Reconstruction from free-breathing cardiac MRI data using reproducing kernel Hilbert spaces.

Abstract : This paper describes a rigorous framework for reconstructing MR images of the heart, acquired continuously over the cardiac and respiratory cycle. The framework generalizes existing techniques, commonly referred to as retrospective gating, and is based on the properties of reproducing kernel Hilbert spaces. The reconstruction problem is formulated as a moment problem in a multidimensional reproducing kernel Hilbert spaces (a two-dimensional space for cardiac and respiratory resolved imaging). Several reproducing kernel Hilbert spaces were tested and compared, including those corresponding to commonly used interpolation techniques (sinc-based and splines kernels) and a more specific kernel allowed by the framework (based on a first-order Sobolev RKHS). The Sobolev reproducing kernel Hilbert spaces was shown to allow improved reconstructions in both simulated and real data from healthy volunteers, acquired in free breathing.
Type de document :
Article dans une revue
Magnetic Resonance in Medicine, Wiley, 2010, 63 (1), pp.59-67. 〈10.1002/mrm.22170〉
Liste complète des métadonnées

http://www.hal.inserm.fr/inserm-00605759
Contributeur : Jacques Felblinger <>
Soumis le : lundi 4 juillet 2011 - 11:45:59
Dernière modification le : mardi 24 avril 2018 - 13:54:58

Lien texte intégral

Identifiants

Collections

Citation

Nicolae Cîndea, Freddy Odille, Gilles Bosser, Jacques Felblinger, Pierre-André Vuissoz. Reconstruction from free-breathing cardiac MRI data using reproducing kernel Hilbert spaces.. Magnetic Resonance in Medicine, Wiley, 2010, 63 (1), pp.59-67. 〈10.1002/mrm.22170〉. 〈inserm-00605759〉

Partager

Métriques

Consultations de la notice

121