G. Jerusalem, R. Hustinx, Y. Beguin, and G. Fillet, The value of positron emission tomography (PET) imaging in disease staging and therapy assessment, Annals of Oncology, vol.13, issue.suppl 4, pp.227-261, 2002.
DOI : 10.1093/annonc/mdf664

R. Wahl, H. Jacene, Y. Kasamon, and M. Lodge, From RECIST to PERCIST: Evolving Considerations for PET Response Criteria in Solid Tumors, Journal of Nuclear Medicine, vol.50, issue.Suppl_1, pp.122-50, 2009.
DOI : 10.2967/jnumed.108.057307

P. Jarritt, K. Carson, A. Hounsell, and D. Visvikis, The role of PET/CT scanning in radiotherapy planning, The British Journal of Radiology, vol.79, issue.special_issue_1, pp.27-35, 2006.
DOI : 10.1259/bjr/35628509

R. Boellaard, Standards for PET Image Acquisition and Quantitative Data Analysis, Journal of Nuclear Medicine, vol.50, issue.Suppl_1, pp.11-20, 2009.
DOI : 10.2967/jnumed.108.057182

G. Lucignani, SUV and segmentation: pressing challenges in tumour assessment and treatment, European Journal of Nuclear Medicine and Molecular Imaging, vol.49, issue.10, pp.715-735, 2009.
DOI : 10.1007/s00259-009-1085-1

M. Hatt, D. Visvikis, N. Albarghach, F. Tixier, O. Pradier et al., Prognostic value of 18F- FDG PET image-based parameters in esophageal cancer: impact of tumor delineation methodology, European Journal of Nuclear Medicine and Molecular Imaging, 2011.

G. Lucignani and S. Larson, Doctor, what does my future hold? The prognostic value of FDG-PET in solid tumours, European Journal of Nuclear Medicine and Molecular Imaging, vol.115, issue.22, pp.1032-1040, 2010.
DOI : 10.1007/s00259-010-1428-y

F. Tixier, L. Rest, C. Hatt, M. Albarghach, N. Pradier et al., Intratumor Heterogeneity Characterized by Textural Features on Baseline 18F-FDG PET Images Predicts Response to Concomitant Radiochemotherapy in Esophageal Cancer, Journal of Nuclear Medicine, vol.52, issue.3, pp.369-78, 2011.
DOI : 10.2967/jnumed.110.082404

URL : https://hal.archives-ouvertes.fr/inserm-00574272

M. Hatt, D. Visvikis, O. Pradier, and C. Cheze-le-rest, Baseline (18)F-FDG PET image-derived parameters for therapy response prediction in oesophageal cancer, Eur J Nucl Med Mol Imaging Pan T, Mawlawi O. PET/CT in radiation oncology. Med Phys, vol.1035, issue.11, pp.4955-66, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00595534

A. Sovik, E. Malinen, and D. Olsen, Strategies for Biologic Image-Guided Dose Escalation: A Review, International Journal of Radiation Oncology*Biology*Physics, vol.73, issue.3
DOI : 10.1016/j.ijrobp.2008.11.001

S. Supiot, A. Lisbona, F. Paris, D. Azria, and P. Fenoglietto, Dose-painting": myth or reality?]. Cancer Radiother, pp.6-7554, 2010.

J. Fox, R. Rengan, O. Meara, W. Yorke, E. Erdi et al., Does registration of PET and planning CT images decrease interobserver and intraobserver variation in delineating tumor volumes for non-small-cell lung cancer? PET-CTbased auto-contouring in non-small-cell lung cancer correlates with pathology and reduces interobserver variability in the delineation of the primary tumor and involved nodal volumes, Int J Radiat Oncol Biol Phys Int J Radiat Oncol Biol Phys, vol.6268, issue.143, pp.70-5771, 2005.

H. Ashamalla, S. Rafla, K. Parikh, B. Mokhtar, G. Goswami et al., The contribution of integrated PET/CT to the evolving definition of treatment volumes in radiation treatment planning in lung cancer, International Journal of Radiation Oncology*Biology*Physics, vol.63, issue.4, pp.1016-1039, 2005.
DOI : 10.1016/j.ijrobp.2005.04.021

V. Gregoire, K. Haustermans, X. Geets, S. Roels, and M. Lonneux, PET-based treatment planning in radiotherapy: a new standard?, J Nucl Med, vol.48, issue.1, pp.68-77, 2007.

A. Dewalle-vignion, A. Abiad, N. Betrouni, C. Hossein-foucher, D. Huglo et al., Les méthodes de seuillage en TEP : un état de l'art Médecine Nucléaire, pp.119-150, 2010.

M. Hatt and D. Visvikis, Defining Radiotherapy Target Volumes Using 18F-Fluoro-Deoxy-Glucose Positron Emission Tomography/Computed Tomography: Still a Pandora???s Box?: In Regard to Devic et??al. (Int J Radiat Oncol Biol Phys 2010), International Journal of Radiation Oncology*Biology*Physics, vol.78, issue.5, pp.1605-1626, 2009.
DOI : 10.1016/j.ijrobp.2010.08.002

M. Hatt, C. Le-rest, C. Albarghach, N. Pradier, O. Visvikis et al., PET functional volume delineation: a robustness and repeatability study Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer, Eur J Nucl Med Mol Imaging J Nucl Med, 2005.

K. Biehl, F. Kong, F. Dehdashti, J. Jin, S. Mutic et al., 18F-FDG PET definition of gross tumor volume for radiotherapy of non-small cell lung cancer: is a single standardized uptake value threshold approach appropriate?, J Nucl Med, vol.47, issue.11, pp.1808-1820, 2006.

M. Ollers, G. Bosmans, A. Van-baardwijk, A. Dekker, P. Lambin et al., The integration of PET-CT scans from different hospitals into radiotherapy treatment planning, Radiother Oncol, 2008.

M. Hatt, C. Le-rest, C. Descourt, P. Dekker, A. et al., Accurate Automatic Delineation of Heterogeneous Functional Volumes in Positron Emission Tomography for Oncology Applications, International Journal of Radiation Oncology*Biology*Physics, vol.77, issue.1, pp.301-309, 2010.
DOI : 10.1016/j.ijrobp.2009.08.018

URL : https://hal.archives-ouvertes.fr/inserm-00537776

P. Tylski, G. Bonniaud, E. Decenciere, J. Stawiaski, J. Coulot et al., 18F- FDG PET images segmentation using morphological watershed: a phantom study Pathologic Correlation of PET-CT Based Auto-contouring for Radiation Planning in Lung Cancer. World Conference on Lung Cancer Meeting PET Tumor Segmentation: Validation of a Gradient-based Method Using a NSCLC PET Phantom. Society of Nuclear Medicine annual meeting, IEEE Nuclear Science Symposium Conference, vol.28, 2006.

G. Shen, D. Nelson, L. Adler, J. Lee, A. Bol et al., PET Tumor Segmentation: Comparison of Gradient-Based Algorithm to Constant Threshold Algorithm. AAPM A gradient-based method for segmenting FDG- PET images: methodology and validation, Eur J Nucl Med Mol Imaging, vol.34, issue.33, pp.1427-1465, 2007.

H. Li, W. Thorstad, K. Biehl, R. Laforest, Y. Su et al., A novel PET tumor delineation method based on adaptive region-growing and dual-front active contours, Medical Physics, vol.13, issue.8, 2008.
DOI : 10.1109/42.363096

E. Naqa, I. Yang, D. Apte, A. Khullar, D. Mutic et al., Concurrent multimodality image segmentation by active contours for radiotherapy treatment planning Med Phys, 2007.

A. Dewalle-vignion, N. Betrouni, R. Lopes, D. Huglo, S. Stute et al., A New Method for Volume Segmentation of PET Images, Based on Possibility Theory, IEEE Transactions on Medical Imaging, vol.30, issue.2, 2011.
DOI : 10.1109/TMI.2010.2083681

S. Belhassen and H. Zaidi, A novel fuzzy C-means algorithm for unsupervised heterogeneous tumor quantification in PET. Med Phys, pp.1309-1333, 2010.

W. Pieczynski, Modèles de Markov en traitement d'images, Traitement du Signal, vol.20, issue.30, pp.255-78, 2003.

E. Day, J. Betler, D. Parda, B. Reitz, A. Kirichenko et al., A region growing method for tumor volume segmentation on PET images for rectal and anal cancer patients, Medical Physics, vol.27, issue.10, 2009.
DOI : 10.1016/S0969-8051(00)00155-4

M. Aristophanous, B. Penney, M. Martel, and C. Pelizzari, A Gaussian mixture model for definition of lung tumor volumes in positron emission tomography. Med Phys, 2007.

D. Montgomery, A. A. Zaidi, and H. , Fully automated segmentation of oncological PET volumes using a combined multiscale and statistical model. Med Phys, Feb, vol.34, issue.2, pp.722-758, 2007.

M. Hatt, F. Lamare, N. Boussion, A. Turzo, C. Collet et al., Fuzzy hidden Markov chains segmentation for volume determination and quantitation in PET, Physics in Medicine and Biology, vol.52, issue.12, pp.3467-91, 2007.
DOI : 10.1088/0031-9155/52/12/010

URL : https://hal.archives-ouvertes.fr/inserm-00150348

H. Yu, C. Caldwell, K. Mah, and D. Mozeg, Coregistered FDG PET/CT-based textural characterization of head and neck cancer for radiation treatment planning, IEEE Trans Med Imaging, 2009.

H. Yu, C. Caldwell, K. Mah, I. Poon, J. Balogh et al., Automated radiation targeting in head-and-neck cancer using region-based texture analysis of PET and CT images Artificial Neural Network-Based System for PET Volume Segmentation, Int J Radiat Oncol Biol Phys. Oct Int J Biomed Imaging, vol.175, issue.44, pp.618-643, 2009.

T. Sebastian, R. Manjeshwar, T. Akhurst, and J. Miller, Objective PET Lesion Segmentation Using a Spherical Mean Shift Algorithm, Med Image Comput Comput Assist Interv, vol.9, issue.2, pp.782-791, 2006.
DOI : 10.1007/11866763_96

M. Janssen, H. Aerts, M. Ollers, G. Bosmans, J. Lee et al., Tumor Delineation Based on Time???Activity Curve Differences Assessed With Dynamic Fluorodeoxyglucose Positron Emission Tomography???Computed Tomography in Rectal Cancer Patients, International Journal of Radiation Oncology*Biology*Physics, vol.73, issue.2, pp.456-65, 2009.
DOI : 10.1016/j.ijrobp.2008.04.019

N. Boussion, C. Le-rest, C. Hatt, M. Visvikis, and D. , Incorporation of wavelet-based denoising in iterative deconvolution for partial volume correction in whole-body PET imaging, European Journal of Nuclear Medicine and Molecular Imaging, vol.17, issue.2, pp.1064-75, 2009.
DOI : 10.1007/s00259-009-1065-5

URL : https://hal.archives-ouvertes.fr/inserm-00537782

N. Boussion, M. Hatt, F. Lamare, Y. Bizais, A. Turzo et al., A multiresolution image based approach for correction of partial volume effects in emission tomography, Physics in Medicine and Biology, vol.51, issue.7, pp.1857-76, 2006.
DOI : 10.1088/0031-9155/51/7/016

URL : https://hal.archives-ouvertes.fr/inserm-00537786

M. Aristophanous, J. Yap, J. Killoran, A. Chen, and R. Berbeco, Four-Dimensional Positron Emission Tomography: Implications for Dose Painting of High-Uptake Regions, International Journal of Radiation Oncology*Biology*Physics, vol.80, issue.3, 1950.
DOI : 10.1016/j.ijrobp.2010.08.028

C. Liu, L. Pierce, A. Alessio, and P. Kinahan, The impact of respiratory motion on tumor quantification and delineation in static PET/CT imaging, Physics in Medicine and Biology, vol.54, issue.24, pp.7345-62, 2009.
DOI : 10.1088/0031-9155/54/24/007

F. Lamare, C. Le-rest, C. Visvikis, D. Warfield, S. Zou et al., Le mouvement respiratoire en Imagerie Fonctionnelle du Cancer: une revue des effets et des méthodes de correction Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation, Traitement du Signal. IEEE Trans Med Imaging, vol.23, p.52, 2004.

J. Daisne, T. Duprez, B. Weynand, M. Lonneux, M. Hamoir et al., Tumor Volume in Pharyngolaryngeal Squamous Cell Carcinoma: Comparison at CT, MR Imaging, and FDG PET and Validation with Surgical Specimen, Radiology, vol.233, issue.1, pp.93-100, 2004.
DOI : 10.1148/radiol.2331030660

J. Yu, X. Li, L. Xing, D. Mu, Z. Fu et al., Comparison of Tumor Volumes as Determined by Pathologic Examination and FDG-PET/CT Images of Non???Small-Cell Lung Cancer: A Pilot Study, International Journal of Radiation Oncology*Biology*Physics, vol.75, issue.5, pp.1468-74, 2009.
DOI : 10.1016/j.ijrobp.2009.01.019

M. Dahele, D. Hwang, C. Peressotti, L. Sun, M. Kusano et al., Developing a methodology for three-dimensional correlation of PET-CT images and whole-mount histopathology in non-smallcell lung cancer, Curr Oncol, vol.15, issue.5, pp.62-71, 2008.

J. Buijsen, J. Van-den-bogaard, M. Janssen, F. Bakers, S. Engelsman et al., FDG-PET provides the best correlation with the tumor specimen compared to MRI and CT in rectal cancer, Radiotherapy and Oncology, vol.98, issue.2, pp.270-276, 2011.
DOI : 10.1016/j.radonc.2010.11.018

K. Wu, Y. Ung, J. Hornby, M. Freeman, D. Hwang et al., PET CT thresholds for radiotherapy target definition in non-small-cell lung cancer: how close are we to the pathologic findings? SORTEO: Monte Carlo-based simulator with list-mode capabilities, Int J Radiat Oncol Biol Phys Jul Conf Proc IEEE Eng Med Biol Soc, vol.177, issue.58, pp.699-7063751, 2009.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assie et al., GATE: a simulation toolkit for PET and SPECT Computerized threedimensional segmented human anatomy. Med Phys, 4D XCAT phantom for multimodality imaging research. Med Phys, pp.4543-61299, 1994.

C. Lartizien, C. Kuntner, A. Goertzen, A. Evans, and A. Reilhac, Validation of PET-SORTEO Monte Carlo simulations for the geometries of the MicroPET R4 and Focus 220 PET scanners, Physics in Medicine and Biology, vol.52, issue.16, pp.4845-62, 2007.
DOI : 10.1088/0031-9155/52/16/009

F. Lamare, A. Turzo, Y. Bizais, L. Rest, C. Visvikis et al., Validation of a Monte Carlo simulation of the Philips Allegro/GEMINI PET systems using GATE, Physics in Medicine and Biology, vol.51, issue.4, pp.943-62, 2006.
DOI : 10.1088/0031-9155/51/4/013

L. Maitre, A. Segars, W. Marache, S. Reilhac, A. Hatt et al., Incorporating Patient- Specific Variability in the Simulation of Realistic Whole-Body 18F-FDG Distributions for Oncology Applications, Proceedings of the IEEE, vol.9, issue.12, pp.2026-2064, 2009.

L. Dice, Measures of the Amount of Ecologic Association Between Species, Ecology, vol.26, issue.3, pp.297-302, 1945.
DOI : 10.2307/1932409

X. Geets, J. Lee, P. Castadot, A. Bol, V. Gregoire et al., Potential place of FDG-PET for the GTV delineation in head and neck and lung cancers]. Cancer Radiother Tumor Treatment Response Based on Visual and Quantitative Changes in Global Tumor Glycolysis Using PET-FDG Imaging. The Visual Response Score and the Change in Total Lesion Glycolysis, Clin Positron Imaging, vol.132, issue.673, pp.6-7594, 1999.

T. Cazaentre, F. Morschhauser, M. Vermandel, N. Betrouni, T. Prangere et al., Pre-therapy 18F-FDG PET quantitative parameters help in predicting the response to radioimmunotherapy in non-Hodgkin lymphoma, European Journal of Nuclear Medicine and Molecular Imaging, vol.29, issue.suppl, pp.494-504, 2010.
DOI : 10.1007/s00259-009-1275-x

H. Lee, S. Hyun, K. Lee, B. Kim, J. Kim et al., Volume-Based Parameter of 18F-FDG PET/CT in Malignant Pleural Mesothelioma: Prediction of Therapeutic Response and Prognostic Implications, Annals of Surgical Oncology, vol.34, issue.1, pp.2787-94, 2010.
DOI : 10.1245/s10434-010-1107-z

E. Naqa, I. Grigsby, P. Apte, A. Kidd, E. Donnelly et al., Exploring feature-based approaches in PET images for predicting cancer treatment outcomes, Pattern Recognition, vol.42, issue.6, pp.1162-71, 2009.
DOI : 10.1016/j.patcog.2008.08.011

J. Eary, O. Sullivan, F. , O. Sullivan, J. Conrad et al., Spatial Heterogeneity in Sarcoma 18F-FDG Uptake as a Predictor of Patient Outcome, Journal of Nuclear Medicine, vol.49, issue.12, pp.1973-1982, 2008.
DOI : 10.2967/jnumed.108.053397

S. Tomei, A. Reilhac, D. Visvikis, N. Boussion, C. Odet et al., OncoPET_DB: A Freely Distributed Database of Realistic Simulated Whole Body 18F-FDG PET Images for Oncology, IEEE Transactions on Nuclear Science, vol.57, issue.1, pp.246-55, 2010.
DOI : 10.1109/TNS.2009.2034375

URL : https://hal.archives-ouvertes.fr/hal-00703700