C. P. Austin, D. E. Feldman, J. A. Ida, . Jr, and C. L. Cepko, Vertebrate retinal ganglion cells are selected from competent progenitors by the action of Notch, Development, vol.121, pp.3637-50, 1995.

L. M. Baye and B. A. Link, Nuclear migration during retinal development, Brain Research, vol.1192, pp.29-36, 2008.
DOI : 10.1016/j.brainres.2007.05.021

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2674389

T. Belecky-adams, S. Tomarev, H. S. Li, L. Ploder, R. R. Mcinnes et al., Pax-6, Prox 1, and Chx10 homeobox gene expression correlates with phenotypic fate of retinal precursor cells, Invest Ophthalmol Vis Sci, vol.38, pp.1293-303, 1997.

T. M. Beres, T. Masui, G. H. Swift, L. Shi, R. M. Henke et al., PTF1 Is an Organ-Specific and Notch-Independent Basic Helix-Loop-Helix Complex Containing the Mammalian Suppressor of Hairless (RBP-J) or Its Paralogue, RBP-L, Molecular and Cellular Biology, vol.26, issue.1, pp.117-147, 2006.
DOI : 10.1128/MCB.26.1.117-130.2006

H. Boije, P. H. Edqvist, and F. Hallbook, Temporal and spatial expression of transcription factors FoxN4, and Lim1 mRNA in the developing chick retina, 2008.

H. Boije, P. H. Edqvist, and F. Hallbook, Horizontal cell progenitors arrest in G2-phase and undergo terminal mitosis on the vitreal side of the chick retina, Developmental Biology, vol.330, issue.1, pp.105-118, 2009.
DOI : 10.1016/j.ydbio.2009.03.013

N. L. Brown, S. Patel, J. Brzezinski, and T. Glaser, Math5 is required for retinal ganglion cell and optic nerve formation, Development, vol.128, pp.2497-508, 2001.

C. Cras-meneur, L. Li, R. Kopan, and M. A. Permutt, Presenilins, Notch dose control the fate of pancreatic endocrine progenitors during a narrow developmental window, Genes & Development, vol.23, issue.17, pp.2088-101, 2009.
DOI : 10.1101/gad.1800209

J. De-melo, X. Qiu, G. Du, L. Cristante, and D. D. Eisenstat, Dlx1,Dlx2,Pax6,Brn3b, andChx10 homeobox gene expression defines the retinal ganglion and inner nuclear layers of the developing and adult mouse retina, The Journal of Comparative Neurology, vol.20, issue.2, pp.187-204, 2003.
DOI : 10.1002/cne.10674

D. Barrio, M. G. Taveira-marques, R. Muroyama, Y. Yuk, D. I. Li et al., A regulatory network involving Foxn4, Mash1 and delta-like 4/Notch1 generates V2a and V2b spinal interneurons from a common progenitor pool, Development, vol.134, issue.19, pp.3427-3463, 2007.
DOI : 10.1242/dev.005868

D. Bene, F. Wehman, A. M. Link, B. A. Baier, and H. , Regulation of Neurogenesis by Interkinetic Nuclear Migration through an Apical-Basal Notch Gradient, Cell, vol.134, issue.6, pp.1055-65, 2008.
DOI : 10.1016/j.cell.2008.07.017

P. D. Dong, E. Provost, S. D. Leach, and D. Y. Stainier, Graded levels of Ptf1a differentially regulate endocrine and exocrine fates in the developing pancreas, Genes & Development, vol.22, issue.11, pp.1445-50, 2008.
DOI : 10.1101/gad.1663208

R. I. Dorsky, W. S. Chang, D. H. Rapaport, and W. A. Harris, Regulation of neuronal diversity in the Xenopus retina by Delta signalling, Nature, vol.385, issue.6611, pp.67-70, 1997.
DOI : 10.1038/385067a0

J. P. Dullin, M. Locker, M. Robach, K. A. Henningfeld, K. Parain et al., Ptf1a triggers GABAergic neuronal cell fates in the retina, BMC Developmental Biology, vol.7, issue.1, p.110, 2007.
DOI : 10.1186/1471-213X-7-110

URL : https://hal.archives-ouvertes.fr/hal-00283597

M. A. Dyer, F. J. Livesey, C. L. Cepko, and G. Oliver, Prox1 function controls progenitor cell proliferation and horizontal cell genesis in the mammalian retina, Nature Genetics, vol.34, issue.1, pp.53-61, 2003.
DOI : 10.1038/ng1144

P. H. Edqvist and F. Hallbook, Newborn horizontal cells migrate bi-directionally across the neuroepithelium during retinal development, Development, vol.131, issue.6, pp.1343-51, 2004.
DOI : 10.1242/dev.01018

P. H. Edqvist, M. Lek, H. Boije, S. M. Lindback, and F. Hallbook, Axon-bearing and axon-less horizontal cell subtypes are generated consecutively during chick retinal development from progenitors that are sensitive to follistatin, BMC Developmental Biology, vol.8, issue.1, p.46, 2008.
DOI : 10.1186/1471-213X-8-46

P. H. Edqvist, S. M. Myers, and F. Hallbook, Early identification of retinal subtypes in the developing, pre-laminated chick retina using the transcription factors Prox1, Eur J Histochem, vol.50, pp.147-54, 2006.

V. Fantl, G. Stamp, A. Andrews, I. Rosewell, and C. Dickson, Mice lacking cyclin D1 are small and show defects in eye and mammary gland development., Genes & Development, vol.9, issue.19, pp.2364-72, 1995.
DOI : 10.1101/gad.9.19.2364

A. J. Fischer, J. J. Stanke, G. Aloisio, H. Hoy, and W. K. Stell, Heterogeneity of horizontal cells in the chicken retina, The Journal of Comparative Neurology, vol.41, issue.6, pp.1154-71, 2007.
DOI : 10.1002/cne.21236

A. Gallego, Chapter 7 Comparative studies on horizontal cells and a note on microglial cells, Progress in Retinal Research, vol.5, pp.165-206, 1986.
DOI : 10.1016/0278-4327(86)90010-6

J. M. Genis-galvez, F. Prada, and J. A. Armengol, Evidence of three horizontal cells in the chick retina, Jpn.J.Ophtamol, vol.23, pp.378-387, 1979.

S. M. Glasgow, R. M. Henke, R. J. Macdonald, C. V. Wright, and J. E. Johnson, Ptf1a determines GABAergic over glutamatergic neuronal cell fate in the spinal cord dorsal horn, Development, vol.132, issue.24, pp.5461-5470, 2005.
DOI : 10.1242/dev.02167

R. Godbout and R. Andison, Elevated levels of cyclin D1 mRNA in the undifferentiated chick retina, Gene, vol.182, issue.1-2, pp.111-116, 1996.
DOI : 10.1016/S0378-1119(96)00524-0

S. Hayes, B. R. Nelson, B. Buckingham, and T. A. Reh, Notch signaling regulates regeneration in the avian retina, Developmental Biology, vol.312, issue.1, pp.300-311, 2007.
DOI : 10.1016/j.ydbio.2007.09.046

R. M. Henke, T. K. Savage, D. M. Meredith, S. M. Glasgow, K. Hori et al., Neurog2 is a direct downstream target of the Ptf1a-Rbpj transcription complex in dorsal spinal cord, Development, vol.136, issue.17, pp.2945-54, 2009.
DOI : 10.1242/dev.035352

D. Henrique, E. Hirsinger, J. Adam, L. Roux, I. Pourquie et al., Maintenance of neuroepithelial progenitor cells by Delta???Notch signalling in the embryonic chick retina, Current Biology, vol.7, issue.9, pp.661-70, 1997.
DOI : 10.1016/S0960-9822(06)00293-4

J. W. Hinds and P. L. Hinds, Differentiation of photoreceptors and horizontal cells in the embryonic mouse retina: An electron microscopic, serial section analysis, The Journal of Comparative Neurology, vol.177, issue.3, pp.495-511, 1979.
DOI : 10.1002/cne.901870303

K. Hori, J. Cholewa-waclaw, Y. Nakada, S. M. Glasgow, T. Masui et al., A nonclassical bHLH Rbpj transcription factor complex is required for specification of GABAergic neurons independent of Notch signaling, Genes & Development, vol.22, issue.2, pp.166-78, 2008.
DOI : 10.1101/gad.1628008

M. Hoshino, S. Nakamura, K. Mori, T. Kawauchi, M. Terao et al., Ptf1a, a bHLH Transcriptional Gene, Defines GABAergic Neuronal Fates in Cerebellum, Neuron, vol.47, issue.2, pp.201-214, 2005.
DOI : 10.1016/j.neuron.2005.06.007

S. H. Hughes, J. J. Greenhouse, C. J. Petropoulos, and P. Sutrave, Adaptor plasmids simplify the insertion of foreign DNA into helper-independent retroviral vectors, J Virol, vol.61, pp.3004-3016, 1987.

T. Inoue, M. Hojo, Y. Bessho, Y. Tano, J. E. Lee et al., Math3 and NeuroD regulate amacrine cell fate specification in the retina, Development, vol.129, pp.831-873, 2002.

A. P. Jadhav, H. A. Mason, and C. L. Cepko, Notch 1 inhibits photoreceptor production in the developing mammalian retina, Development, vol.133, issue.5, pp.913-936, 2006.
DOI : 10.1242/dev.02245

P. R. Jusuf, A. D. Almeida, O. Randlett, K. Joubin, L. Poggi et al., Origin and Determination of Inhibitory Cell Lineages in the Vertebrate Retina, Journal of Neuroscience, vol.31, issue.7, pp.2549-62, 2011.
DOI : 10.1523/JNEUROSCI.4713-10.2011

P. R. Jusuf and W. A. Harris, Ptf1a is expressed transiently in all types of amacrine cells in the embryonic zebrafish retina, Neural Development, vol.4, issue.1, p.34, 2009.
DOI : 10.1186/1749-8104-4-34

Y. Kawaguchi, B. Cooper, M. Gannon, M. Ray, R. J. Macdonald et al., The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors, Nature Genetics, vol.32, issue.1, pp.128-162, 2002.
DOI : 10.1038/ng959

A. Krapp, M. Knofler, B. Ledermann, K. Burki, C. Berney et al., The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas, Genes & Development, vol.12, issue.23, pp.3752-63, 1998.
DOI : 10.1101/gad.12.23.3752

C. Lemercier, R. Q. To, R. A. Carrasco, and S. F. Konieczny, The basic helix-loop-helix transcription factor Mist1 functions as a transcriptional repressor of MyoD, The EMBO Journal, vol.17, issue.5, pp.1412-1434, 1998.
DOI : 10.1093/emboj/17.5.1412

URL : https://hal.archives-ouvertes.fr/hal-00379937

S. Li, Z. Mo, X. Yang, S. M. Price, M. M. Shen et al., Foxn4 Controls the Genesis of Amacrine and Horizontal Cells by Retinal Progenitors, Neuron, vol.43, issue.6, pp.795-807, 2004.
DOI : 10.1016/j.neuron.2004.08.041

W. Liu, Z. Mo, and M. Xiang, The Ath5 proneural genes function upstream of Brn3 POU domain transcription factor genes to promote retinal ganglion cell development, Proceedings of the National Academy of Sciences, vol.98, issue.4, pp.1649-54, 2001.
DOI : 10.1073/pnas.98.4.1649

F. J. Livesey and C. L. Cepko, Vertebrate neural cell-fate determination: Lessons from the retina, Nature Reviews Neuroscience, vol.15, issue.2, pp.109-127, 2001.
DOI : 10.1038/35053522

W. Mao, R. T. Yan, and S. Z. Wang, promotes amacrine cell production in the chick retina, Developmental Neurobiology, vol.264, issue.2-3, pp.88-104, 2009.
DOI : 10.1002/dneu.20693

T. Marquardt and P. Gruss, Generating neuronal diversity in the retina: one for nearly all, Trends in Neurosciences, vol.25, issue.1, pp.32-40, 2002.
DOI : 10.1016/S0166-2236(00)02028-2

T. Masui, Q. Long, T. M. Beres, M. A. Magnuson, and R. J. Macdonald, Early pancreatic development requires the vertebrate Suppressor of Hairless (RBPJ) in the PTF1 bHLH complex, Genes & Development, vol.21, issue.20, pp.2629-2672, 2007.
DOI : 10.1101/gad.1575207

T. Masui, G. H. Swift, T. Deering, C. Shen, W. S. Coats et al., Replacement of Rbpj With Rbpjl in the PTF1 Complex Controls the Final Maturation of Pancreatic Acinar Cells, Gastroenterology, vol.139, issue.1, pp.270-80, 2010.
DOI : 10.1053/j.gastro.2010.04.003

T. Masui, G. H. Swift, M. A. Hale, D. M. Meredith, J. E. Johnson et al., Transcriptional Autoregulation Controls Pancreatic Ptf1a Expression during Development and Adulthood, Transcriptional autoregulation controls pancreatic Ptf1a expression during development and adulthood, pp.5458-68, 2008.
DOI : 10.1128/MCB.00549-08

L. Matter-sadzinski, J. M. Matter, M. T. Ong, J. Hernandez, and M. Ballivet, Specification of neurotransmitter receptor identity in developing retina: the chick ATH5 promoter integrates the positive and negative effects of several bHLH proteins, Development, vol.128, pp.217-248, 2001.

L. Matter-sadzinski, M. Puzianowska-kuznicka, J. Hernandez, M. Ballivet, and J. M. Matter, A bHLH transcriptional network regulating the specification of retinal ganglion cells, Development, vol.132, issue.17, pp.3907-3928, 2005.
DOI : 10.1242/dev.01960

D. M. Meredith, T. Masui, G. H. Swift, R. J. Macdonald, and J. E. Johnson, Multiple Transcriptional Mechanisms Control Ptf1a Levels during Neural Development Including Autoregulation by the PTF1-J Complex, Journal of Neuroscience, vol.29, issue.36, pp.11139-11187, 2009.
DOI : 10.1523/JNEUROSCI.2303-09.2009

A. Rodolosse, M. L. Campos, I. Rooman, M. Lichtenstein, and F. X. Real, p/CAF modulates the activity of the transcription factor p48/Ptf1a involved in pancreatic acinar differentiation, CAF modulates the activity of the transcription factor p48/Ptf1a involved in pancreatic acinar differentiation, pp.463-73, 2009.
DOI : 10.1042/BJ20080293

URL : https://hal.archives-ouvertes.fr/hal-00478971

J. Roger, V. Brajeul, S. Thomasseau, A. Hienola, J. A. Sahel et al., Involvement of Pleiotrophin in CNTF-mediated differentiation of the late retinal progenitor cells, Developmental Biology, vol.298, issue.2, pp.527-566, 2006.
DOI : 10.1016/j.ydbio.2006.07.003

G. S. Sellick, K. T. Barker, I. Stolte-dijkstra, C. Fleischmann, R. J. Coleman et al., Mutations in PTF1A cause pancreatic and cerebellar agenesis, Nature Genetics, vol.56, issue.12, pp.1301-1306, 2004.
DOI : 10.1128/MCB.20.10.3640-3654.2000

P. Sicinski, J. L. Donaher, S. B. Parker, T. Li, A. Fazeli et al., Cyclin D1 provides a link between development and oncogenesis in the retina and breast, Cell, vol.82, issue.4, pp.621-651, 1995.
DOI : 10.1016/0092-8674(95)90034-9

A. O. Silva, C. E. Ercole, and S. C. Mcloon, Regulation of ganglion cell production by notch signaling during retinal development, Journal of Neurobiology, vol.128, issue.3, pp.511-535, 2003.
DOI : 10.1002/neu.10156

D. Skowronska-krawczyk, F. Chiodini, M. Ebeling, C. Alliod, A. Kundzewicz et al., Conserved regulatory sequences in Atoh7 mediate non-conserved regulatory responses in retina ontogenesis, Development, vol.136, issue.22, pp.3767-77, 2009.
DOI : 10.1242/dev.033449

D. Skowronska-krawczyk, L. Matter-sadzinski, M. Ballivet, and J. M. Matter, The Basic Domain of ATH5 Mediates Neuron-Specific Promoter Activity during Retina Development, Molecular and Cellular Biology, vol.25, issue.22, pp.10029-10068, 2005.
DOI : 10.1128/MCB.25.22.10029-10039.2005

A. Suga, M. Taira, and S. Nakagawa, LIM family transcription factors regulate the subtype-specific morphogenesis of retinal horizontal cells at post-migratory stages, Developmental Biology, vol.330, issue.2, pp.318-346, 2009.
DOI : 10.1016/j.ydbio.2009.04.002

K. Tanabe, Y. Takahashi, Y. Sato, K. Kawakami, M. Takeichi et al., Cadherin is required for dendritic morphogenesis and synaptic terminal organization of retinal horizontal cells, Development, vol.133, issue.20, pp.4085-96, 2006.
DOI : 10.1242/dev.02566

S. W. Wang, B. S. Kim, K. Ding, H. Wang, D. Sun et al., Requirement for math5 in the development of retinal ganglion cells, Genes & Development, vol.15, issue.1, pp.24-33, 2001.
DOI : 10.1101/gad.855301

H. Wildner, T. Muller, S. H. Cho, D. Brohl, C. L. Cepko et al., dILA neurons in the dorsal spinal cord are the product of terminal and non-terminal asymmetric progenitor cell divisions, and require Mash1 for their development, Development, vol.133, issue.11, pp.2105-2118, 2006.
DOI : 10.1242/dev.02345

M. Yamada, M. Terao, T. Terashima, T. Fujiyama, Y. Kawaguchi et al., Origin of Climbing Fiber Neurons and Their Developmental Dependence on Ptf1a, Journal of Neuroscience, vol.27, issue.41, pp.10924-10958, 2007.
DOI : 10.1523/JNEUROSCI.1423-07.2007

X. J. Yang, Retrovirus-mediated gene expression during chick visual system development, Methods, vol.28, issue.4, pp.396-401, 2002.
DOI : 10.1016/S1046-2023(02)00258-X

O. Yaron, C. Farhy, T. Marquardt, M. Applebury, and R. Ashery-padan, Notch1 functions to suppress cone-photoreceptor fate specification in the developing mouse retina, Development, vol.133, issue.7, pp.1367-78, 2006.
DOI : 10.1242/dev.02311

R. W. Young, Cell differentiation in the retina of the mouse, The Anatomical Record, vol.229, issue.2, pp.199-205, 1985.
DOI : 10.1002/ar.1092120215

E. Zecchin, A. Mavropoulos, N. Devos, A. Filippi, N. Tiso et al., Evolutionary conserved role of ptf1a in the specification of exocrine pancreatic fates, Developmental Biology, vol.268, issue.1, pp.174-84, 2004.
DOI : 10.1016/j.ydbio.2003.12.016

M. H. Zheng, M. Shi, Z. Pei, F. Gao, H. Han et al., The transcription factor RBP-J is essential for retinal cell differentiation and lamination, Molecular Brain, vol.2, issue.1, p.38, 2009.
DOI : 10.1186/1756-6606-2-38

J. Figf-g, N. , H. , J. , L. et al., Ptf1a plasmids or not (Control) were harvested, and the expression of exogenous Ptf1a proteins was monitored by western blotting using anti-Ptf1a and anti-HA antibodies. RCAS-Ptf1a-noTag: RCAS-Ptf1a without HA-Tag, RCAS-HA-Ptf1a: RCAS-Ptf1a with HA-tag. (B-E) The RCAS-infected (B-C) and RCASPtf1a- infected (D-E) retinal sections were stained with anti-Ptf1a (B,D) or anti-gag (p27) (C,E) antibodies at E9. (F-Q) The RCAS-infected RCAS-Ptf1a-infected (H-I,L-M,P-Q) retinal sections were co-stained with hemalun, Ptf1a aaects retinal structure. (A) Lysates from DF1 cells transfected with the RCAS- retinal sections were counterstained with DAPI. ONL, outer nuclear layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer; NBL, neuroblastic layer. Bars: 50 m (B-E in B and D), 25 m (F-Q)

. Fig, ) retinas were stained with EdU and anti-gag (3c2) antibodies (A-D) or with anti-P-H3 and antigag antibodies (E-H) at E7 and E9. In F, arrows point to P-H3 positive cells in an ectopic location in the RCAS-Ptf1a-infected retinas. (I-J) Quantitative analysis of EdU-positive (I) or P-H3-positive cells (J) among the RCAS-and RCAS-Ptf1a-infected cells at E7 and E9. Values represent the mean ± s.e.m. The percentage of EdU-positive cells among the infected cells was normalized by the percentage of EdU-positive cells among the non-infected cells for each embryo. NBL, neuroblastic layer; GCL, ganglion cell layer

F. Figa, K. , P. , G. , L. et al., RCAS-Ptf1a--C12-infected (D,I,N,S) and RCAS-Ptf1a--basic-infected (E,J,O,T) patches from E12 retinas were immunostained using anti-Brn3a (A-E), anti-Visinin (F-J), anti-Ap2? (K-O), and anti-Prox1 (P-T) antibodies. For clarity, the gag labeling is not represented. Retinal sections were counterstained with DAPI. (U-V) Representative ow cytometry analysis after staining the RCAS-infected (U) and RCAS-Ptf1a-infected (V) dissociated cells with anti-gag (p27) and anti-Visinin antibodies at E12. (W) Quantitative analysis of Visinin-, Ap2?-and Prox1-positive cells among the infected cells at E12. Values represent the mean ± s.e.m of at least four separate eye counts. ONL, outer nuclear layer; INL, inner nuclear layer; GCL, ganglion cell layer, p.50

B. Fig, D. , F. , B. , and K. , ) retinal patches were immunostained using an anti-gag antibody and either anti-Brn3a (A-B), anti-Visinin (CD), anti-Prox1 (E-F) or anti-Ap2? (G-H) antibodies. Cell type-speciic labeling in panels A-H was represented without gag labeling in panels a-h, respectively. (I) Quantitative analysis of Visinin-, Ap2?-or Prox1-positive cells among the infected cells. The values represent the mean ± s.e.m of at least four separate retinal counts and are representative of two independent injections. (J-L) Cells undergoing apoptosis were TUNEL-labeled at E7 in the RCASinfected (J) and RCAS-Ptf1a-infected (K) patches detected using anti-gag (p27) antibody. Sections in J and K were counterstained with DAPI. (L) Quantitative analysis of the number of apoptotic cells per area in the RCAS-and RCAS-Ptf1a-infected patches at E7. The values represent the mean ± s.e.m of at least three separate retinas. NBL, neuroblastic layer; GCL, ganglion cell layer, E7 retinas prior to lamination defects, pp.50-75

. Fig, Epiiuorescence micrographs show Ptf1a Islet1 (I-L) double-labeling of E6.5, E9, E12 and E16 chick retinas, and the corresponding split uorescence images are to the right of each panel. Insets in b, f, and j are higher magniications of the boxes in B, F and J. Arrows point at double-labeled cells. GCL, ganglion cell layer; INL, inner nuclear layer, Ptf1a expression in subtypes of developing horizontal cells Ptf1a, Lim1 (E-H), and Ptf1a

. Fig, F) patches were double immunostained at E7 with either anti-Lim1 and anti-Prox1 antibodies for H1 cells (A-B), anti- Islet1 and anti-Prox1 antibodies for H2 and H3 cells (C-D) or anti-Islet1 and anti-TrkA antibodies for H3 cells (E-F). a-f are higher magniications of the boxes in A-F, respectively. a'-f' and a''-f'' are split uorescence images of a-f. Arrows point to some double-positive cells. (G-N) The RCAS-infected (G,I,K,M) and RCAS-Ptf1a-infected (H,J,L,N) patches at E9 were double immunostained with either anti-Lim1 and anti-Prox1 (G-H), anti-Islet1 and anti- Prox1 (I-J), anti-Islet1 and anti-TrkA (K-L) or anti-TrkA and anti-Lim1 antibodies (M-N). g-n are higher magniications of boxes in G-N, respectively. g'-n' and g''-n'' are split uorescent images of g-n, respectively. Arrows point to some Islet1-positive/TrkA-negative cells. (O) The quantiication of Lim1, Islet1-(H2-H3) and TrkA-positive (H3) cells among the Prox1-positive HCs in the RCAS-and RCAS-Ptf1a-infected patches at E9. The values represent the mean ± s.e.m. NBL, neuroblastic layer; ONL, outer nuclear layer; INL, inner nuclear layer; GCL, ganglion cell layer; pHCL, prospective horizontal cell layer. Bars: 25 m (A-F), 5 m, pp.50-60