with the change in GLP-

1 levels, the plasma concentration of insulin was also significantly

increased (1.8-fold) in response to the oral glucose challenge

(Figure 2D).

The glucoregulatory actions of RSV depend on a
functional GLP-1 receptor and are further improved by a
DPP-4 inhibitor

To determine whether GLP-1 secretion and action mediated

the improved glucose tolerance in response to the chronic RSV

treatment, we analyzed oral glucose tolerance and GLP-1

concentrations in Glp1r2/2 mice. In contrast to data obtained

with WT mice, Glp1r2/2 mice were insensitive to the RSV

treatment revealing an essential role for the GLP-1R in control of

glucose tolerance by RSV (Figures 3A, B). Furthermore,

Figure 1. RSV improves glucose tolerance in high fat-fed diabetic mice. A) Glycemic profiles (mg/dL) of normal chow (circles), high fat diet-
fed mice treated with vehicle (triangles) or RSV (squares) for five weeks and B) area under the curve for glucose (AUC); Data are presented as mean 6

S.E.M, n = 8 mice per group * and *** statistically different between groups when p,0.05 and p,0.001, respectively, as analyzed by one-way ANOVA
followed by Tukey test.
doi:10.1371/journal.pone.0020700.g001

RSV Regulates Glucose Control via GLP-1
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proglucagon mRNA levels were only modestly increased (1.3-fold)

following RSV in Glp1r2/2 mice suggesting that the GLP-1

receptor was important for the regulated expression of its ligand

(Figure 3C). We have compared the glycemic profile between wild

type and Glp1r2/2 mice. The results demonstrated that improve

of glucose tolerance was significantly different when wild type mice

were treated with RSV (Figure 3D and 3E).

Next, we assessed whether the therapeutic efficacy of RSV

could be further enhanced by potentiating levels of active GLP-1

through combination with a DPP-4 inhibitor. Oral glucose

tolerance was further enhanced when the DPP-4 inhibitor,

sitagliptin, was added to the RSV treatment (Figure 4A).

Furthermore, the active GLP-1 concentrations were further

increased (1.5-fold) in the portal blood (Figure 4B). However,

the combined sitagliptin/RSV treatment did not significantly

increase intestinal proglucagon gene expression when compared to

administration of RSV alone (Figure 4C).

Effect of a five week treatment with RSV on gut
microbiota

The above set of data suggested that RSV was targeting the

intestine. Since RSV is known to be an antimicrobial agent

[30,31,32], we determined whether the gut microbiota was also

impacted by RSV treatment by using DGGE analyses. DGGE

profiles clearly showed that after a five week treatment, RSV

normalized the strongly modified caecal bacterial composition of

Figure 2. RSV increases levels of GLP-1 and Insulin. A) Portal vein active GLP-1 concentrations (pM); B) proglucagon mRNA concentration
(Relative Expression Level, REL); C) intestinal GLP-1 concentrations (pmol/g of tissue) and D) portal plasma insulin concentrations (mg/L) of normal
chow (stripe bars), high fat diet-fed mice treated with vehicle (open bars) or RSV (closed bars) for five weeks. Data are presented as mean 6 S.E.M,
n = 8 mice per group (in fed state) *, ** and *** statistically different between groups when p,0.05, p,0.01 and p,0.001, respectively, as analyzed by
one-way ANOVA followed by Tukey test.
doi:10.1371/journal.pone.0020700.g002

RSV Regulates Glucose Control via GLP-1
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animals fed a high-fat diet (Figure 5). Three of the bands found to

be differently expressed between HFD-fed mice treated with or

without RSV were sequenced and identified. They correspond to

Parabacteroides jonsonii DMS 18315 (a), Alistipes putredinis DMS 17216

(b) and Bacteroides vulgatus ATCC 8482 (c) All three bacteria were

directly affected by RSV treatment (Figure 5, arrows a, b, c,

respectively). In particular, these bands disappeared when mice

were provided with RSV.

Effect of a five week treatment with RSV on HFD-induced
inflammation

Since changes in gut microbiota have been associated with the

inflammatory status of metabolic diseases [4,5] we evaluated the

putative anti-inflammatory effect of RSV during a HFD

treatment. RSV markedly increased IL-10 expression in the

colon, liver, and muscle by 3.1, 3.7 and 1.7-fold, respectively

(Figures 6A, B, C, D). TGF-b levels were also significantly

increased in response to RSV (Figures 6E, F, G). Conversely, RSV

induced a significant decrease of TNF-a expression in the same

three tissues (Figures 6H, I, J). We have evaluated in brain the

expression level of proglucagon, IL-10 and PAI-1. The results

(data not shown) indicated that RSV did not modify the

proglucagon mRNA level. In contrast, the PAI-1 mRNA level

was decreased (3.5 fold) when RSV was added in HFD compared

to HFD. IL-10 mRNA level significantly increase (2.1 fold) in

HFD + RSV compared to HFD.

Discussion

We here demonstrate that a chronic resveratrol treatment

increases glucose-induced GLP-1 and insulin secretion. This

mechanism was enhanced by a concomitant treatment with a

DPP4 inhibitor and as a consequence altogether lowers glycemia

of high-fat diet-induced diabetic mice. The putative GLP-1

dependency of resveratrol action was suggested since Glp1-/-

mice were not sensitive to the treatment. The role of a change in

intestinal microbiota and inflammation is also suspected.

Augmentation of GLP-1 action is now widely used for the

treatment of T2D. Indeed, GLP-1 not only acts as an incretin to

lower blood glucose via stimulation of insulin secretion from islet b
cells but also exerts actions independent of insulin secretion,

including inhibition of gastric emptying and acid secretion,

reduction in food ingestion and glucagon secretion, and stimula-

tion of b cell proliferation [8]. GLP-1 actions are highly glucose-

dependent, hence GLP-1 administration is unlikely to be

Figure 3. The glucose control by RSV is blunted in high fat diet-fed Glp1r2/2 mice. A) Glycemic profiles (mg/dL) of high fat diet-fed
Glp1r2/2 mice treated with vehicle (triangles) or RSV (squares) for five weeks and B) an index of area under the curve glucose (AUC); C) proglucagon
mRNA levels (Relative expression level REL) of high fat diet-fed mice treated with vehicle (open bars) and RSV (closed bars) for five weeks. D) Glycemic
profiles (mg/dL) of high fat diet-fed wild type mice (high fat diet-fed mice treated with vehicule (white triangles) or RSV (white squares)) and Glp1r2/2

mice (high fat diet-fed mice treated with vehicule (black triangles) or RSV (black squares)) after five weeks of treatment and E) an index of area under
the curve glucose (AUC). Data are presented as mean 6 S.E.M, n = 8 mice per group.
doi:10.1371/journal.pone.0020700.g003

RSV Regulates Glucose Control via GLP-1
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associated with hypoglycemia [33], a frequent side effect of many

oral anti-diabetic agents and insulin. The only obstacle which

prevents the native molecule to be used as a therapeutic agent for

the treatment of diabetes is that GLP-1 is rapidly degraded within

minutes by DPP-4 [34,35,36]. Consequently, stable GLP-1

receptor agonists (Liraglutide, Exenatide), and DPP-4 inhibitors

(Sitagliptin, Vildagliptin, Saxagliptin, Alogliptin) have been

developed for the treatment of diabetes.

Our current findings further extend the increasing number of

agents known to exert their actions in part through enhancement

of incretin activity by demonstrating that RSV given orally exerts

an anti-diabetic effect linked to GLP-1 production. Indeed, oral

glucose tolerance is improved by RSV in association with

increased gut proglucagon gene expression and enhanced

intestinal levels of GLP-1. Furthermore, these glucoregulatory

actions of RSV are blunted in Glp1r2/2 mice. Although it is

unlikely that all the anti-diabetic effect of resveratrol are mediated

through the GLP-1 receptor our data strongly suggest that this

new mechanism does represent a major mode of action in the

high-fat diet-fed diabetic mouse. This hypothesis is further

reinforced since the proglucagon gene expression in the gut was

only moderately increased in Glp1r2/2 compared to RSV-treated

wild type mice. This is in agreement with data showing that the

portal levels of GLP-1 were reduced in RSV-treated Glp1r2/2

mice, suggesting that GLP-1 regulates the control of its secretion

and gene expression [37]. Furthermore, our data demonstrate that

co-administration of a DPP-4 inhibitor and RSV further enhanced

the concentration of active portal GLP-1 and improved the

glycemic control relative to that observed with the RSV

formulation alone. This set of data provides a rationale for further

studies examining the combinatorial efficacy of RSV and DPP-4

inhibition. This concept is consistent with strategies designed to

enhance the efficacy of DPP4 inhibitors [38] and intriguingly

metformin has also been shown to increase GLP-1 secretion

through mechanisms, which are poorly understood [6]. On other

hand, recent data showed that RSV at a very high dose also

Figure 4. Co-administration of the dipeptidyl peptidase-4 inhibitor sitaglipin and RSV further improves glucose tolerance in high
fat diet-fed diabetic mice. A) Glycemic profiles (mg/dL) of high fat diet-fed diabetic mice treated with RSV (squares), or RSV plus sitagliptin
(triangles) for five weeks; B) portal vein active GLP-1 concentrations (pM) and C) proglucagon mRNA levels (Relative Expression Level REL) of high at
diet-fed mice treated with RSV (closed bars) and sitagliptin plus RSV (spotted bars) for five weeks. Data are presented as mean 6S.E.M, n = 8 mice per
group, * and *** statistically different between groups when p,0.05 and p,0.001, respectively, as analyzed by the Student’s T test.
doi:10.1371/journal.pone.0020700.g004
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increases the plasma concentration of glucose-dependent insuli-

notropic peptide (GIP) [39]. This was associated with reduced

body weight gain in a non-human primate model of obesity [39].

Although we observed increased GIP mRNA levels in the intestine

(data not shown), the significantly diminished glucoregulatory

activity of RSV in Glp1r2/2 mice suggests that most of the

therapeutic effects of RSV in our experimental model are

mediated by GLP-1.

It has been previously described that RSV crosses the blood

brain barrier and can have an effect on the central nervous system

(CNS) [40,41]. The pharmacological actions of RSV on the CNS

can be the consequence of an antioxidant and anti-inflammatory

activity, and on the proglucagon level. We have evaluated the

proglucagon level in the brain of the animals. Our results indicated

(data not shown) that RSV does not induce the expression of GLP-

1 in hypothalamus. However, we did observed a slight increase in

IL10 mRNA concentration and a reduction of PAI 1 mRNA

concentration in the hypothalamus suggesting that some anti-

inflammatory effect of resveratol could be suspected. With these

later set of data we cannot rule out that part of the anti-diabetic

effect of reseveratrol might be through a central beneficial

regulation.

In peripheral organs our present data show that RSV

reduces inflammation in part through enhancement of IL-10

production in colon, liver and muscle. In addition, this effect

was associated with a decrease of TNF-a mRNA levels and a

favorable modulation of intestinal microbiota, which might be

linked to IL-10 synthesis in these three tissues. Inflammation

induced by the infusion of bacterial lipopolysaccharides

reduced glucose-induced insulin secretion and led to insulin

resistance [4], and increase production of cytokines through a

mechanism requiring the LPS receptor CD14. Similarly, the

inflammatory status induced by the change of microbiota

might contribute to the impairment of GLP-1 secretion in mice

on a HFD diet. We previously showed that prebiotic treatment

reverted the alteration of intestinal microbiota induced by the

HFD [27] and this was associated with increased GLP-1

production [42]. Probiotic treatments are known to modulate

the integrity of the epithelial cell layer [43], and it is possible

that a change of intestinal microbiota could modify the nature

of microbial-epithelial interactions influencing GLP-1secre-

tion. Although speculative, these hypotheses can be tested in

the future using germ free mice [44].

In conclusion our data show for the first time that RSV

increases GLP-1 production and requires the GLP-1 receptor to

mediate its anti-diabetic effect in HFD-induced diabetic mice.

The mechanism(s) through which GLP-1 secretion is restored

could be linked to a change in intestinal microbiota and

inflammation. Furthermore, our data suggest that RSV, alone

or in combination with DPP-4 inhibitors, may represent a new

Figure 5. RSV has a prebiotic effect on gut microbiota. DGGE profiles generated from the caecal content of mice fed normal chow (NC),
high fat diet and treated with vehicle (HFD6Veh), or RSV (HFD6RSV) for 5 weeks. Each number and profile corresponds to a different animal.
The arrows denote a subset of bands, which have disappeared with the RSV treatment, were cloned and sequenced (see results for
identification).
doi:10.1371/journal.pone.0020700.g005
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therapeutic approach for enhancing incretin action in the

treatment of T2D.

Acknowledgments

We would like to thank André Colom for technical help.
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